/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 444 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: a__f/1 f/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(g(X)) -> a__f(mark(X)) mark(f(X1)) -> a__f(mark(X1)) mark(g(X)) -> g(mark(X)) a__f(X1) -> f(X1) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: a__f(g(X)) -> a__f(mark(X)) mark(f(X1)) -> a__f(mark(X1)) mark(g(X)) -> g(mark(X)) a__f(X1) -> f(X1) Types: a__f :: g:f -> g:f g :: g:f -> g:f mark :: g:f -> g:f f :: g:f -> g:f hole_g:f1_0 :: g:f gen_g:f2_0 :: Nat -> g:f ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__f, mark They will be analysed ascendingly in the following order: a__f = mark ---------------------------------------- (8) Obligation: Innermost TRS: Rules: a__f(g(X)) -> a__f(mark(X)) mark(f(X1)) -> a__f(mark(X1)) mark(g(X)) -> g(mark(X)) a__f(X1) -> f(X1) Types: a__f :: g:f -> g:f g :: g:f -> g:f mark :: g:f -> g:f f :: g:f -> g:f hole_g:f1_0 :: g:f gen_g:f2_0 :: Nat -> g:f Generator Equations: gen_g:f2_0(0) <=> hole_g:f1_0 gen_g:f2_0(+(x, 1)) <=> g(gen_g:f2_0(x)) The following defined symbols remain to be analysed: mark, a__f They will be analysed ascendingly in the following order: a__f = mark ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_g:f2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: mark(gen_g:f2_0(+(1, 0))) Induction Step: mark(gen_g:f2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) g(mark(gen_g:f2_0(+(1, n4_0)))) ->_IH g(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a__f(g(X)) -> a__f(mark(X)) mark(f(X1)) -> a__f(mark(X1)) mark(g(X)) -> g(mark(X)) a__f(X1) -> f(X1) Types: a__f :: g:f -> g:f g :: g:f -> g:f mark :: g:f -> g:f f :: g:f -> g:f hole_g:f1_0 :: g:f gen_g:f2_0 :: Nat -> g:f Generator Equations: gen_g:f2_0(0) <=> hole_g:f1_0 gen_g:f2_0(+(x, 1)) <=> g(gen_g:f2_0(x)) The following defined symbols remain to be analysed: mark, a__f They will be analysed ascendingly in the following order: a__f = mark ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Innermost TRS: Rules: a__f(g(X)) -> a__f(mark(X)) mark(f(X1)) -> a__f(mark(X1)) mark(g(X)) -> g(mark(X)) a__f(X1) -> f(X1) Types: a__f :: g:f -> g:f g :: g:f -> g:f mark :: g:f -> g:f f :: g:f -> g:f hole_g:f1_0 :: g:f gen_g:f2_0 :: Nat -> g:f Lemmas: mark(gen_g:f2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_g:f2_0(0) <=> hole_g:f1_0 gen_g:f2_0(+(x, 1)) <=> g(gen_g:f2_0(x)) The following defined symbols remain to be analysed: a__f They will be analysed ascendingly in the following order: a__f = mark