/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could be proven: (0) OTRS (1) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 25 ms] (4) QTRS (5) AAECC Innermost [EQUIVALENT, 0 ms] (6) QTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) AND (11) QDP (12) UsableRulesProof [EQUIVALENT, 0 ms] (13) QDP (14) QReductionProof [EQUIVALENT, 0 ms] (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QReductionProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPOrderProof [EQUIVALENT, 38 ms] (31) QDP (32) PisEmptyProof [EQUIVALENT, 0 ms] (33) YES ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: f(h(x)) -> f(i(x)) f(i(x)) -> a i(x) -> h(x) Outermost Strategy. ---------------------------------------- (1) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(f(i(x))) -> up(a) down(i(x)) -> up(h(x)) top(up(x)) -> top(down(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) i_flat(up(x_1)) -> up(i(x_1)) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 0 POL(down(x_1)) = 2 + 2*x_1 POL(f(x_1)) = 2 + 2*x_1 POL(f_flat(x_1)) = 2 + 2*x_1 POL(fresh_constant) = 1 POL(h(x_1)) = x_1 POL(h_flat(x_1)) = x_1 POL(i(x_1)) = x_1 POL(i_flat(x_1)) = 1 + 2*x_1 POL(top(x_1)) = x_1 POL(up(x_1)) = 2 + 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: down(f(i(x))) -> up(a) i_flat(up(x_1)) -> up(i(x_1)) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) top(up(x)) -> top(down(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) Q is empty. ---------------------------------------- (5) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) top(up(x)) -> top(down(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(h(y1)) -> H_FLAT(down(y1)) DOWN(h(y1)) -> DOWN(y1) DOWN(f(f(y4))) -> F_FLAT(down(f(y4))) DOWN(f(f(y4))) -> DOWN(f(y4)) DOWN(f(a)) -> F_FLAT(down(a)) DOWN(f(a)) -> DOWN(a) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) top(up(x)) -> top(down(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes. ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y4))) -> DOWN(f(y4)) The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) top(up(x)) -> top(down(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y4))) -> DOWN(f(y4)) R is empty. The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y4))) -> DOWN(f(y4)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(f(f(y4))) -> DOWN(f(y4)) The graph contains the following edges 1 > 1 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(h(y1)) -> DOWN(y1) The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) top(up(x)) -> top(down(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(h(y1)) -> DOWN(y1) R is empty. The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(h(y1)) -> DOWN(y1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(h(y1)) -> DOWN(y1) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) top(up(x)) -> top(down(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) top(up(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(x)) -> TOP(down(x)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( h_flat_1(x_1) ) = [[0], [0]] + [[0, 1], [0, 1]] * x_1 >>> <<< M( a ) = [[1], [0]] >>> <<< M( down_1(x_1) ) = [[0], [0]] + [[0, 1], [0, 1]] * x_1 >>> <<< M( f_1(x_1) ) = [[1], [0]] + [[1, 0], [1, 0]] * x_1 >>> <<< M( i_1(x_1) ) = [[0], [1]] + [[0, 0], [0, 1]] * x_1 >>> <<< M( fresh_constant ) = [[1], [0]] >>> <<< M( h_1(x_1) ) = [[1], [0]] + [[0, 0], [0, 1]] * x_1 >>> <<< M( up_1(x_1) ) = [[0], [1]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( f_flat_1(x_1) ) = [[1], [1]] + [[1, 0], [1, 0]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[0, 1]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) h_flat(up(x_1)) -> up(h(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (31) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: down(f(h(x))) -> up(f(i(x))) down(i(x)) -> up(h(x)) down(h(y1)) -> h_flat(down(y1)) down(f(f(y4))) -> f_flat(down(f(y4))) down(f(a)) -> f_flat(down(a)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) h_flat(up(x_1)) -> up(h(x_1)) The set Q consists of the following terms: down(f(h(x0))) down(i(x0)) down(h(x0)) down(f(f(x0))) down(f(a)) down(f(fresh_constant)) f_flat(up(x0)) h_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (33) YES