/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 61 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sqr(s(z0)), sum(z0)) sum(s(z0)) -> +(*(s(z0), s(z0)), sum(z0)) sqr(z0) -> *(z0, z0) Tuples: SUM(0) -> c SUM(s(z0)) -> c1(SQR(s(z0)), SUM(z0)) SUM(s(z0)) -> c2(SUM(z0)) SQR(z0) -> c3 S tuples: SUM(0) -> c SUM(s(z0)) -> c1(SQR(s(z0)), SUM(z0)) SUM(s(z0)) -> c2(SUM(z0)) SQR(z0) -> c3 K tuples:none Defined Rule Symbols: sum_1, sqr_1 Defined Pair Symbols: SUM_1, SQR_1 Compound Symbols: c, c1_2, c2_1, c3 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: SUM(0) -> c SQR(z0) -> c3 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sqr(s(z0)), sum(z0)) sum(s(z0)) -> +(*(s(z0), s(z0)), sum(z0)) sqr(z0) -> *(z0, z0) Tuples: SUM(s(z0)) -> c1(SQR(s(z0)), SUM(z0)) SUM(s(z0)) -> c2(SUM(z0)) S tuples: SUM(s(z0)) -> c1(SQR(s(z0)), SUM(z0)) SUM(s(z0)) -> c2(SUM(z0)) K tuples:none Defined Rule Symbols: sum_1, sqr_1 Defined Pair Symbols: SUM_1 Compound Symbols: c1_2, c2_1 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sqr(s(z0)), sum(z0)) sum(s(z0)) -> +(*(s(z0), s(z0)), sum(z0)) sqr(z0) -> *(z0, z0) Tuples: SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) S tuples: SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) K tuples:none Defined Rule Symbols: sum_1, sqr_1 Defined Pair Symbols: SUM_1 Compound Symbols: c2_1, c1_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: sum(0) -> 0 sum(s(z0)) -> +(sqr(s(z0)), sum(z0)) sum(s(z0)) -> +(*(s(z0), s(z0)), sum(z0)) sqr(z0) -> *(z0, z0) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) S tuples: SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: SUM_1 Compound Symbols: c2_1, c1_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) We considered the (Usable) Rules:none And the Tuples: SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(SUM(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) S tuples:none K tuples: SUM(s(z0)) -> c2(SUM(z0)) SUM(s(z0)) -> c1(SUM(z0)) Defined Rule Symbols:none Defined Pair Symbols: SUM_1 Compound Symbols: c2_1, c1_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence sum(s(x)) ->^+ +(*(s(x), s(x)), sum(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: INNERMOST