/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(nats(X)) ->^+ a__nats(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / nats(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes S is empty. Rewrite Strategy: INNERMOST