/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 52 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 5 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: 2ND(cons1(z0, cons(z1, z2))) -> c 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c2 FROM(z0) -> c3 S(z0) -> c4 ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) ACTIVATE(z0) -> c7 S tuples: 2ND(cons1(z0, cons(z1, z2))) -> c 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c2 FROM(z0) -> c3 S(z0) -> c4 ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: 2ND_1, FROM_1, S_1, ACTIVATE_1 Compound Symbols: c, c1_2, c2, c3, c4, c5_2, c6_2, c7 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: FROM(z0) -> c3 FROM(z0) -> c2 S(z0) -> c4 2ND(cons1(z0, cons(z1, z2))) -> c ACTIVATE(z0) -> c7 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) S tuples: 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: 2ND_1, ACTIVATE_1 Compound Symbols: c1_2, c5_2, c6_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: 2ND(cons(z0, z1)) -> c1(ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples: 2ND(cons(z0, z1)) -> c1(ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: 2ND_1, ACTIVATE_1 Compound Symbols: c1_1, c5_1, c6_1 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: 2ND(cons(z0, z1)) -> c1(ACTIVATE(z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: ACTIVATE_1 Compound Symbols: c5_1, c6_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: ACTIVATE_1 Compound Symbols: c5_1, c6_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) We considered the (Usable) Rules:none And the Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(n__from(x_1)) = x_1 POL(n__s(x_1)) = [1] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) K tuples: ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) Defined Rule Symbols:none Defined Pair Symbols: ACTIVATE_1 Compound Symbols: c5_1, c6_1 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) We considered the (Usable) Rules:none And the Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(n__from(x_1)) = [1] + x_1 POL(n__s(x_1)) = x_1 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples:none K tuples: ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) Defined Rule Symbols:none Defined Pair Symbols: ACTIVATE_1 Compound Symbols: c5_1, c6_1 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (19) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__s(X)) ->^+ s(activate(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / n__s(X)]. The result substitution is [ ]. ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST