/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 31 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 0 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 0 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(0) -> true f(1) -> false f(s(x)) -> f(x) if(true, s(x), s(y)) -> s(x) if(false, s(x), s(y)) -> s(y) g(x, c(y)) -> c(g(x, y)) g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: f(0) -> true f(1) -> false f(s(z0)) -> f(z0) if(true, s(z0), s(z1)) -> s(z0) if(false, s(z0), s(z1)) -> s(z1) g(z0, c(z1)) -> c(g(z0, z1)) g(z0, c(z1)) -> g(z0, if(f(z0), c(g(s(z0), z1)), c(z1))) Tuples: F(0) -> c1 F(1) -> c2 F(s(z0)) -> c3(F(z0)) IF(true, s(z0), s(z1)) -> c4 IF(false, s(z0), s(z1)) -> c5 G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(G(z0, if(f(z0), c(g(s(z0), z1)), c(z1))), IF(f(z0), c(g(s(z0), z1)), c(z1)), F(z0), G(s(z0), z1)) S tuples: F(0) -> c1 F(1) -> c2 F(s(z0)) -> c3(F(z0)) IF(true, s(z0), s(z1)) -> c4 IF(false, s(z0), s(z1)) -> c5 G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(G(z0, if(f(z0), c(g(s(z0), z1)), c(z1))), IF(f(z0), c(g(s(z0), z1)), c(z1)), F(z0), G(s(z0), z1)) K tuples:none Defined Rule Symbols: f_1, if_3, g_2 Defined Pair Symbols: F_1, IF_3, G_2 Compound Symbols: c1, c2, c3_1, c4, c5, c6_1, c7_4 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: IF(false, s(z0), s(z1)) -> c5 IF(true, s(z0), s(z1)) -> c4 F(0) -> c1 F(1) -> c2 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(0) -> true f(1) -> false f(s(z0)) -> f(z0) if(true, s(z0), s(z1)) -> s(z0) if(false, s(z0), s(z1)) -> s(z1) g(z0, c(z1)) -> c(g(z0, z1)) g(z0, c(z1)) -> g(z0, if(f(z0), c(g(s(z0), z1)), c(z1))) Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(G(z0, if(f(z0), c(g(s(z0), z1)), c(z1))), IF(f(z0), c(g(s(z0), z1)), c(z1)), F(z0), G(s(z0), z1)) S tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(G(z0, if(f(z0), c(g(s(z0), z1)), c(z1))), IF(f(z0), c(g(s(z0), z1)), c(z1)), F(z0), G(s(z0), z1)) K tuples:none Defined Rule Symbols: f_1, if_3, g_2 Defined Pair Symbols: F_1, G_2 Compound Symbols: c3_1, c6_1, c7_4 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(0) -> true f(1) -> false f(s(z0)) -> f(z0) if(true, s(z0), s(z1)) -> s(z0) if(false, s(z0), s(z1)) -> s(z1) g(z0, c(z1)) -> c(g(z0, z1)) g(z0, c(z1)) -> g(z0, if(f(z0), c(g(s(z0), z1)), c(z1))) Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) S tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) K tuples:none Defined Rule Symbols: f_1, if_3, g_2 Defined Pair Symbols: F_1, G_2 Compound Symbols: c3_1, c6_1, c7_2 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(0) -> true f(1) -> false f(s(z0)) -> f(z0) if(true, s(z0), s(z1)) -> s(z0) if(false, s(z0), s(z1)) -> s(z1) g(z0, c(z1)) -> c(g(z0, z1)) g(z0, c(z1)) -> g(z0, if(f(z0), c(g(s(z0), z1)), c(z1))) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) S tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_1, G_2 Compound Symbols: c3_1, c6_1, c7_2 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(z0, c(z1)) -> c6(G(z0, z1)) We considered the (Usable) Rules:none And the Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1)) = 0 POL(G(x_1, x_2)) = x_1 + x_2 POL(c(x_1)) = [1] + x_1 POL(c3(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c7(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) S tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) K tuples: G(z0, c(z1)) -> c6(G(z0, z1)) Defined Rule Symbols:none Defined Pair Symbols: F_1, G_2 Compound Symbols: c3_1, c6_1, c7_2 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) We considered the (Usable) Rules:none And the Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1)) = 0 POL(G(x_1, x_2)) = x_2 POL(c(x_1)) = [1] + x_1 POL(c3(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c7(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = [3] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) S tuples: F(s(z0)) -> c3(F(z0)) K tuples: G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) Defined Rule Symbols:none Defined Pair Symbols: F_1, G_2 Compound Symbols: c3_1, c6_1, c7_2 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(s(z0)) -> c3(F(z0)) We considered the (Usable) Rules:none And the Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1)) = [2] + x_1 POL(G(x_1, x_2)) = [2]x_2^2 + x_1*x_2 POL(c(x_1)) = [2] + x_1 POL(c3(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c7(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0)) -> c3(F(z0)) G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) S tuples:none K tuples: G(z0, c(z1)) -> c6(G(z0, z1)) G(z0, c(z1)) -> c7(F(z0), G(s(z0), z1)) F(s(z0)) -> c3(F(z0)) Defined Rule Symbols:none Defined Pair Symbols: F_1, G_2 Compound Symbols: c3_1, c6_1, c7_2 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(0) -> true f(1) -> false f(s(x)) -> f(x) if(true, s(x), s(y)) -> s(x) if(false, s(x), s(y)) -> s(y) g(x, c(y)) -> c(g(x, y)) g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (19) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(x, c(y)) ->^+ g(x, if(f(x), c(g(s(x), y)), c(y))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,0]. The pumping substitution is [y / c(y)]. The result substitution is [x / s(x)]. ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(0) -> true f(1) -> false f(s(x)) -> f(x) if(true, s(x), s(y)) -> s(x) if(false, s(x), s(y)) -> s(y) g(x, c(y)) -> c(g(x, y)) g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(0) -> true f(1) -> false f(s(x)) -> f(x) if(true, s(x), s(y)) -> s(x) if(false, s(x), s(y)) -> s(y) g(x, c(y)) -> c(g(x, y)) g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) S is empty. Rewrite Strategy: INNERMOST