/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(len(X)) ->^+ a__len(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / len(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) S is empty. Rewrite Strategy: INNERMOST