/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) SlicingProof [LOWER BOUND(ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 188 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: list(Cons(x, xs)) -> list(xs) list(Nil) -> True list(Nil) -> isEmpty[Match](Nil) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x) -> list(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: list(Cons(x, xs)) -> list(xs) list(Nil) -> True list(Nil) -> isEmpty[Match](Nil) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x) -> list(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: Cons0(0, 0) -> 0 Nil0() -> 0 True0() -> 0 isEmpty[Match]0(0) -> 0 False0() -> 0 list0(0) -> 1 notEmpty0(0) -> 2 goal0(0) -> 3 list1(0) -> 1 True1() -> 1 Nil1() -> 4 isEmpty[Match]1(4) -> 1 True1() -> 2 False1() -> 2 list1(0) -> 3 True1() -> 3 isEmpty[Match]1(4) -> 3 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: list(Cons(x, xs)) -> list(xs) list(Nil) -> True list(Nil) -> isEmpty[Match](Nil) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x) -> list(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: Cons/0 isEmpty[Match]/0 ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: list(Cons(xs)) -> list(xs) list(Nil) -> True list(Nil) -> isEmpty[Match] notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(x) -> list(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: list(Cons(xs)) -> list(xs) list(Nil) -> True list(Nil) -> isEmpty[Match] notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(x) -> list(x) Types: list :: Cons:Nil -> True:isEmpty[Match]:False Cons :: Cons:Nil -> Cons:Nil Nil :: Cons:Nil True :: True:isEmpty[Match]:False isEmpty[Match] :: True:isEmpty[Match]:False notEmpty :: Cons:Nil -> True:isEmpty[Match]:False False :: True:isEmpty[Match]:False goal :: Cons:Nil -> True:isEmpty[Match]:False hole_True:isEmpty[Match]:False1_0 :: True:isEmpty[Match]:False hole_Cons:Nil2_0 :: Cons:Nil gen_Cons:Nil3_0 :: Nat -> Cons:Nil ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: list ---------------------------------------- (12) Obligation: Innermost TRS: Rules: list(Cons(xs)) -> list(xs) list(Nil) -> True list(Nil) -> isEmpty[Match] notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(x) -> list(x) Types: list :: Cons:Nil -> True:isEmpty[Match]:False Cons :: Cons:Nil -> Cons:Nil Nil :: Cons:Nil True :: True:isEmpty[Match]:False isEmpty[Match] :: True:isEmpty[Match]:False notEmpty :: Cons:Nil -> True:isEmpty[Match]:False False :: True:isEmpty[Match]:False goal :: Cons:Nil -> True:isEmpty[Match]:False hole_True:isEmpty[Match]:False1_0 :: True:isEmpty[Match]:False hole_Cons:Nil2_0 :: Cons:Nil gen_Cons:Nil3_0 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: list ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: list(gen_Cons:Nil3_0(n5_0)) -> True, rt in Omega(1 + n5_0) Induction Base: list(gen_Cons:Nil3_0(0)) ->_R^Omega(1) True Induction Step: list(gen_Cons:Nil3_0(+(n5_0, 1))) ->_R^Omega(1) list(gen_Cons:Nil3_0(n5_0)) ->_IH True We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: list(Cons(xs)) -> list(xs) list(Nil) -> True list(Nil) -> isEmpty[Match] notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(x) -> list(x) Types: list :: Cons:Nil -> True:isEmpty[Match]:False Cons :: Cons:Nil -> Cons:Nil Nil :: Cons:Nil True :: True:isEmpty[Match]:False isEmpty[Match] :: True:isEmpty[Match]:False notEmpty :: Cons:Nil -> True:isEmpty[Match]:False False :: True:isEmpty[Match]:False goal :: Cons:Nil -> True:isEmpty[Match]:False hole_True:isEmpty[Match]:False1_0 :: True:isEmpty[Match]:False hole_Cons:Nil2_0 :: Cons:Nil gen_Cons:Nil3_0 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: list ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^1, INF)