/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) SlicingProof [LOWER BOUND(ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 675 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 3. The certificate found is represented by the following graph. "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] {(1,2,[a__f_1|0, a__c_1|0, a__h_1|0, mark_1|0, f_1|1, d_1|1, c_1|1, h_1|1, a__c_1|1, g_1|1, d_1|2, c_1|2]), (1,3,[a__c_1|1, d_1|2, c_1|2]), (1,6,[a__c_1|1, d_1|2, c_1|2]), (1,7,[a__f_1|1, f_1|2]), (1,8,[a__h_1|1, h_1|2]), (1,9,[a__c_1|2, d_1|3, c_1|3]), (1,10,[a__c_1|2, d_1|3, c_1|3]), (2,2,[f_1|0, g_1|0, d_1|0, c_1|0, h_1|0]), (3,4,[f_1|1]), (4,5,[g_1|1]), (5,2,[f_1|1]), (6,2,[d_1|1]), (7,2,[mark_1|1, a__c_1|1, g_1|1, d_1|1, d_1|2, c_1|2]), (7,7,[a__f_1|1, f_1|2]), (7,8,[a__h_1|1, h_1|2]), (7,9,[a__c_1|2, d_1|3, c_1|3]), (7,10,[a__c_1|2, d_1|3, c_1|3]), (8,2,[mark_1|1, a__c_1|1, g_1|1, d_1|1, d_1|2, c_1|2]), (8,7,[a__f_1|1, f_1|2]), (8,8,[a__h_1|1, h_1|2]), (8,9,[a__c_1|2, d_1|3, c_1|3]), (8,10,[a__c_1|2, d_1|3, c_1|3]), (9,8,[d_1|2]), (10,11,[f_1|2]), (11,12,[g_1|2]), (12,7,[f_1|2])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: a__c/0 g/0 d/0 c/0 ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(f(X)) -> a__c a__c -> d a__h(X) -> a__c mark(f(X)) -> a__f(mark(X)) mark(c) -> a__c mark(h(X)) -> a__h(mark(X)) mark(g) -> g mark(d) -> d a__f(X) -> f(X) a__c -> c a__h(X) -> h(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: a__f(f(X)) -> a__c a__c -> d a__h(X) -> a__c mark(f(X)) -> a__f(mark(X)) mark(c) -> a__c mark(h(X)) -> a__h(mark(X)) mark(g) -> g mark(d) -> d a__f(X) -> f(X) a__c -> c a__h(X) -> h(X) Types: a__f :: f:d:c:h:g -> f:d:c:h:g f :: f:d:c:h:g -> f:d:c:h:g a__c :: f:d:c:h:g d :: f:d:c:h:g a__h :: f:d:c:h:g -> f:d:c:h:g mark :: f:d:c:h:g -> f:d:c:h:g c :: f:d:c:h:g h :: f:d:c:h:g -> f:d:c:h:g g :: f:d:c:h:g hole_f:d:c:h:g1_0 :: f:d:c:h:g gen_f:d:c:h:g2_0 :: Nat -> f:d:c:h:g ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: mark ---------------------------------------- (12) Obligation: Innermost TRS: Rules: a__f(f(X)) -> a__c a__c -> d a__h(X) -> a__c mark(f(X)) -> a__f(mark(X)) mark(c) -> a__c mark(h(X)) -> a__h(mark(X)) mark(g) -> g mark(d) -> d a__f(X) -> f(X) a__c -> c a__h(X) -> h(X) Types: a__f :: f:d:c:h:g -> f:d:c:h:g f :: f:d:c:h:g -> f:d:c:h:g a__c :: f:d:c:h:g d :: f:d:c:h:g a__h :: f:d:c:h:g -> f:d:c:h:g mark :: f:d:c:h:g -> f:d:c:h:g c :: f:d:c:h:g h :: f:d:c:h:g -> f:d:c:h:g g :: f:d:c:h:g hole_f:d:c:h:g1_0 :: f:d:c:h:g gen_f:d:c:h:g2_0 :: Nat -> f:d:c:h:g Generator Equations: gen_f:d:c:h:g2_0(0) <=> d gen_f:d:c:h:g2_0(+(x, 1)) <=> f(gen_f:d:c:h:g2_0(x)) The following defined symbols remain to be analysed: mark ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_f:d:c:h:g2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: mark(gen_f:d:c:h:g2_0(+(1, 0))) Induction Step: mark(gen_f:d:c:h:g2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) a__f(mark(gen_f:d:c:h:g2_0(+(1, n4_0)))) ->_IH a__f(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a__f(f(X)) -> a__c a__c -> d a__h(X) -> a__c mark(f(X)) -> a__f(mark(X)) mark(c) -> a__c mark(h(X)) -> a__h(mark(X)) mark(g) -> g mark(d) -> d a__f(X) -> f(X) a__c -> c a__h(X) -> h(X) Types: a__f :: f:d:c:h:g -> f:d:c:h:g f :: f:d:c:h:g -> f:d:c:h:g a__c :: f:d:c:h:g d :: f:d:c:h:g a__h :: f:d:c:h:g -> f:d:c:h:g mark :: f:d:c:h:g -> f:d:c:h:g c :: f:d:c:h:g h :: f:d:c:h:g -> f:d:c:h:g g :: f:d:c:h:g hole_f:d:c:h:g1_0 :: f:d:c:h:g gen_f:d:c:h:g2_0 :: Nat -> f:d:c:h:g Generator Equations: gen_f:d:c:h:g2_0(0) <=> d gen_f:d:c:h:g2_0(+(x, 1)) <=> f(gen_f:d:c:h:g2_0(x)) The following defined symbols remain to be analysed: mark ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^1, INF)