/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 381 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 64 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 57 ms] (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: a__p(0) -> 0 a__p(s(X)) -> mark(X) a__leq(0, Y) -> true a__leq(s(X), 0) -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0, s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) Types: a__p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if 0' :: 0':s:true:false:p:diff:leq:if s :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if mark :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if true :: 0':s:true:false:p:diff:leq:if false :: 0':s:true:false:p:diff:leq:if a__if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if gen_0':s:true:false:p:diff:leq:if2_0 :: Nat -> 0':s:true:false:p:diff:leq:if ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__p, mark, a__leq, a__if They will be analysed ascendingly in the following order: a__p = mark a__p = a__leq a__p = a__if mark = a__leq mark = a__if a__leq = a__if ---------------------------------------- (6) Obligation: Innermost TRS: Rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) Types: a__p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if 0' :: 0':s:true:false:p:diff:leq:if s :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if mark :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if true :: 0':s:true:false:p:diff:leq:if false :: 0':s:true:false:p:diff:leq:if a__if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if gen_0':s:true:false:p:diff:leq:if2_0 :: Nat -> 0':s:true:false:p:diff:leq:if Generator Equations: gen_0':s:true:false:p:diff:leq:if2_0(0) <=> 0' gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:p:diff:leq:if2_0(x)) The following defined symbols remain to be analysed: mark, a__p, a__leq, a__if They will be analysed ascendingly in the following order: a__p = mark a__p = a__leq a__p = a__if mark = a__leq mark = a__if a__leq = a__if ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) -> gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt in Omega(1 + n4_0) Induction Base: mark(gen_0':s:true:false:p:diff:leq:if2_0(0)) ->_R^Omega(1) 0' Induction Step: mark(gen_0':s:true:false:p:diff:leq:if2_0(+(n4_0, 1))) ->_R^Omega(1) s(mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0))) ->_IH s(gen_0':s:true:false:p:diff:leq:if2_0(c5_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) Types: a__p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if 0' :: 0':s:true:false:p:diff:leq:if s :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if mark :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if true :: 0':s:true:false:p:diff:leq:if false :: 0':s:true:false:p:diff:leq:if a__if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if gen_0':s:true:false:p:diff:leq:if2_0 :: Nat -> 0':s:true:false:p:diff:leq:if Generator Equations: gen_0':s:true:false:p:diff:leq:if2_0(0) <=> 0' gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:p:diff:leq:if2_0(x)) The following defined symbols remain to be analysed: mark, a__p, a__leq, a__if They will be analysed ascendingly in the following order: a__p = mark a__p = a__leq a__p = a__if mark = a__leq mark = a__if a__leq = a__if ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) Types: a__p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if 0' :: 0':s:true:false:p:diff:leq:if s :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if mark :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if true :: 0':s:true:false:p:diff:leq:if false :: 0':s:true:false:p:diff:leq:if a__if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if gen_0':s:true:false:p:diff:leq:if2_0 :: Nat -> 0':s:true:false:p:diff:leq:if Lemmas: mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) -> gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s:true:false:p:diff:leq:if2_0(0) <=> 0' gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:p:diff:leq:if2_0(x)) The following defined symbols remain to be analysed: a__p, a__leq, a__if They will be analysed ascendingly in the following order: a__p = mark a__p = a__leq a__p = a__if mark = a__leq mark = a__if a__leq = a__if ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0), gen_0':s:true:false:p:diff:leq:if2_0(n1537_0)) -> true, rt in Omega(1 + n1537_0 + n1537_0^2) Induction Base: a__leq(gen_0':s:true:false:p:diff:leq:if2_0(0), gen_0':s:true:false:p:diff:leq:if2_0(0)) ->_R^Omega(1) true Induction Step: a__leq(gen_0':s:true:false:p:diff:leq:if2_0(+(n1537_0, 1)), gen_0':s:true:false:p:diff:leq:if2_0(+(n1537_0, 1))) ->_R^Omega(1) a__leq(mark(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0)), mark(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0))) ->_L^Omega(1 + n1537_0) a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0), mark(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0))) ->_L^Omega(1 + n1537_0) a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0), gen_0':s:true:false:p:diff:leq:if2_0(n1537_0)) ->_IH true We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) Types: a__p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if 0' :: 0':s:true:false:p:diff:leq:if s :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if mark :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if true :: 0':s:true:false:p:diff:leq:if false :: 0':s:true:false:p:diff:leq:if a__if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if gen_0':s:true:false:p:diff:leq:if2_0 :: Nat -> 0':s:true:false:p:diff:leq:if Lemmas: mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) -> gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s:true:false:p:diff:leq:if2_0(0) <=> 0' gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:p:diff:leq:if2_0(x)) The following defined symbols remain to be analysed: a__leq, a__if They will be analysed ascendingly in the following order: a__p = mark a__p = a__leq a__p = a__if mark = a__leq mark = a__if a__leq = a__if ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) Types: a__p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if 0' :: 0':s:true:false:p:diff:leq:if s :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if mark :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if true :: 0':s:true:false:p:diff:leq:if false :: 0':s:true:false:p:diff:leq:if a__if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if gen_0':s:true:false:p:diff:leq:if2_0 :: Nat -> 0':s:true:false:p:diff:leq:if Lemmas: mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) -> gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt in Omega(1 + n4_0) a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0), gen_0':s:true:false:p:diff:leq:if2_0(n1537_0)) -> true, rt in Omega(1 + n1537_0 + n1537_0^2) Generator Equations: gen_0':s:true:false:p:diff:leq:if2_0(0) <=> 0' gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:p:diff:leq:if2_0(x)) The following defined symbols remain to be analysed: a__if, a__p, mark They will be analysed ascendingly in the following order: a__p = mark a__p = a__leq a__p = a__if mark = a__leq mark = a__if a__leq = a__if ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_0':s:true:false:p:diff:leq:if2_0(n2399_0)) -> gen_0':s:true:false:p:diff:leq:if2_0(n2399_0), rt in Omega(1 + n2399_0) Induction Base: mark(gen_0':s:true:false:p:diff:leq:if2_0(0)) ->_R^Omega(1) 0' Induction Step: mark(gen_0':s:true:false:p:diff:leq:if2_0(+(n2399_0, 1))) ->_R^Omega(1) s(mark(gen_0':s:true:false:p:diff:leq:if2_0(n2399_0))) ->_IH s(gen_0':s:true:false:p:diff:leq:if2_0(c2400_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: a__p(0') -> 0' a__p(s(X)) -> mark(X) a__leq(0', Y) -> true a__leq(s(X), 0') -> false a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y))) mark(p(X)) -> a__p(mark(X)) mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__p(X) -> p(X) a__leq(X1, X2) -> leq(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__diff(X1, X2) -> diff(X1, X2) Types: a__p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if 0' :: 0':s:true:false:p:diff:leq:if s :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if mark :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if true :: 0':s:true:false:p:diff:leq:if false :: 0':s:true:false:p:diff:leq:if a__if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if a__diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if diff :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if p :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if leq :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if if :: 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if -> 0':s:true:false:p:diff:leq:if hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if gen_0':s:true:false:p:diff:leq:if2_0 :: Nat -> 0':s:true:false:p:diff:leq:if Lemmas: mark(gen_0':s:true:false:p:diff:leq:if2_0(n2399_0)) -> gen_0':s:true:false:p:diff:leq:if2_0(n2399_0), rt in Omega(1 + n2399_0) a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1537_0), gen_0':s:true:false:p:diff:leq:if2_0(n1537_0)) -> true, rt in Omega(1 + n1537_0 + n1537_0^2) Generator Equations: gen_0':s:true:false:p:diff:leq:if2_0(0) <=> 0' gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:p:diff:leq:if2_0(x)) The following defined symbols remain to be analysed: a__p They will be analysed ascendingly in the following order: a__p = mark a__p = a__leq a__p = a__if mark = a__leq mark = a__if a__leq = a__if