/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 33 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QReductionProof [EQUIVALENT, 0 ms] (13) QDP (14) MRRProof [EQUIVALENT, 0 ms] (15) QDP (16) MRRProof [EQUIVALENT, 7 ms] (17) QDP (18) DependencyGraphProof [EQUIVALENT, 0 ms] (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) UsableRulesReductionPairsProof [EQUIVALENT, 8 ms] (25) QDP (26) DependencyGraphProof [EQUIVALENT, 0 ms] (27) TRUE (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [SOUND, 0 ms] (34) QDP (35) UsableRulesProof [EQUIVALENT, 0 ms] (36) QDP (37) QReductionProof [EQUIVALENT, 0 ms] (38) QDP (39) Trivial-Transformation [SOUND, 0 ms] (40) QTRS (41) QTRSRRRProof [EQUIVALENT, 55 ms] (42) QTRS (43) AAECC Innermost [EQUIVALENT, 0 ms] (44) QTRS (45) DependencyPairsProof [EQUIVALENT, 0 ms] (46) QDP (47) DependencyGraphProof [EQUIVALENT, 0 ms] (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) QReductionProof [EQUIVALENT, 0 ms] (52) QDP (53) TransformationProof [EQUIVALENT, 0 ms] (54) QDP (55) TransformationProof [EQUIVALENT, 0 ms] (56) QDP (57) TransformationProof [EQUIVALENT, 0 ms] (58) QDP (59) TransformationProof [EQUIVALENT, 0 ms] (60) QDP (61) TransformationProof [EQUIVALENT, 0 ms] (62) QDP (63) UsableRulesProof [EQUIVALENT, 0 ms] (64) QDP (65) QReductionProof [EQUIVALENT, 0 ms] (66) QDP (67) NonTerminationLoopProof [COMPLETE, 0 ms] (68) NO (69) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (70) QTRS (71) QTRSRRRProof [EQUIVALENT, 83 ms] (72) QTRS (73) AAECC Innermost [EQUIVALENT, 0 ms] (74) QTRS (75) DependencyPairsProof [EQUIVALENT, 0 ms] (76) QDP (77) DependencyGraphProof [EQUIVALENT, 0 ms] (78) AND (79) QDP (80) UsableRulesProof [EQUIVALENT, 0 ms] (81) QDP (82) QReductionProof [EQUIVALENT, 0 ms] (83) QDP (84) QDPSizeChangeProof [EQUIVALENT, 0 ms] (85) YES (86) QDP (87) UsableRulesProof [EQUIVALENT, 0 ms] (88) QDP (89) QReductionProof [EQUIVALENT, 0 ms] (90) QDP (91) TransformationProof [EQUIVALENT, 0 ms] (92) QDP (93) DependencyGraphProof [EQUIVALENT, 0 ms] (94) QDP (95) TransformationProof [EQUIVALENT, 0 ms] (96) QDP (97) TransformationProof [EQUIVALENT, 0 ms] (98) QDP (99) TransformationProof [EQUIVALENT, 0 ms] (100) QDP (101) DependencyGraphProof [EQUIVALENT, 0 ms] (102) QDP (103) TransformationProof [EQUIVALENT, 0 ms] (104) QDP (105) DependencyGraphProof [EQUIVALENT, 0 ms] (106) QDP (107) QDPOrderProof [EQUIVALENT, 11 ms] (108) QDP (109) MNOCProof [EQUIVALENT, 0 ms] (110) QDP (111) SplitQDPProof [EQUIVALENT, 0 ms] (112) AND (113) QDP (114) SemLabProof [SOUND, 0 ms] (115) QDP (116) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (117) QDP (118) DependencyGraphProof [EQUIVALENT, 0 ms] (119) QDP (120) PisEmptyProof [SOUND, 0 ms] (121) TRUE (122) QDP (123) SplitQDPProof [EQUIVALENT, 0 ms] (124) AND (125) QDP (126) SemLabProof [SOUND, 0 ms] (127) QDP (128) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (129) QDP (130) DependencyGraphProof [EQUIVALENT, 0 ms] (131) QDP (132) PisEmptyProof [SOUND, 0 ms] (133) TRUE (134) QDP (135) SplitQDPProof [EQUIVALENT, 0 ms] (136) AND (137) QDP (138) SemLabProof [SOUND, 0 ms] (139) QDP (140) MRRProof [EQUIVALENT, 0 ms] (141) QDP (142) DependencyGraphProof [EQUIVALENT, 0 ms] (143) QDP (144) UsableRulesReductionPairsProof [EQUIVALENT, 3 ms] (145) QDP (146) MRRProof [EQUIVALENT, 0 ms] (147) QDP (148) PisEmptyProof [SOUND, 0 ms] (149) TRUE (150) QDP (151) QReductionProof [EQUIVALENT, 0 ms] (152) QDP (153) SplitQDPProof [EQUIVALENT, 0 ms] (154) AND (155) QDP (156) SemLabProof [SOUND, 0 ms] (157) QDP (158) MRRProof [EQUIVALENT, 0 ms] (159) QDP (160) DependencyGraphProof [EQUIVALENT, 0 ms] (161) QDP (162) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (163) QDP (164) MRRProof [EQUIVALENT, 0 ms] (165) QDP (166) PisEmptyProof [SOUND, 0 ms] (167) TRUE (168) QDP (169) QReductionProof [EQUIVALENT, 0 ms] (170) QDP (171) MNOCProof [EQUIVALENT, 0 ms] (172) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: g(b) -> g(f(f(f(f(f(b)))))) f(b) -> b g(f(b)) -> c Outermost Strategy. ---------------------------------------- (1) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) redex_f(b) -> result_f(b) redex_g(f(b)) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_f(result_f(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(b) = 0 POL(c) = 0 POL(check_f(x_1)) = 2*x_1 POL(check_g(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(g(x_1)) = 1 + 2*x_1 POL(go_up(x_1)) = 2*x_1 POL(in_f_1(x_1)) = 2*x_1 POL(in_g_1(x_1)) = 2 + 2*x_1 POL(redex_f(x_1)) = 2*x_1 POL(redex_g(x_1)) = 1 + 2*x_1 POL(reduce(x_1)) = 2*x_1 POL(result_f(x_1)) = 2*x_1 POL(result_g(x_1)) = x_1 POL(top(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: redex_g(f(b)) -> result_g(c) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) redex_f(b) -> result_f(b) check_g(result_g(x)) -> go_up(x) check_f(result_f(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(g(x_1)) -> REDEX_G(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(f(x_1)) -> REDEX_F(x_1) CHECK_G(redex_g(x_1)) -> IN_G_1(reduce(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) CHECK_F(redex_f(x_1)) -> IN_F_1(reduce(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) redex_f(b) -> result_f(b) check_g(result_g(x)) -> go_up(x) check_f(result_f(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_G(redex_g(x_1)) -> REDUCE(x_1) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) redex_f(b) -> result_f(b) check_g(result_g(x)) -> go_up(x) check_f(result_f(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_G(redex_g(x_1)) -> REDUCE(x_1) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_f(b) -> result_f(b) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_G(redex_g(x_1)) -> REDUCE(x_1) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_f(b) -> result_f(b) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) The set Q consists of the following terms: redex_g(b) redex_f(b) redex_g(f(b)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: redex_f(b) -> result_f(b) Used ordering: Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = x_1 POL(CHECK_G(x_1)) = 1 + 2*x_1 POL(REDUCE(x_1)) = 1 + 2*x_1 POL(b) = 0 POL(f(x_1)) = 2*x_1 POL(g(x_1)) = x_1 POL(redex_f(x_1)) = 1 + 2*x_1 POL(redex_g(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = 2*x_1 ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_G(redex_g(x_1)) -> REDUCE(x_1) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) The set Q consists of the following terms: redex_g(b) redex_f(b) redex_g(f(b)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: CHECK_G(redex_g(x_1)) -> REDUCE(x_1) Used ordering: Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = 2*x_1 POL(CHECK_G(x_1)) = 2*x_1 POL(REDUCE(x_1)) = 2*x_1 POL(b) = 0 POL(f(x_1)) = 2*x_1 POL(g(x_1)) = 1 + 2*x_1 POL(redex_f(x_1)) = 2*x_1 POL(redex_g(x_1)) = 1 + x_1 POL(result_g(x_1)) = x_1 ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) The set Q consists of the following terms: redex_g(b) redex_f(b) redex_g(f(b)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) The set Q consists of the following terms: redex_g(b) redex_f(b) redex_g(f(b)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_g(b) redex_f(b) redex_g(f(b)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. redex_g(b) redex_g(f(b)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = 2*x_1 POL(REDUCE(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(redex_f(x_1)) = x_1 ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (27) TRUE ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) redex_f(b) -> result_f(b) check_g(result_g(x)) -> go_up(x) check_f(result_f(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_f(b) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_f(b) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (SOUND) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))),TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0)))) (TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))),TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0)))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) The TRS R consists of the following rules: reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_f(b) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_f(b) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) redex_f(b) -> result_f(b) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) redex_g(b) -> result_g(g(f(f(f(f(f(b))))))) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: reduce(g(x0)) reduce(f(x0)) redex_g(b) redex_f(b) redex_g(f(b)) check_g(result_g(x0)) check_f(result_f(x0)) check_g(redex_g(x0)) check_f(redex_f(x0)) in_g_1(go_up(x0)) in_f_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (40) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(b) -> g(f(f(f(f(f(b)))))) f(b) -> b g(f(b)) -> c Q is empty. ---------------------------------------- (41) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(b) = 0 POL(c) = 0 POL(f(x_1)) = x_1 POL(g(x_1)) = 1 + 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: g(f(b)) -> c ---------------------------------------- (42) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(b) -> g(f(f(f(f(f(b)))))) f(b) -> b Q is empty. ---------------------------------------- (43) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is f(b) -> b The TRS R 2 is g(b) -> g(f(f(f(f(f(b)))))) The signature Sigma is {g_1} ---------------------------------------- (44) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(b) -> g(f(f(f(f(f(b)))))) f(b) -> b The set Q consists of the following terms: g(b) f(b) ---------------------------------------- (45) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(f(f(f(f(b)))))) G(b) -> F(f(f(f(f(b))))) G(b) -> F(f(f(f(b)))) G(b) -> F(f(f(b))) G(b) -> F(f(b)) G(b) -> F(b) The TRS R consists of the following rules: g(b) -> g(f(f(f(f(f(b)))))) f(b) -> b The set Q consists of the following terms: g(b) f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(f(f(f(f(b)))))) The TRS R consists of the following rules: g(b) -> g(f(f(f(f(f(b)))))) f(b) -> b The set Q consists of the following terms: g(b) f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(f(f(f(f(b)))))) The TRS R consists of the following rules: f(b) -> b The set Q consists of the following terms: g(b) f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. g(b) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(f(f(f(f(b)))))) The TRS R consists of the following rules: f(b) -> b The set Q consists of the following terms: f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule G(b) -> G(f(f(f(f(f(b)))))) at position [0,0,0,0,0] we obtained the following new rules [LPAR04]: (G(b) -> G(f(f(f(f(b))))),G(b) -> G(f(f(f(f(b)))))) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(f(f(f(b))))) The TRS R consists of the following rules: f(b) -> b The set Q consists of the following terms: f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule G(b) -> G(f(f(f(f(b))))) at position [0,0,0,0] we obtained the following new rules [LPAR04]: (G(b) -> G(f(f(f(b)))),G(b) -> G(f(f(f(b))))) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(f(f(b)))) The TRS R consists of the following rules: f(b) -> b The set Q consists of the following terms: f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule G(b) -> G(f(f(f(b)))) at position [0,0,0] we obtained the following new rules [LPAR04]: (G(b) -> G(f(f(b))),G(b) -> G(f(f(b)))) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(f(b))) The TRS R consists of the following rules: f(b) -> b The set Q consists of the following terms: f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule G(b) -> G(f(f(b))) at position [0,0] we obtained the following new rules [LPAR04]: (G(b) -> G(f(b)),G(b) -> G(f(b))) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(f(b)) The TRS R consists of the following rules: f(b) -> b The set Q consists of the following terms: f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule G(b) -> G(f(b)) at position [0] we obtained the following new rules [LPAR04]: (G(b) -> G(b),G(b) -> G(b)) ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(b) The TRS R consists of the following rules: f(b) -> b The set Q consists of the following terms: f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(b) R is empty. The set Q consists of the following terms: f(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(b) ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: G(b) -> G(b) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = G(b) evaluates to t =G(b) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from G(b) to G(b). ---------------------------------------- (68) NO ---------------------------------------- (69) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (70) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(f(b))) -> up(c) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) Q is empty. ---------------------------------------- (71) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(b) = 0 POL(c) = 0 POL(down(x_1)) = x_1 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 1 + 2*x_1 POL(g_flat(x_1)) = 1 + 2*x_1 POL(top(x_1)) = 2*x_1 POL(up(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: down(g(f(b))) -> up(c) ---------------------------------------- (72) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) Q is empty. ---------------------------------------- (73) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (74) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) ---------------------------------------- (75) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (76) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(g(g(y3))) -> G_FLAT(down(g(y3))) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(c)) -> G_FLAT(down(c)) DOWN(g(c)) -> DOWN(c) DOWN(g(fresh_constant)) -> G_FLAT(down(fresh_constant)) DOWN(g(fresh_constant)) -> DOWN(fresh_constant) DOWN(f(g(y6))) -> F_FLAT(down(g(y6))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(f(f(y7))) -> F_FLAT(down(f(y7))) DOWN(f(f(y7))) -> DOWN(f(y7)) DOWN(f(c)) -> F_FLAT(down(c)) DOWN(f(c)) -> DOWN(c) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) DOWN(g(f(g(y9)))) -> G_FLAT(down(f(g(y9)))) DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(g(f(f(y10)))) -> G_FLAT(down(f(f(y10)))) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(g(f(c))) -> G_FLAT(down(f(c))) DOWN(g(f(c))) -> DOWN(f(c)) DOWN(g(f(fresh_constant))) -> G_FLAT(down(f(fresh_constant))) DOWN(g(f(fresh_constant))) -> DOWN(f(fresh_constant)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (77) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 18 less nodes. ---------------------------------------- (78) Complex Obligation (AND) ---------------------------------------- (79) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(f(f(y7))) -> DOWN(f(y7)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (80) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (81) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(f(f(y7))) -> DOWN(f(y7)) R is empty. The set Q consists of the following terms: down(g(b)) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (82) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(g(b)) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) ---------------------------------------- (83) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(f(f(y7))) -> DOWN(f(y7)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (84) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(f(g(y6))) -> DOWN(g(y6)) The graph contains the following edges 1 > 1 *DOWN(g(g(y3))) -> DOWN(g(y3)) The graph contains the following edges 1 > 1 *DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) The graph contains the following edges 1 > 1 *DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) The graph contains the following edges 1 > 1 *DOWN(f(f(y7))) -> DOWN(f(y7)) The graph contains the following edges 1 > 1 ---------------------------------------- (85) YES ---------------------------------------- (86) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (87) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (88) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (89) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (90) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (91) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(up(x)) -> TOP(down(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))),TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b))))))))) (TOP(up(f(b))) -> TOP(up(b)),TOP(up(f(b))) -> TOP(up(b))) (TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))),TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0))))) (TOP(up(g(c))) -> TOP(g_flat(down(c))),TOP(up(g(c))) -> TOP(g_flat(down(c)))) (TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))),TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant)))) (TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))),TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0))))) (TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))),TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0))))) (TOP(up(f(c))) -> TOP(f_flat(down(c))),TOP(up(f(c))) -> TOP(f_flat(down(c)))) (TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))),TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant)))) (TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))),TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0)))))) (TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))),TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0)))))) (TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))),TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c))))) (TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))),TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant))))) ---------------------------------------- (92) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(f(b))) -> TOP(up(b)) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(g(c))) -> TOP(g_flat(down(c))) TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(c))) -> TOP(f_flat(down(c))) TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (93) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (94) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (95) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))),TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0)))))) ---------------------------------------- (96) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (97) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))),TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0)))))) ---------------------------------------- (98) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (99) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(f(c)))) -> TOP(g_flat(f_flat(down(c)))),TOP(up(g(f(c)))) -> TOP(g_flat(f_flat(down(c))))) ---------------------------------------- (100) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(f_flat(down(c)))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (101) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (102) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (103) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(f_flat(down(fresh_constant)))),TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(f_flat(down(fresh_constant))))) ---------------------------------------- (104) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(f_flat(down(fresh_constant)))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (105) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (106) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (107) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(b) = 1 POL(c) = 0 POL(down(x_1)) = 0 POL(f(x_1)) = 0 POL(f_flat(x_1)) = 0 POL(fresh_constant) = 0 POL(g(x_1)) = x_1 POL(g_flat(x_1)) = x_1 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) ---------------------------------------- (108) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (109) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (110) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (111) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (112) Complex Obligation (AND) ---------------------------------------- (113) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (114) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 0 down: 0 f: 0 fresh_constant: 1 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (115) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.1(x0))))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(f.0(f.1(x0)))) -> TOP.0(f_flat.0(down.0(f.1(x0)))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(f.0(b.)) -> up.0(b.) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(c.)) -> g_flat.0(down.0(c.)) down.0(g.1(fresh_constant.)) -> g_flat.0(down.1(fresh_constant.)) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(f.1(y7))) -> f_flat.0(down.0(f.1(y7))) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (116) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(g.1(fresh_constant.)) -> g_flat.0(down.1(fresh_constant.)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (117) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.1(x0))))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(f.0(f.1(x0)))) -> TOP.0(f_flat.0(down.0(f.1(x0)))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(c.)) -> g_flat.0(down.0(c.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.1(y7))) -> f_flat.0(down.0(f.1(y7))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (118) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (119) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(c.)) -> g_flat.0(down.0(c.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.1(y7))) -> f_flat.0(down.0(f.1(y7))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (120) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (121) TRUE ---------------------------------------- (122) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(c)) -> f_flat(down(c)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (123) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (124) Complex Obligation (AND) ---------------------------------------- (125) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(c)) -> f_flat(down(c)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (126) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 1 down: 0 f: 0 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (127) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(f.0(f.1(x0)))) -> TOP.0(f_flat.0(down.0(f.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(c.)) -> g_flat.0(down.1(c.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.1(c.)) -> f_flat.0(down.1(c.)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(f.1(y7))) -> f_flat.0(down.0(f.1(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (128) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(g.1(c.)) -> g_flat.0(down.1(c.)) down.0(f.1(c.)) -> f_flat.0(down.1(c.)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (129) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(f.0(f.1(x0)))) -> TOP.0(f_flat.0(down.0(f.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(f.1(y7))) -> f_flat.0(down.0(f.1(y7))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (130) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (131) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(f.1(y7))) -> f_flat.0(down.0(f.1(y7))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (132) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (133) TRUE ---------------------------------------- (134) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (135) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (136) Complex Obligation (AND) ---------------------------------------- (137) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (138) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 0 down: 0 f: x0 fresh_constant: 1 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (139) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.1(f.1(f.1(x0)))) -> TOP.0(f_flat.0(down.1(f.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.1(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) -> g_flat.0(down.1(f.1(fresh_constant.))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (140) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP.0(up.1(f.1(f.1(x0)))) -> TOP.0(f_flat.0(down.1(f.1(x0)))) TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.1(f.1(x0))))) Strictly oriented rules of the TRS R: down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.1(f.1(fresh_constant.))) -> g_flat.0(down.1(f.1(fresh_constant.))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (141) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (142) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (143) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (144) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (145) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (146) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (147) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (148) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (149) TRUE ---------------------------------------- (150) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (151) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(g(fresh_constant)) down(f(fresh_constant)) down(g(f(fresh_constant))) ---------------------------------------- (152) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (153) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (154) Complex Obligation (AND) ---------------------------------------- (155) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (156) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 1 down: 0 f: x0 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (157) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.1(f.1(f.1(x0)))) -> TOP.0(f_flat.0(down.1(f.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.1(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.1(f.1(c.))) -> g_flat.0(down.1(f.1(c.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (158) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP.0(up.1(f.1(f.1(x0)))) -> TOP.0(f_flat.0(down.1(f.1(x0)))) TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.1(f.1(x0))))) Strictly oriented rules of the TRS R: down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.1(f.1(c.))) -> g_flat.0(down.1(f.1(c.))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (159) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (160) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (161) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (162) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.1(f.1(f.1(y7))) -> f_flat.0(down.1(f.1(y7))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (163) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (164) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (165) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(f.0(x0)))) -> TOP.0(f_flat.0(down.0(f.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.0(y7))) -> f_flat.0(down.0(f.0(y7))) down.0(f.0(b.)) -> up.0(b.) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (166) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (167) TRUE ---------------------------------------- (168) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (169) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(g(c)) down(g(fresh_constant)) down(f(c)) down(f(fresh_constant)) down(g(f(c))) down(g(f(fresh_constant))) ---------------------------------------- (170) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(b)) down(g(g(x0))) down(f(g(x0))) down(f(f(x0))) down(g(f(g(x0)))) down(g(f(f(x0)))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (171) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (172) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(f_flat(down(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(y7))) -> f_flat(down(f(y7))) down(f(b)) -> up(b) down(f(g(y6))) -> f_flat(down(g(y6))) Q is empty. We have to consider all (P,Q,R)-chains.