/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 244 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 84 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0 sum(cons(0, xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0' sum(cons(0', xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0' sum(cons(0', xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) Types: times :: 0':s -> 0':s -> 0':s sum :: nil:cons -> 0':s generate :: 0':s -> 0':s -> nil:cons gen :: 0':s -> 0':s -> 0':s -> nil:cons 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> nil:cons ge :: 0':s -> 0':s -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s -> nil:cons -> nil:cons s :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, gen, ge They will be analysed ascendingly in the following order: ge < gen ---------------------------------------- (6) Obligation: Innermost TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0' sum(cons(0', xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) Types: times :: 0':s -> 0':s -> 0':s sum :: nil:cons -> 0':s generate :: 0':s -> 0':s -> nil:cons gen :: 0':s -> 0':s -> 0':s -> nil:cons 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> nil:cons ge :: 0':s -> 0':s -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s -> nil:cons -> nil:cons s :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: sum, gen, ge They will be analysed ascendingly in the following order: ge < gen ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_nil:cons5_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) Induction Base: sum(gen_nil:cons5_0(0)) ->_R^Omega(1) 0' Induction Step: sum(gen_nil:cons5_0(+(n7_0, 1))) ->_R^Omega(1) sum(gen_nil:cons5_0(n7_0)) ->_IH gen_0':s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0' sum(cons(0', xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) Types: times :: 0':s -> 0':s -> 0':s sum :: nil:cons -> 0':s generate :: 0':s -> 0':s -> nil:cons gen :: 0':s -> 0':s -> 0':s -> nil:cons 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> nil:cons ge :: 0':s -> 0':s -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s -> nil:cons -> nil:cons s :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: sum, gen, ge They will be analysed ascendingly in the following order: ge < gen ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0' sum(cons(0', xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) Types: times :: 0':s -> 0':s -> 0':s sum :: nil:cons -> 0':s generate :: 0':s -> 0':s -> nil:cons gen :: 0':s -> 0':s -> 0':s -> nil:cons 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> nil:cons ge :: 0':s -> 0':s -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s -> nil:cons -> nil:cons s :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: sum(gen_nil:cons5_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: ge, gen They will be analysed ascendingly in the following order: ge < gen ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s4_0(n300_0), gen_0':s4_0(n300_0)) -> true, rt in Omega(1 + n300_0) Induction Base: ge(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s4_0(+(n300_0, 1)), gen_0':s4_0(+(n300_0, 1))) ->_R^Omega(1) ge(gen_0':s4_0(n300_0), gen_0':s4_0(n300_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0' sum(cons(0', xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) Types: times :: 0':s -> 0':s -> 0':s sum :: nil:cons -> 0':s generate :: 0':s -> 0':s -> nil:cons gen :: 0':s -> 0':s -> 0':s -> nil:cons 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> nil:cons ge :: 0':s -> 0':s -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s -> nil:cons -> nil:cons s :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: sum(gen_nil:cons5_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) ge(gen_0':s4_0(n300_0), gen_0':s4_0(n300_0)) -> true, rt in Omega(1 + n300_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: gen