/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could be proven: (0) OTRS (1) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 89 ms] (4) QTRS (5) AAECC Innermost [EQUIVALENT, 23 ms] (6) QTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) AND (11) QDP (12) UsableRulesProof [EQUIVALENT, 0 ms] (13) QDP (14) QReductionProof [EQUIVALENT, 0 ms] (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) TransformationProof [EQUIVALENT, 0 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 0 ms] (36) QDP (37) DependencyGraphProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 0 ms] (42) QDP (43) DependencyGraphProof [EQUIVALENT, 0 ms] (44) QDP (45) TransformationProof [EQUIVALENT, 0 ms] (46) QDP (47) DependencyGraphProof [EQUIVALENT, 0 ms] (48) QDP (49) QDPOrderProof [EQUIVALENT, 1469 ms] (50) QDP (51) SplitQDPProof [EQUIVALENT, 0 ms] (52) AND (53) QDP (54) SemLabProof [SOUND, 0 ms] (55) QDP (56) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (57) QDP (58) MRRProof [EQUIVALENT, 0 ms] (59) QDP (60) DependencyGraphProof [EQUIVALENT, 0 ms] (61) QDP (62) MRRProof [EQUIVALENT, 11 ms] (63) QDP (64) QDPOrderProof [EQUIVALENT, 0 ms] (65) QDP (66) QDPOrderProof [EQUIVALENT, 9 ms] (67) QDP (68) PisEmptyProof [SOUND, 0 ms] (69) TRUE (70) QDP (71) SplitQDPProof [EQUIVALENT, 0 ms] (72) AND (73) QDP (74) SemLabProof [SOUND, 0 ms] (75) QDP (76) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (77) QDP (78) MRRProof [EQUIVALENT, 0 ms] (79) QDP (80) DependencyGraphProof [EQUIVALENT, 0 ms] (81) QDP (82) QDPOrderProof [EQUIVALENT, 10 ms] (83) QDP (84) QDPOrderProof [EQUIVALENT, 0 ms] (85) QDP (86) PisEmptyProof [SOUND, 0 ms] (87) TRUE (88) QDP (89) SplitQDPProof [EQUIVALENT, 0 ms] (90) AND (91) QDP (92) SemLabProof [SOUND, 0 ms] (93) QDP (94) MRRProof [EQUIVALENT, 0 ms] (95) QDP (96) DependencyGraphProof [EQUIVALENT, 0 ms] (97) QDP (98) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (99) QDP (100) MRRProof [EQUIVALENT, 4 ms] (101) QDP (102) PisEmptyProof [SOUND, 0 ms] (103) TRUE (104) QDP (105) SplitQDPProof [EQUIVALENT, 0 ms] (106) AND (107) QDP (108) SemLabProof [SOUND, 0 ms] (109) QDP (110) MRRProof [EQUIVALENT, 6 ms] (111) QDP (112) DependencyGraphProof [EQUIVALENT, 0 ms] (113) QDP (114) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (115) QDP (116) MRRProof [EQUIVALENT, 0 ms] (117) QDP (118) PisEmptyProof [SOUND, 0 ms] (119) TRUE (120) QDP (121) SemLabProof [SOUND, 4942 ms] (122) QDP (123) DependencyGraphProof [EQUIVALENT, 0 ms] (124) AND (125) QDP (126) MRRProof [EQUIVALENT, 5 ms] (127) QDP (128) MRRProof [EQUIVALENT, 0 ms] (129) QDP (130) MRRProof [EQUIVALENT, 0 ms] (131) QDP (132) PisEmptyProof [EQUIVALENT, 0 ms] (133) YES (134) QDP (135) MRRProof [EQUIVALENT, 0 ms] (136) QDP (137) MRRProof [EQUIVALENT, 0 ms] (138) QDP (139) MRRProof [EQUIVALENT, 0 ms] (140) QDP (141) PisEmptyProof [EQUIVALENT, 0 ms] (142) YES ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: g(b) -> g(f(f(f(f(f(b)))))) f(f(b)) -> b f(b) -> b g(f(b)) -> c Outermost Strategy. ---------------------------------------- (1) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) down(g(f(b))) -> up(c) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(b) = 0 POL(c) = 0 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 1 + x_1 POL(g_flat(x_1)) = 2 + x_1 POL(top(x_1)) = 2*x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: down(g(f(b))) -> up(c) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) Q is empty. ---------------------------------------- (5) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(g(g(y3))) -> G_FLAT(down(g(y3))) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(c)) -> G_FLAT(down(c)) DOWN(g(c)) -> DOWN(c) DOWN(g(fresh_constant)) -> G_FLAT(down(fresh_constant)) DOWN(g(fresh_constant)) -> DOWN(fresh_constant) DOWN(f(g(y6))) -> F_FLAT(down(g(y6))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(f(c)) -> F_FLAT(down(c)) DOWN(f(c)) -> DOWN(c) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) DOWN(g(f(g(y9)))) -> G_FLAT(down(f(g(y9)))) DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(g(f(f(y10)))) -> G_FLAT(down(f(f(y10)))) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(g(f(c))) -> G_FLAT(down(f(c))) DOWN(g(f(c))) -> DOWN(f(c)) DOWN(g(f(fresh_constant))) -> G_FLAT(down(f(fresh_constant))) DOWN(g(f(fresh_constant))) -> DOWN(f(fresh_constant)) DOWN(f(f(g(y12)))) -> F_FLAT(down(f(g(y12)))) DOWN(f(f(g(y12)))) -> DOWN(f(g(y12))) DOWN(f(f(f(y13)))) -> F_FLAT(down(f(f(y13)))) DOWN(f(f(f(y13)))) -> DOWN(f(f(y13))) DOWN(f(f(c))) -> F_FLAT(down(f(c))) DOWN(f(f(c))) -> DOWN(f(c)) DOWN(f(f(fresh_constant))) -> F_FLAT(down(f(fresh_constant))) DOWN(f(f(fresh_constant))) -> DOWN(f(fresh_constant)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 23 less nodes. ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(f(f(g(y12)))) -> DOWN(f(g(y12))) DOWN(f(f(f(y13)))) -> DOWN(f(f(y13))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(f(f(g(y12)))) -> DOWN(f(g(y12))) DOWN(f(f(f(y13)))) -> DOWN(f(f(y13))) R is empty. The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(g(b)) down(f(f(b))) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) DOWN(f(g(y6))) -> DOWN(g(y6)) DOWN(g(g(y3))) -> DOWN(g(y3)) DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) DOWN(f(f(g(y12)))) -> DOWN(f(g(y12))) DOWN(f(f(f(y13)))) -> DOWN(f(f(y13))) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(f(g(y6))) -> DOWN(g(y6)) The graph contains the following edges 1 > 1 *DOWN(g(g(y3))) -> DOWN(g(y3)) The graph contains the following edges 1 > 1 *DOWN(g(f(g(y9)))) -> DOWN(f(g(y9))) The graph contains the following edges 1 > 1 *DOWN(g(f(f(y10)))) -> DOWN(f(f(y10))) The graph contains the following edges 1 > 1 *DOWN(f(f(g(y12)))) -> DOWN(f(g(y12))) The graph contains the following edges 1 > 1 *DOWN(f(f(f(y13)))) -> DOWN(f(f(y13))) The graph contains the following edges 1 > 1 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) top(up(x)) -> top(down(x)) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) top(up(x0)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(up(x)) -> TOP(down(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))),TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b))))))))) (TOP(up(f(f(b)))) -> TOP(up(b)),TOP(up(f(f(b)))) -> TOP(up(b))) (TOP(up(f(b))) -> TOP(up(b)),TOP(up(f(b))) -> TOP(up(b))) (TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))),TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0))))) (TOP(up(g(c))) -> TOP(g_flat(down(c))),TOP(up(g(c))) -> TOP(g_flat(down(c)))) (TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))),TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant)))) (TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))),TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0))))) (TOP(up(f(c))) -> TOP(f_flat(down(c))),TOP(up(f(c))) -> TOP(f_flat(down(c)))) (TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))),TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant)))) (TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))),TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0)))))) (TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))),TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0)))))) (TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))),TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c))))) (TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))),TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant))))) (TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))),TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0)))))) (TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))),TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0)))))) (TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))),TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c))))) (TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))),TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant))))) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(f(f(b)))) -> TOP(up(b)) TOP(up(f(b))) -> TOP(up(b)) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(g(c))) -> TOP(g_flat(down(c))) TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(c))) -> TOP(f_flat(down(c))) TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(f(f(b))) -> up(b) down(f(b)) -> up(b) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(f(g(x0))))) -> TOP(g_flat(down(f(g(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))),TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0)))))) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(f(c)))) -> TOP(g_flat(down(f(c)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(f(c)))) -> TOP(g_flat(f_flat(down(c)))),TOP(up(g(f(c)))) -> TOP(g_flat(f_flat(down(c))))) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(g(f(c)))) -> TOP(g_flat(f_flat(down(c)))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(down(f(fresh_constant)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(f_flat(down(fresh_constant)))),TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(f_flat(down(fresh_constant))))) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) TOP(up(g(f(fresh_constant)))) -> TOP(g_flat(f_flat(down(fresh_constant)))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(f(g(x0))))) -> TOP(f_flat(down(f(g(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))),TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0)))))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(f(c)))) -> TOP(f_flat(down(f(c)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(f(c)))) -> TOP(f_flat(f_flat(down(c)))),TOP(up(f(f(c)))) -> TOP(f_flat(f_flat(down(c))))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) TOP(up(f(f(c)))) -> TOP(f_flat(f_flat(down(c)))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(down(f(fresh_constant)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(f_flat(down(fresh_constant)))),TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(f_flat(down(fresh_constant))))) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(fresh_constant)))) -> TOP(f_flat(f_flat(down(fresh_constant)))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(g(b))) -> TOP(up(g(f(f(f(f(f(b)))))))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( b ) = [[1], [0]] >>> <<< M( c ) = [[0], [0]] >>> <<< M( down_1(x_1) ) = [[0], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( f_1(x_1) ) = [[0], [0]] + [[0, 1], [1, 0]] * x_1 >>> <<< M( fresh_constant ) = [[0], [0]] >>> <<< M( up_1(x_1) ) = [[0], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( f_flat_1(x_1) ) = [[0], [0]] + [[0, 1], [1, 0]] * x_1 >>> <<< M( g_1(x_1) ) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< M( g_flat_1(x_1) ) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[1, 0]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) down(f(g(y6))) -> f_flat(down(g(y6))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (52) Complex Obligation (AND) ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(f(c)) -> f_flat(down(c)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 1 down: 0 f: 0 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(c.)) -> f_flat.0(down.1(c.)) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(c.)) -> g_flat.0(down.1(c.)) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.1(c.)) -> g_flat.0(down.1(c.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.1(c.)) -> f_flat.0(down.1(c.)) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(g.1(c.)) -> g_flat.0(down.1(c.)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.1(c.)) -> f_flat.0(down.1(c.)) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.1(c.)) -> f_flat.0(down.1(c.)) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(f.1(c.)) -> f_flat.0(down.1(c.)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 ---------------------------------------- (63) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 0 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = 0 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = 0 POL(up.0(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 0 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) ---------------------------------------- (67) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(fresh_constant.)) -> g_flat.0(down.0(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.1(c.))) -> g_flat.0(down.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) -> g_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(fresh_constant.)) -> f_flat.0(down.0(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(c.))) -> f_flat.0(down.0(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.0(fresh_constant.))) -> f_flat.0(down.0(f.0(fresh_constant.))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (68) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (69) TRUE ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (72) Complex Obligation (AND) ---------------------------------------- (73) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (74) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 0 down: 0 f: 0 fresh_constant: 1 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (75) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(fresh_constant.)) -> g_flat.0(down.1(fresh_constant.)) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.0(c.))) down.0(f.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (76) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (77) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.1(fresh_constant.)) -> g_flat.0(down.1(fresh_constant.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.0(c.))) down.0(f.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (78) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(g.1(fresh_constant.)) -> g_flat.0(down.1(fresh_constant.)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 ---------------------------------------- (79) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.0(c.))) down.0(f.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (80) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (81) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.0(c.))) down.0(f.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (82) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(up.0(f.0(f.0(f.1(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.1(x0))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 0 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = 0 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = 0 POL(up.0(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) ---------------------------------------- (83) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.0(c.))) down.0(f.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (84) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(up.0(g.0(f.0(f.1(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.1(x0))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 0 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) ---------------------------------------- (85) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(f.1(y10)))) -> g_flat.0(down.0(f.0(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) -> g_flat.0(down.0(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(f.1(fresh_constant.))) -> f_flat.0(down.0(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.0(f.0(f.0(f.1(y13)))) -> f_flat.0(down.0(f.0(f.1(y13)))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.0(f.0(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.0(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.0(f.0(f.0(f.1(x0)))) down.0(f.0(f.0(c.))) down.0(f.0(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (86) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (87) TRUE ---------------------------------------- (88) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (89) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (90) Complex Obligation (AND) ---------------------------------------- (91) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: f_flat(up(x_1)) -> up(f(x_1)) down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) down(g(f(fresh_constant))) -> g_flat(down(f(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) down(f(f(fresh_constant))) -> f_flat(down(f(fresh_constant))) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (92) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 0 down: 0 f: x0 fresh_constant: 1 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (93) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(down.1(f.1(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.1(f.1(f.1(f.1(x0))))) -> TOP.0(f_flat.0(down.1(f.1(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) -> g_flat.0(down.1(f.1(fresh_constant.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.1(f.1(fresh_constant.))) -> f_flat.0(down.1(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.0(f.0(f.0(c.))) down.1(f.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (94) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(down.1(f.1(f.1(x0))))) TOP.0(up.1(f.1(f.1(f.1(x0))))) -> TOP.0(f_flat.0(down.1(f.1(f.1(x0))))) Strictly oriented rules of the TRS R: down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.1(f.1(fresh_constant.))) -> g_flat.0(down.1(f.1(fresh_constant.))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (95) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.1(f.1(fresh_constant.))) -> f_flat.0(down.1(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.0(f.0(f.0(c.))) down.1(f.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (96) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (97) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.1(f.1(fresh_constant.))) -> f_flat.0(down.1(f.1(fresh_constant.))) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.0(f.0(f.0(c.))) down.1(f.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (98) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.1(f.1(f.1(fresh_constant.))) -> f_flat.0(down.1(f.1(fresh_constant.))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (99) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.0(f.0(f.0(c.))) down.1(f.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (100) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (101) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.0(f.0(c.))) -> g_flat.0(down.0(f.0(c.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(f.0(f.0(c.))) -> f_flat.0(down.0(f.0(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(c.)) down.1(f.1(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.0(f.0(c.))) down.0(g.1(f.1(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.0(f.0(f.0(c.))) down.1(f.1(f.1(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (102) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (103) TRUE ---------------------------------------- (104) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) f_flat(up(x_1)) -> up(f(x_1)) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) g_flat(up(x_1)) -> up(g(x_1)) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (105) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (106) Complex Obligation (AND) ---------------------------------------- (107) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) down(g(f(c))) -> g_flat(down(f(c))) f_flat(up(x_1)) -> up(f(x_1)) down(f(f(c))) -> f_flat(down(f(c))) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) g_flat(up(x_1)) -> up(g(x_1)) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (108) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 1 down: 0 f: x0 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (109) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(down.1(f.1(f.1(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.1(f.1(f.1(f.1(x0))))) -> TOP.0(f_flat.0(down.1(f.1(f.1(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.1(f.1(c.))) -> g_flat.0(down.1(f.1(c.))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.1(f.1(f.1(c.))) -> f_flat.0(down.1(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.1(f.1(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (110) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP.0(up.0(g.1(f.1(f.1(x0))))) -> TOP.0(g_flat.0(down.1(f.1(f.1(x0))))) TOP.0(up.1(f.1(f.1(f.1(x0))))) -> TOP.0(f_flat.0(down.1(f.1(f.1(x0))))) Strictly oriented rules of the TRS R: down.0(g.1(f.1(f.1(y10)))) -> g_flat.0(down.1(f.1(f.1(y10)))) down.0(g.1(f.1(c.))) -> g_flat.0(down.1(f.1(c.))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (111) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.1(x0)))) -> TOP.0(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.0(f.0(g.1(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.1(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.1(f.1(f.1(c.))) -> f_flat.0(down.1(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.1(f.1(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (112) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (113) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.1(f.1(f.1(c.))) -> f_flat.0(down.1(f.1(c.))) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.1(f.1(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (114) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.1(f.1(f.1(c.))) -> f_flat.0(down.1(f.1(c.))) down.1(f.1(f.1(f.1(y13)))) -> f_flat.0(down.1(f.1(f.1(y13)))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (115) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.1(f.1(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (116) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (117) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(f.0(g.0(x0)))) -> TOP.0(f_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(f.0(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(f.0(f.0(f.0(x0))))) -> TOP.0(f_flat.0(down.0(f.0(f.0(x0))))) TOP.0(up.0(g.0(f.0(g.0(x0))))) -> TOP.0(g_flat.0(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.0(f.0(g.0(x0))))) -> TOP.0(f_flat.0(f_flat.0(down.0(g.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.0(f.0(f.0(f.0(f.0(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.0(f.0(g.0(y9)))) -> g_flat.0(down.0(f.0(g.0(y9)))) down.0(g.0(f.0(g.1(y9)))) -> g_flat.0(down.0(f.0(g.1(y9)))) down.0(g.0(f.0(f.0(y10)))) -> g_flat.0(down.0(f.0(f.0(y10)))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(f.0(f.0(b.))) -> up.0(b.) down.0(f.0(f.0(g.0(y12)))) -> f_flat.0(down.0(f.0(g.0(y12)))) down.0(f.0(f.0(g.1(y12)))) -> f_flat.0(down.0(f.0(g.1(y12)))) down.0(f.0(f.0(f.0(y13)))) -> f_flat.0(down.0(f.0(f.0(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) down.0(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.0(f.0(b.))) down.0(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.1(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(g.0(x0)))) down.0(g.0(f.0(g.1(x0)))) down.0(g.0(f.0(f.0(x0)))) down.0(g.1(f.1(f.1(x0)))) down.0(g.1(f.1(c.))) down.0(g.0(f.0(fresh_constant.))) down.0(f.0(f.0(g.0(x0)))) down.0(f.0(f.0(g.1(x0)))) down.0(f.0(f.0(f.0(x0)))) down.1(f.1(f.1(f.1(x0)))) down.1(f.1(f.1(c.))) down.0(f.0(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (118) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (119) TRUE ---------------------------------------- (120) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(f(x0))))) -> TOP(g_flat(down(f(f(x0))))) TOP(up(f(f(f(x0))))) -> TOP(f_flat(down(f(f(x0))))) TOP(up(g(f(g(x0))))) -> TOP(g_flat(f_flat(down(g(x0))))) TOP(up(f(f(g(x0))))) -> TOP(f_flat(f_flat(down(g(x0))))) The TRS R consists of the following rules: down(g(b)) -> up(g(f(f(f(f(f(b))))))) down(g(g(y3))) -> g_flat(down(g(y3))) down(g(f(g(y9)))) -> g_flat(down(f(g(y9)))) down(g(f(f(y10)))) -> g_flat(down(f(f(y10)))) f_flat(up(x_1)) -> up(f(x_1)) down(f(f(b))) -> up(b) down(f(f(g(y12)))) -> f_flat(down(f(g(y12)))) down(f(f(f(y13)))) -> f_flat(down(f(f(y13)))) g_flat(up(x_1)) -> up(g(x_1)) down(f(g(y6))) -> f_flat(down(g(y6))) The set Q consists of the following terms: down(g(b)) down(f(f(b))) down(f(b)) down(g(g(x0))) down(g(c)) down(g(fresh_constant)) down(f(g(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(g(x0)))) down(g(f(f(x0)))) down(g(f(c))) down(g(f(fresh_constant))) down(f(f(g(x0)))) down(f(f(f(x0)))) down(f(f(c))) down(f(f(fresh_constant))) g_flat(up(x0)) f_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (121) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. b: 0 c: 0 down: x0 f: 1 + x0 fresh_constant: 0 up: x0 f_flat: 1 + x0 TOP: 0 g: 0 g_flat: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (122) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.1(up.1(f.0(g.0(x0)))) -> TOP.1(f_flat.0(down.0(g.0(x0)))) TOP.1(up.1(f.0(g.1(x0)))) -> TOP.1(f_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.1(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.1(f.0(x0))))) TOP.0(up.0(g.1(f.0(f.1(x0))))) -> TOP.0(g_flat.1(down.1(f.0(f.1(x0))))) TOP.1(up.1(f.0(f.1(f.0(x0))))) -> TOP.1(f_flat.0(down.0(f.1(f.0(x0))))) TOP.0(up.0(f.1(f.0(f.1(x0))))) -> TOP.0(f_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(g.1(f.0(g.0(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.1(f.0(g.1(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.1(f.0(g.0(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.1(f.0(g.1(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.1(f.0(f.1(f.0(f.1(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(b.))) -> up.0(b.) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (123) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (124) Complex Obligation (AND) ---------------------------------------- (125) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.1(up.1(f.0(g.0(x0)))) -> TOP.1(f_flat.0(down.0(g.0(x0)))) TOP.1(up.1(f.0(g.1(x0)))) -> TOP.1(f_flat.0(down.0(g.1(x0)))) TOP.1(up.1(f.0(f.1(f.0(x0))))) -> TOP.1(f_flat.0(down.0(f.1(f.0(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.1(f.0(f.1(f.0(f.1(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(b.))) -> up.0(b.) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (126) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(g.0(b.)) -> up.0(g.1(f.0(f.1(f.0(f.1(f.0(b.))))))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.1(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(f_flat.1(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(g_flat.1(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (127) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.1(up.1(f.0(g.0(x0)))) -> TOP.1(f_flat.0(down.0(g.0(x0)))) TOP.1(up.1(f.0(g.1(x0)))) -> TOP.1(f_flat.0(down.0(g.1(x0)))) TOP.1(up.1(f.0(f.1(f.0(x0))))) -> TOP.1(f_flat.0(down.0(f.1(f.0(x0))))) The TRS R consists of the following rules: down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(b.))) -> up.0(b.) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (128) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(f.1(f.0(b.))) -> up.0(b.) Used ordering: Polynomial interpretation [POLO]: POL(TOP.1(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(f_flat.1(x_1)) = 1 + x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(g_flat.1(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (129) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.1(up.1(f.0(g.0(x0)))) -> TOP.1(f_flat.0(down.0(g.0(x0)))) TOP.1(up.1(f.0(g.1(x0)))) -> TOP.1(f_flat.0(down.0(g.1(x0)))) TOP.1(up.1(f.0(f.1(f.0(x0))))) -> TOP.1(f_flat.0(down.0(f.1(f.0(x0))))) The TRS R consists of the following rules: down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (130) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP.1(up.1(f.0(g.0(x0)))) -> TOP.1(f_flat.0(down.0(g.0(x0)))) TOP.1(up.1(f.0(g.1(x0)))) -> TOP.1(f_flat.0(down.0(g.1(x0)))) TOP.1(up.1(f.0(f.1(f.0(x0))))) -> TOP.1(f_flat.0(down.0(f.1(f.0(x0))))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.1(x_1)) = x_1 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(f_flat.1(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(g_flat.1(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (131) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (132) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (133) YES ---------------------------------------- (134) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.1(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.1(f.0(x0))))) TOP.0(up.0(g.1(f.0(f.1(x0))))) -> TOP.0(g_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(f.1(f.0(f.1(x0))))) -> TOP.0(f_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(g.1(f.0(g.0(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.1(f.0(g.1(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.1(f.0(g.0(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.1(f.0(g.1(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(b.)) -> up.0(g.1(f.0(f.1(f.0(f.1(f.0(b.))))))) down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(b.))) -> up.0(b.) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (135) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(g.0(b.)) -> up.0(g.1(f.0(f.1(f.0(f.1(f.0(b.))))))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(f_flat.1(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = 1 + x_1 POL(g_flat.1(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (136) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.1(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.1(f.0(x0))))) TOP.0(up.0(g.1(f.0(f.1(x0))))) -> TOP.0(g_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(f.1(f.0(f.1(x0))))) -> TOP.0(f_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(g.1(f.0(g.0(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.1(f.0(g.1(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.1(f.0(g.0(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.1(f.0(g.1(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(b.))) -> up.0(b.) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (137) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(f.1(f.0(b.))) -> up.0(b.) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(b.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(f_flat.1(x_1)) = 1 + x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(g_flat.1(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (138) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.1(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.1(f.0(x0))))) TOP.0(up.0(g.1(f.0(f.1(x0))))) -> TOP.0(g_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(f.1(f.0(f.1(x0))))) -> TOP.0(f_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(g.1(f.0(g.0(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.1(f.0(g.1(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.1(f.0(g.0(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.1(f.0(g.1(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.1(x0))))) The TRS R consists of the following rules: down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (139) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP.0(up.0(g.0(g.0(x0)))) -> TOP.0(g_flat.0(down.0(g.0(x0)))) TOP.0(up.0(g.0(g.1(x0)))) -> TOP.0(g_flat.0(down.0(g.1(x0)))) TOP.0(up.0(g.0(f.1(f.0(x0))))) -> TOP.0(g_flat.0(down.0(f.1(f.0(x0))))) TOP.0(up.0(g.1(f.0(f.1(x0))))) -> TOP.0(g_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(f.1(f.0(f.1(x0))))) -> TOP.0(f_flat.1(down.1(f.0(f.1(x0))))) TOP.0(up.0(g.1(f.0(g.0(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(g.1(f.0(g.1(x0))))) -> TOP.0(g_flat.1(f_flat.0(down.0(g.1(x0))))) TOP.0(up.0(f.1(f.0(g.0(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.0(x0))))) TOP.0(up.0(f.1(f.0(g.1(x0))))) -> TOP.0(f_flat.1(f_flat.0(down.0(g.1(x0))))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(f_flat.1(x_1)) = 1 + x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(g_flat.1(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (140) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: down.0(g.0(g.0(y3))) -> g_flat.0(down.0(g.0(y3))) down.0(g.0(g.1(y3))) -> g_flat.0(down.0(g.1(y3))) down.0(g.1(f.0(g.0(y9)))) -> g_flat.1(down.1(f.0(g.0(y9)))) down.0(g.1(f.0(g.1(y9)))) -> g_flat.1(down.1(f.0(g.1(y9)))) down.0(g.0(f.1(f.0(y10)))) -> g_flat.0(down.0(f.1(f.0(y10)))) down.0(g.1(f.0(f.1(y10)))) -> g_flat.1(down.1(f.0(f.1(y10)))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.1(up.1(x_1)) -> up.0(f.1(x_1)) down.0(f.1(f.0(g.0(y12)))) -> f_flat.1(down.1(f.0(g.0(y12)))) down.0(f.1(f.0(g.1(y12)))) -> f_flat.1(down.1(f.0(g.1(y12)))) down.1(f.0(f.1(f.0(y13)))) -> f_flat.0(down.0(f.1(f.0(y13)))) down.0(f.1(f.0(f.1(y13)))) -> f_flat.1(down.1(f.0(f.1(y13)))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.1(up.1(x_1)) -> up.0(g.1(x_1)) down.1(f.0(g.0(y6))) -> f_flat.0(down.0(g.0(y6))) down.1(f.0(g.1(y6))) -> f_flat.0(down.0(g.1(y6))) The set Q consists of the following terms: down.0(g.0(b.)) down.0(f.1(f.0(b.))) down.1(f.0(b.)) down.0(g.0(g.0(x0))) down.0(g.0(g.1(x0))) down.0(g.0(c.)) down.0(g.0(fresh_constant.)) down.1(f.0(g.0(x0))) down.1(f.0(g.1(x0))) down.1(f.0(c.)) down.1(f.0(fresh_constant.)) down.0(g.1(f.0(g.0(x0)))) down.0(g.1(f.0(g.1(x0)))) down.0(g.0(f.1(f.0(x0)))) down.0(g.1(f.0(f.1(x0)))) down.0(g.1(f.0(c.))) down.0(g.1(f.0(fresh_constant.))) down.0(f.1(f.0(g.0(x0)))) down.0(f.1(f.0(g.1(x0)))) down.1(f.0(f.1(f.0(x0)))) down.0(f.1(f.0(f.1(x0)))) down.0(f.1(f.0(c.))) down.0(f.1(f.0(fresh_constant.))) g_flat.0(up.0(x0)) g_flat.1(up.1(x0)) f_flat.0(up.0(x0)) f_flat.1(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (141) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (142) YES