/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 12.0 s] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(0) -> 0 mark(nil) -> nil mark(s(X)) -> s(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) a__first(X1, X2) -> first(X1, X2) a__from(X) -> from(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__first(0', X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(0') -> 0' mark(nil) -> nil mark(s(X)) -> s(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) a__first(X1, X2) -> first(X1, X2) a__from(X) -> from(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: cons/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__first(0', X) -> nil a__first(s(X), cons(Y)) -> cons(mark(Y)) a__from(X) -> cons(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(0') -> 0' mark(nil) -> nil mark(s(X)) -> s(mark(X)) mark(cons(X1)) -> cons(mark(X1)) a__first(X1, X2) -> first(X1, X2) a__from(X) -> from(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: a__first(0', X) -> nil a__first(s(X), cons(Y)) -> cons(mark(Y)) a__from(X) -> cons(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(0') -> 0' mark(nil) -> nil mark(s(X)) -> s(mark(X)) mark(cons(X1)) -> cons(mark(X1)) a__first(X1, X2) -> first(X1, X2) a__from(X) -> from(X) Types: a__first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from 0' :: 0':nil:s:cons:first:from nil :: 0':nil:s:cons:first:from s :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from cons :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from mark :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from a__from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from gen_0':nil:s:cons:first:from2_0 :: Nat -> 0':nil:s:cons:first:from ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: mark, a__from They will be analysed ascendingly in the following order: mark = a__from ---------------------------------------- (8) Obligation: Innermost TRS: Rules: a__first(0', X) -> nil a__first(s(X), cons(Y)) -> cons(mark(Y)) a__from(X) -> cons(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(0') -> 0' mark(nil) -> nil mark(s(X)) -> s(mark(X)) mark(cons(X1)) -> cons(mark(X1)) a__first(X1, X2) -> first(X1, X2) a__from(X) -> from(X) Types: a__first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from 0' :: 0':nil:s:cons:first:from nil :: 0':nil:s:cons:first:from s :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from cons :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from mark :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from a__from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from gen_0':nil:s:cons:first:from2_0 :: Nat -> 0':nil:s:cons:first:from Generator Equations: gen_0':nil:s:cons:first:from2_0(0) <=> 0' gen_0':nil:s:cons:first:from2_0(+(x, 1)) <=> s(gen_0':nil:s:cons:first:from2_0(x)) The following defined symbols remain to be analysed: a__from, mark They will be analysed ascendingly in the following order: mark = a__from ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_0':nil:s:cons:first:from2_0(n9771_0)) -> gen_0':nil:s:cons:first:from2_0(n9771_0), rt in Omega(1 + n9771_0) Induction Base: mark(gen_0':nil:s:cons:first:from2_0(0)) ->_R^Omega(1) 0' Induction Step: mark(gen_0':nil:s:cons:first:from2_0(+(n9771_0, 1))) ->_R^Omega(1) s(mark(gen_0':nil:s:cons:first:from2_0(n9771_0))) ->_IH s(gen_0':nil:s:cons:first:from2_0(c9772_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a__first(0', X) -> nil a__first(s(X), cons(Y)) -> cons(mark(Y)) a__from(X) -> cons(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(0') -> 0' mark(nil) -> nil mark(s(X)) -> s(mark(X)) mark(cons(X1)) -> cons(mark(X1)) a__first(X1, X2) -> first(X1, X2) a__from(X) -> from(X) Types: a__first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from 0' :: 0':nil:s:cons:first:from nil :: 0':nil:s:cons:first:from s :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from cons :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from mark :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from a__from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from gen_0':nil:s:cons:first:from2_0 :: Nat -> 0':nil:s:cons:first:from Generator Equations: gen_0':nil:s:cons:first:from2_0(0) <=> 0' gen_0':nil:s:cons:first:from2_0(+(x, 1)) <=> s(gen_0':nil:s:cons:first:from2_0(x)) The following defined symbols remain to be analysed: mark They will be analysed ascendingly in the following order: mark = a__from ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Innermost TRS: Rules: a__first(0', X) -> nil a__first(s(X), cons(Y)) -> cons(mark(Y)) a__from(X) -> cons(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(0') -> 0' mark(nil) -> nil mark(s(X)) -> s(mark(X)) mark(cons(X1)) -> cons(mark(X1)) a__first(X1, X2) -> first(X1, X2) a__from(X) -> from(X) Types: a__first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from 0' :: 0':nil:s:cons:first:from nil :: 0':nil:s:cons:first:from s :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from cons :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from mark :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from a__from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from first :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from from :: 0':nil:s:cons:first:from -> 0':nil:s:cons:first:from hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from gen_0':nil:s:cons:first:from2_0 :: Nat -> 0':nil:s:cons:first:from Lemmas: mark(gen_0':nil:s:cons:first:from2_0(n9771_0)) -> gen_0':nil:s:cons:first:from2_0(n9771_0), rt in Omega(1 + n9771_0) Generator Equations: gen_0':nil:s:cons:first:from2_0(0) <=> 0' gen_0':nil:s:cons:first:from2_0(+(x, 1)) <=> s(gen_0':nil:s:cons:first:from2_0(x)) The following defined symbols remain to be analysed: a__from They will be analysed ascendingly in the following order: mark = a__from