/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 40 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 0 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTRS (15) SlicingProof [LOWER BOUND(ID), 0 ms] (16) CpxTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 2229 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) sum1(0) -> 0 sum1(s(z0)) -> s(+(sum1(z0), +(z0, z0))) Tuples: SUM(0) -> c SUM(s(z0)) -> c1(SUM(z0)) SUM1(0) -> c2 SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(0) -> c SUM(s(z0)) -> c1(SUM(z0)) SUM1(0) -> c2 SUM1(s(z0)) -> c3(SUM1(z0)) K tuples:none Defined Rule Symbols: sum_1, sum1_1 Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c, c1_1, c2, c3_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: SUM1(0) -> c2 SUM(0) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) sum1(0) -> 0 sum1(s(z0)) -> s(+(sum1(z0), +(z0, z0))) Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) K tuples:none Defined Rule Symbols: sum_1, sum1_1 Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) sum1(0) -> 0 sum1(s(z0)) -> s(+(sum1(z0), +(z0, z0))) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SUM1(s(z0)) -> c3(SUM1(z0)) We considered the (Usable) Rules:none And the Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(SUM(x_1)) = 0 POL(SUM1(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(s(z0)) -> c1(SUM(z0)) K tuples: SUM1(s(z0)) -> c3(SUM1(z0)) Defined Rule Symbols:none Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SUM(s(z0)) -> c1(SUM(z0)) We considered the (Usable) Rules:none And the Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(SUM(x_1)) = x_1 POL(SUM1(x_1)) = 0 POL(c1(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples:none K tuples: SUM1(s(z0)) -> c3(SUM1(z0)) SUM(s(z0)) -> c1(SUM(z0)) Defined Rule Symbols:none Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x), +'(x, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: +'/1 ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, sum1 ---------------------------------------- (20) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum, sum1 ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_0':s:+'2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: sum(gen_0':s:+'2_0(+(1, 0))) Induction Step: sum(gen_0':s:+'2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) +'(sum(gen_0':s:+'2_0(+(1, n4_0)))) ->_IH +'(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum, sum1 ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Lemmas: sum(gen_0':s:+'2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum1