/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Trivial-Transformation [SOUND, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 42 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) UsableRulesProof [EQUIVALENT, 0 ms] (10) QDP (11) NonTerminationLoopProof [COMPLETE, 0 ms] (12) NO (13) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (14) QTRS (15) QTRSRRRProof [EQUIVALENT, 50 ms] (16) QTRS (17) DependencyPairsProof [EQUIVALENT, 0 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) AND (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) UsableRulesReductionPairsProof [EQUIVALENT, 5 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) TRUE (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [SOUND, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) QDPOrderProof [EQUIVALENT, 9 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP (45) UsableRulesProof [EQUIVALENT, 0 ms] (46) QDP (47) QReductionProof [EQUIVALENT, 0 ms] (48) QDP (49) QReductionProof [EQUIVALENT, 0 ms] (50) QDP (51) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (52) QTRS (53) QTRSRRRProof [EQUIVALENT, 40 ms] (54) QTRS (55) QTRSRRRProof [EQUIVALENT, 8 ms] (56) QTRS (57) AAECC Innermost [EQUIVALENT, 0 ms] (58) QTRS (59) DependencyPairsProof [EQUIVALENT, 9 ms] (60) QDP (61) DependencyGraphProof [EQUIVALENT, 0 ms] (62) AND (63) QDP (64) UsableRulesProof [EQUIVALENT, 0 ms] (65) QDP (66) QReductionProof [EQUIVALENT, 0 ms] (67) QDP (68) QDPSizeChangeProof [EQUIVALENT, 0 ms] (69) YES (70) QDP (71) UsableRulesProof [EQUIVALENT, 0 ms] (72) QDP (73) QReductionProof [EQUIVALENT, 0 ms] (74) QDP (75) TransformationProof [EQUIVALENT, 0 ms] (76) QDP (77) DependencyGraphProof [EQUIVALENT, 0 ms] (78) QDP (79) TransformationProof [EQUIVALENT, 0 ms] (80) QDP (81) TransformationProof [EQUIVALENT, 0 ms] (82) QDP (83) TransformationProof [EQUIVALENT, 0 ms] (84) QDP (85) TransformationProof [EQUIVALENT, 0 ms] (86) QDP (87) TransformationProof [EQUIVALENT, 0 ms] (88) QDP (89) TransformationProof [EQUIVALENT, 0 ms] (90) QDP (91) TransformationProof [EQUIVALENT, 0 ms] (92) QDP (93) DependencyGraphProof [EQUIVALENT, 0 ms] (94) QDP (95) TransformationProof [EQUIVALENT, 0 ms] (96) QDP (97) DependencyGraphProof [EQUIVALENT, 0 ms] (98) QDP (99) TransformationProof [EQUIVALENT, 0 ms] (100) QDP (101) DependencyGraphProof [EQUIVALENT, 0 ms] (102) QDP (103) TransformationProof [EQUIVALENT, 0 ms] (104) QDP (105) DependencyGraphProof [EQUIVALENT, 0 ms] (106) QDP (107) TransformationProof [EQUIVALENT, 0 ms] (108) QDP (109) DependencyGraphProof [EQUIVALENT, 0 ms] (110) QDP (111) MNOCProof [EQUIVALENT, 0 ms] (112) QDP (113) SplitQDPProof [EQUIVALENT, 0 ms] (114) AND (115) QDP (116) SemLabProof [SOUND, 0 ms] (117) QDP (118) DependencyGraphProof [EQUIVALENT, 0 ms] (119) QDP (120) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (121) QDP (122) MRRProof [EQUIVALENT, 7 ms] (123) QDP (124) MRRProof [EQUIVALENT, 0 ms] (125) QDP (126) PisEmptyProof [SOUND, 0 ms] (127) TRUE (128) QDP (129) SplitQDPProof [EQUIVALENT, 0 ms] (130) AND (131) QDP (132) SemLabProof [SOUND, 0 ms] (133) QDP (134) DependencyGraphProof [EQUIVALENT, 0 ms] (135) QDP (136) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (137) QDP (138) MRRProof [EQUIVALENT, 5 ms] (139) QDP (140) MRRProof [EQUIVALENT, 0 ms] (141) QDP (142) PisEmptyProof [SOUND, 0 ms] (143) TRUE (144) QDP (145) QReductionProof [EQUIVALENT, 0 ms] (146) QDP (147) SplitQDPProof [EQUIVALENT, 0 ms] (148) AND (149) QDP (150) SemLabProof [SOUND, 0 ms] (151) QDP (152) DependencyGraphProof [EQUIVALENT, 0 ms] (153) QDP (154) MRRProof [EQUIVALENT, 0 ms] (155) QDP (156) MRRProof [EQUIVALENT, 0 ms] (157) QDP (158) PisEmptyProof [SOUND, 0 ms] (159) TRUE (160) QDP (161) QReductionProof [EQUIVALENT, 0 ms] (162) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: f(g(a)) -> f(s(g(b))) f(f(x)) -> b g(x) -> f(g(x)) Outermost Strategy. ---------------------------------------- (1) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(g(a)) -> f(s(g(b))) f(f(x)) -> b g(x) -> f(g(x)) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 2 POL(b) = 0 POL(f(x_1)) = x_1 POL(g(x_1)) = 2*x_1 POL(s(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f(g(a)) -> f(s(g(b))) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(x)) -> b g(x) -> f(g(x)) Q is empty. ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: G(x) -> F(g(x)) G(x) -> G(x) The TRS R consists of the following rules: f(f(x)) -> b g(x) -> f(g(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: G(x) -> G(x) The TRS R consists of the following rules: f(f(x)) -> b g(x) -> f(g(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: G(x) -> G(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = G(x) evaluates to t =G(x) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from G(x) to G(x). ---------------------------------------- (12) NO ---------------------------------------- (13) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (14) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(g(a)) -> result_f(f(s(g(b)))) redex_f(f(x)) -> result_f(b) redex_g(x) -> result_g(f(g(x))) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) ---------------------------------------- (15) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 1 POL(b) = 0 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = x_1 POL(go_up(x_1)) = x_1 POL(in_f_1(x_1)) = x_1 POL(in_g_1(x_1)) = x_1 POL(in_s_1(x_1)) = 2*x_1 POL(redex_f(x_1)) = x_1 POL(redex_g(x_1)) = x_1 POL(reduce(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = x_1 POL(s(x_1)) = 2*x_1 POL(top(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: redex_f(g(a)) -> result_f(f(s(g(b)))) ---------------------------------------- (16) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(f(x)) -> result_f(b) redex_g(x) -> result_g(f(g(x))) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) ---------------------------------------- (17) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(f(x_1)) -> REDEX_F(x_1) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(g(x_1)) -> REDEX_G(x_1) CHECK_F(redex_f(x_1)) -> IN_F_1(reduce(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) CHECK_G(redex_g(x_1)) -> IN_G_1(reduce(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) REDUCE(s(x_1)) -> IN_S_1(reduce(x_1)) REDUCE(s(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(f(x)) -> result_f(b) redex_g(x) -> result_g(f(g(x))) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes. ---------------------------------------- (20) Complex Obligation (AND) ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(s(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(f(x)) -> result_f(b) redex_g(x) -> result_g(f(g(x))) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(s(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(f(x)) -> result_f(b) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(s(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(f(x)) -> result_f(b) The set Q consists of the following terms: redex_f(g(a)) redex_f(f(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(s(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The following rules are removed from R: redex_f(f(x)) -> result_f(b) Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = x_1 POL(REDUCE(x_1)) = 2*x_1 POL(b) = 0 POL(f(x_1)) = 2*x_1 POL(redex_f(x_1)) = 2*x_1 POL(result_f(x_1)) = x_1 POL(s(x_1)) = 2*x_1 ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_f(g(a)) redex_f(f(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (29) TRUE ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(f(x)) -> result_f(b) redex_g(x) -> result_g(f(g(x))) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (SOUND) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))),TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0)))) (TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))),TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0)))) (TOP(go_up(s(x0))) -> TOP(in_s_1(reduce(x0))),TOP(go_up(s(x0))) -> TOP(in_s_1(reduce(x0)))) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) TOP(go_up(s(x0))) -> TOP(in_s_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(go_up(g(x0))) -> TOP(check_g(result_g(f(g(x0))))),TOP(go_up(g(x0))) -> TOP(check_g(result_g(f(g(x0)))))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(s(x0))) -> TOP(in_s_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(check_g(result_g(f(g(x0))))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(g(x0))) -> TOP(check_g(result_g(f(g(x0))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(g(x0))) -> TOP(go_up(f(g(x0)))),TOP(go_up(g(x0))) -> TOP(go_up(f(g(x0))))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(s(x0))) -> TOP(in_s_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(f(g(x0)))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(g(x0))) -> TOP(go_up(f(g(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(b) = 0 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = 1 POL(f(x_1)) = 0 POL(g(x_1)) = 1 + x_1 POL(go_up(x_1)) = x_1 POL(in_f_1(x_1)) = 0 POL(in_s_1(x_1)) = 0 POL(redex_f(x_1)) = 0 POL(redex_g(x_1)) = 1 + x_1 POL(reduce(x_1)) = 0 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = 1 POL(s(x_1)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(s(x0))) -> TOP(in_s_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. redex_f(g(a)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(s(x0))) -> TOP(in_s_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (45) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(a)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. redex_f(g(a)) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(s(x_1)) -> in_s_1(reduce(x_1)) in_s_1(go_up(x_1)) -> go_up(s(x_1)) redex_g(x) -> result_g(f(g(x))) check_g(result_g(x)) -> go_up(x) redex_f(f(x)) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(f(x0)) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) reduce(s(x0)) in_f_1(go_up(x0)) in_s_1(go_up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (51) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (52) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(g(a))) -> up(f(s(g(b)))) down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) top(up(x)) -> top(down(x)) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) s_flat(up(x_1)) -> up(s(x_1)) Q is empty. ---------------------------------------- (53) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 0 POL(b) = 0 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 2*x_1 POL(g_flat(x_1)) = 2 + 2*x_1 POL(s(x_1)) = x_1 POL(s_flat(x_1)) = x_1 POL(top(x_1)) = x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: g_flat(up(x_1)) -> up(g(x_1)) ---------------------------------------- (54) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(g(a))) -> up(f(s(g(b)))) down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) top(up(x)) -> top(down(x)) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) Q is empty. ---------------------------------------- (55) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 1 POL(b) = 0 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = x_1 POL(s(x_1)) = 2*x_1 POL(s_flat(x_1)) = 2*x_1 POL(top(x_1)) = 2*x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: down(f(g(a))) -> up(f(s(g(b)))) ---------------------------------------- (56) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) top(up(x)) -> top(down(x)) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) Q is empty. ---------------------------------------- (57) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (58) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) top(up(x)) -> top(down(x)) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) top(up(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) ---------------------------------------- (59) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(s(y2)) -> S_FLAT(down(y2)) DOWN(s(y2)) -> DOWN(y2) DOWN(f(a)) -> F_FLAT(down(a)) DOWN(f(a)) -> DOWN(a) DOWN(f(s(y6))) -> F_FLAT(down(s(y6))) DOWN(f(s(y6))) -> DOWN(s(y6)) DOWN(f(b)) -> F_FLAT(down(b)) DOWN(f(b)) -> DOWN(b) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) DOWN(f(g(f(y8)))) -> F_FLAT(down(g(f(y8)))) DOWN(f(g(f(y8)))) -> DOWN(g(f(y8))) DOWN(f(g(g(y9)))) -> F_FLAT(down(g(g(y9)))) DOWN(f(g(g(y9)))) -> DOWN(g(g(y9))) DOWN(f(g(s(y10)))) -> F_FLAT(down(g(s(y10)))) DOWN(f(g(s(y10)))) -> DOWN(g(s(y10))) DOWN(f(g(b))) -> F_FLAT(down(g(b))) DOWN(f(g(b))) -> DOWN(g(b)) DOWN(f(g(fresh_constant))) -> F_FLAT(down(g(fresh_constant))) DOWN(f(g(fresh_constant))) -> DOWN(g(fresh_constant)) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) top(up(x)) -> top(down(x)) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) top(up(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 19 less nodes. ---------------------------------------- (62) Complex Obligation (AND) ---------------------------------------- (63) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(s(y6))) -> DOWN(s(y6)) DOWN(s(y2)) -> DOWN(y2) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) top(up(x)) -> top(down(x)) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) top(up(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(s(y6))) -> DOWN(s(y6)) DOWN(s(y2)) -> DOWN(y2) R is empty. The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) top(up(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(f(f(x0))) down(g(x0)) top(up(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) ---------------------------------------- (67) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(s(y6))) -> DOWN(s(y6)) DOWN(s(y2)) -> DOWN(y2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (68) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(s(y2)) -> DOWN(y2) The graph contains the following edges 1 > 1 *DOWN(f(s(y6))) -> DOWN(s(y6)) The graph contains the following edges 1 > 1 ---------------------------------------- (69) YES ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) top(up(x)) -> top(down(x)) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) top(up(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (72) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) top(up(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (73) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (74) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (75) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(up(x)) -> TOP(down(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(f(x0)))) -> TOP(up(b)),TOP(up(f(f(x0)))) -> TOP(up(b))) (TOP(up(g(x0))) -> TOP(up(f(g(x0)))),TOP(up(g(x0))) -> TOP(up(f(g(x0))))) (TOP(up(s(x0))) -> TOP(s_flat(down(x0))),TOP(up(s(x0))) -> TOP(s_flat(down(x0)))) (TOP(up(f(a))) -> TOP(f_flat(down(a))),TOP(up(f(a))) -> TOP(f_flat(down(a)))) (TOP(up(f(s(x0)))) -> TOP(f_flat(down(s(x0)))),TOP(up(f(s(x0)))) -> TOP(f_flat(down(s(x0))))) (TOP(up(f(b))) -> TOP(f_flat(down(b))),TOP(up(f(b))) -> TOP(f_flat(down(b)))) (TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))),TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant)))) (TOP(up(f(g(f(x0))))) -> TOP(f_flat(down(g(f(x0))))),TOP(up(f(g(f(x0))))) -> TOP(f_flat(down(g(f(x0)))))) (TOP(up(f(g(g(x0))))) -> TOP(f_flat(down(g(g(x0))))),TOP(up(f(g(g(x0))))) -> TOP(f_flat(down(g(g(x0)))))) (TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0))))),TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0)))))) (TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))),TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b))))) (TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))),TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant))))) ---------------------------------------- (76) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(f(x0)))) -> TOP(up(b)) TOP(up(g(x0))) -> TOP(up(f(g(x0)))) TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(a))) -> TOP(f_flat(down(a))) TOP(up(f(s(x0)))) -> TOP(f_flat(down(s(x0)))) TOP(up(f(b))) -> TOP(f_flat(down(b))) TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(down(g(f(x0))))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(down(g(g(x0))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0))))) TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (77) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (78) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(down(s(x0)))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(down(g(f(x0))))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(down(g(g(x0))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0))))) TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (79) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(s(x0)))) -> TOP(f_flat(down(s(x0)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))),TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0))))) ---------------------------------------- (80) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(down(g(f(x0))))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(down(g(g(x0))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0))))) TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (81) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(f(x0))))) -> TOP(f_flat(down(g(f(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0)))))),TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0))))))) ---------------------------------------- (82) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(down(g(g(x0))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0))))) TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0)))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (83) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(g(x0))))) -> TOP(f_flat(down(g(g(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))),TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0))))))) ---------------------------------------- (84) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0))))) TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0)))))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (85) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(s(x0))))) -> TOP(f_flat(down(g(s(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))),TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0))))))) ---------------------------------------- (86) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0)))))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (87) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(b)))) -> TOP(f_flat(down(g(b)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))),TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b)))))) ---------------------------------------- (88) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0)))))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (89) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(down(g(fresh_constant)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))),TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant)))))) ---------------------------------------- (90) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0)))))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (91) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(f(x0))))) -> TOP(f_flat(up(f(g(f(x0)))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(f(x0))))) -> TOP(up(f(f(g(f(x0)))))),TOP(up(f(g(f(x0))))) -> TOP(up(f(f(g(f(x0))))))) ---------------------------------------- (92) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) TOP(up(f(g(f(x0))))) -> TOP(up(f(f(g(f(x0)))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (93) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (94) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (95) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(g(x0))))) -> TOP(f_flat(up(f(g(g(x0)))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(g(x0))))) -> TOP(up(f(f(g(g(x0)))))),TOP(up(f(g(g(x0))))) -> TOP(up(f(f(g(g(x0))))))) ---------------------------------------- (96) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) TOP(up(f(g(g(x0))))) -> TOP(up(f(f(g(g(x0)))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (97) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (98) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (99) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(s(x0))))) -> TOP(f_flat(up(f(g(s(x0)))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(s(x0))))) -> TOP(up(f(f(g(s(x0)))))),TOP(up(f(g(s(x0))))) -> TOP(up(f(f(g(s(x0))))))) ---------------------------------------- (100) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) TOP(up(f(g(s(x0))))) -> TOP(up(f(f(g(s(x0)))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (101) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (102) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (103) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(b)))) -> TOP(f_flat(up(f(g(b))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(b)))) -> TOP(up(f(f(g(b))))),TOP(up(f(g(b)))) -> TOP(up(f(f(g(b)))))) ---------------------------------------- (104) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) TOP(up(f(g(b)))) -> TOP(up(f(f(g(b))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (105) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (106) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (107) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(fresh_constant)))) -> TOP(f_flat(up(f(g(fresh_constant))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(fresh_constant)))) -> TOP(up(f(f(g(fresh_constant))))),TOP(up(f(g(fresh_constant)))) -> TOP(up(f(f(g(fresh_constant)))))) ---------------------------------------- (108) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) TOP(up(f(g(fresh_constant)))) -> TOP(up(f(f(g(fresh_constant))))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (109) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (110) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (111) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (112) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (113) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (114) Complex Obligation (AND) ---------------------------------------- (115) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) s_flat(up(x_1)) -> up(s(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (116) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. s_flat: 0 s: 0 a: 0 b: 0 down: 0 f: 0 fresh_constant: 1 up: 0 f_flat: 0 TOP: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (117) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(s.1(x0))) -> TOP.0(s_flat.0(down.1(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) TOP.0(up.0(f.0(s.1(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.1(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.0(a.)) -> f_flat.0(down.0(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) -> f_flat.0(down.0(g.1(fresh_constant.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.1(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (118) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (119) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.0(a.)) -> f_flat.0(down.0(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) -> f_flat.0(down.0(g.1(fresh_constant.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.1(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (120) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(a.) = 0 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = 1 + x_1 POL(s.1(x_1)) = 1 + x_1 POL(s_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (121) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.0(a.)) -> f_flat.0(down.0(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) -> f_flat.0(down.0(g.1(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.1(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (122) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(a.) = 0 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = 1 + x_1 POL(s.1(x_1)) = 1 + x_1 POL(s_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 ---------------------------------------- (123) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(f.0(a.)) -> f_flat.0(down.0(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) -> f_flat.0(down.0(g.1(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.1(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (124) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(f.0(f.1(x))) -> up.0(b.) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(a.) = 0 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = x_1 POL(s.1(x_1)) = x_1 POL(s_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 ---------------------------------------- (125) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(f.0(a.)) -> f_flat.0(down.0(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) -> f_flat.0(down.0(g.1(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.1(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (126) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (127) TRUE ---------------------------------------- (128) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) s_flat(up(x_1)) -> up(s(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (129) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (130) Complex Obligation (AND) ---------------------------------------- (131) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(a)) -> f_flat(down(a)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) s_flat(up(x_1)) -> up(s(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (132) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. s_flat: 0 s: 0 a: 1 b: 0 down: 0 f: 0 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (133) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(s.1(x0))) -> TOP.0(s_flat.0(down.1(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) TOP.0(up.0(f.0(s.1(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.1(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.1(a.)) -> f_flat.0(down.1(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.1(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (134) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (135) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.1(a.)) -> f_flat.0(down.1(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.1(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (136) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(a.) = 0 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = 1 + x_1 POL(s.1(x_1)) = 1 + x_1 POL(s_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (137) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.1(a.)) -> f_flat.0(down.1(a.)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.1(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (138) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.1(a.)) -> f_flat.0(down.1(a.)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(a.) = 0 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = 1 + x_1 POL(s.1(x_1)) = 1 + x_1 POL(s_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 ---------------------------------------- (139) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(f.0(f.1(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.1(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (140) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(f.0(f.1(x))) -> up.0(b.) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = x_1 POL(s.1(x_1)) = x_1 POL(s_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 ---------------------------------------- (141) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.0(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(b.)) -> f_flat.0(down.0(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.0(b.))) -> f_flat.0(down.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.1(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.0(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.0(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (142) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (143) TRUE ---------------------------------------- (144) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) s_flat(up(x_1)) -> up(s(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (145) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(a)) ---------------------------------------- (146) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) s_flat(up(x_1)) -> up(s(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (147) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (148) Complex Obligation (AND) ---------------------------------------- (149) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(b)) -> f_flat(down(b)) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) s_flat(up(x_1)) -> up(s(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (150) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. s_flat: 0 s: 0 a: 0 b: 1 down: 0 f: 0 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (151) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(s.1(x0))) -> TOP.0(s_flat.0(down.1(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) TOP.0(up.0(f.0(s.1(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.1(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.1(b.) down.0(f.0(f.1(x))) -> up.1(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.1(b.)) -> f_flat.0(down.1(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.1(b.))) -> f_flat.0(down.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.1(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (152) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (153) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.1(b.) down.0(f.0(f.1(x))) -> up.1(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.1(b.)) -> f_flat.0(down.1(b.)) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.1(b.))) -> f_flat.0(down.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.1(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (154) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(f.1(b.)) -> f_flat.0(down.1(b.)) s_flat.0(up.1(x_1)) -> up.0(s.1(x_1)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = 1 + x_1 POL(s.1(x_1)) = x_1 POL(s_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (155) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.1(b.) down.0(f.0(f.1(x))) -> up.1(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(s.1(y2)) -> s_flat.0(down.1(y2)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.1(b.))) -> f_flat.0(down.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.1(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (156) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(s.1(y2)) -> s_flat.0(down.1(y2)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(s.0(x_1)) = x_1 POL(s.1(x_1)) = 1 + x_1 POL(s_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (157) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(s.0(x0))) -> TOP.0(s_flat.0(down.0(x0))) TOP.0(up.0(f.0(s.0(x0)))) -> TOP.0(f_flat.0(s_flat.0(down.0(x0)))) The TRS R consists of the following rules: down.0(f.0(f.0(x))) -> up.1(b.) down.0(f.0(f.1(x))) -> up.1(b.) down.0(g.0(x)) -> up.0(f.0(g.0(x))) down.0(g.1(x)) -> up.0(f.0(g.1(x))) down.0(s.0(y2)) -> s_flat.0(down.0(y2)) down.0(f.0(s.0(y6))) -> f_flat.0(down.0(s.0(y6))) down.0(f.0(s.1(y6))) -> f_flat.0(down.0(s.1(y6))) down.0(f.0(g.0(f.0(y8)))) -> f_flat.0(down.0(g.0(f.0(y8)))) down.0(f.0(g.0(f.1(y8)))) -> f_flat.0(down.0(g.0(f.1(y8)))) down.0(f.0(g.0(g.0(y9)))) -> f_flat.0(down.0(g.0(g.0(y9)))) down.0(f.0(g.0(g.1(y9)))) -> f_flat.0(down.0(g.0(g.1(y9)))) down.0(f.0(g.0(s.0(y10)))) -> f_flat.0(down.0(g.0(s.0(y10)))) down.0(f.0(g.0(s.1(y10)))) -> f_flat.0(down.0(g.0(s.1(y10)))) down.0(f.0(g.1(b.))) -> f_flat.0(down.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) -> f_flat.0(down.0(g.0(fresh_constant.))) s_flat.0(up.0(x_1)) -> up.0(s.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(s.0(x0)) down.0(s.1(x0)) down.0(f.0(a.)) down.0(f.0(s.0(x0))) down.0(f.0(s.1(x0))) down.0(f.1(b.)) down.0(f.0(fresh_constant.)) down.0(f.0(g.0(f.0(x0)))) down.0(f.0(g.0(f.1(x0)))) down.0(f.0(g.0(g.0(x0)))) down.0(f.0(g.0(g.1(x0)))) down.0(f.0(g.0(s.0(x0)))) down.0(f.0(g.0(s.1(x0)))) down.0(f.0(g.1(b.))) down.0(f.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) s_flat.0(up.0(x0)) s_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (158) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (159) TRUE ---------------------------------------- (160) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) s_flat(up(x_1)) -> up(s(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(a)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (161) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(a)) ---------------------------------------- (162) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(s(x0))) -> TOP(s_flat(down(x0))) TOP(up(f(s(x0)))) -> TOP(f_flat(s_flat(down(x0)))) The TRS R consists of the following rules: down(f(f(x))) -> up(b) down(g(x)) -> up(f(g(x))) down(s(y2)) -> s_flat(down(y2)) down(f(s(y6))) -> f_flat(down(s(y6))) down(f(g(f(y8)))) -> f_flat(down(g(f(y8)))) down(f(g(g(y9)))) -> f_flat(down(g(g(y9)))) down(f(g(s(y10)))) -> f_flat(down(g(s(y10)))) down(f(g(b))) -> f_flat(down(g(b))) down(f(g(fresh_constant))) -> f_flat(down(g(fresh_constant))) s_flat(up(x_1)) -> up(s(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(f(x0))) down(g(x0)) down(s(x0)) down(f(s(x0))) down(f(b)) down(f(fresh_constant)) down(f(g(f(x0)))) down(f(g(g(x0)))) down(f(g(s(x0)))) down(f(g(b))) down(f(g(fresh_constant))) f_flat(up(x0)) s_flat(up(x0)) We have to consider all (P,Q,R)-chains.