/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could be proven: (0) OTRS (1) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 114 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 44 ms] (6) QTRS (7) QTRSRRRProof [EQUIVALENT, 18 ms] (8) QTRS (9) DependencyPairsProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) AND (13) QDP (14) UsableRulesProof [EQUIVALENT, 0 ms] (15) QDP (16) QReductionProof [EQUIVALENT, 0 ms] (17) QDP (18) UsableRulesReductionPairsProof [EQUIVALENT, 4 ms] (19) QDP (20) DependencyGraphProof [EQUIVALENT, 0 ms] (21) TRUE (22) QDP (23) UsableRulesProof [EQUIVALENT, 0 ms] (24) QDP (25) QReductionProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [SOUND, 0 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [SOUND, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 0 ms] (36) QDP (37) DependencyGraphProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 13 ms] (44) QDP (45) SemLabProof [SOUND, 235 ms] (46) QDP (47) UsableRulesReductionPairsProof [EQUIVALENT, 13 ms] (48) QDP (49) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (50) QDP (51) MRRProof [EQUIVALENT, 10 ms] (52) QDP (53) MRRProof [EQUIVALENT, 0 ms] (54) QDP (55) UsableRulesReductionPairsProof [EQUIVALENT, 10 ms] (56) QDP (57) MRRProof [EQUIVALENT, 0 ms] (58) QDP (59) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (60) QDP (61) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (62) QDP (63) MRRProof [EQUIVALENT, 0 ms] (64) QDP (65) PisEmptyProof [EQUIVALENT, 0 ms] (66) YES ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a h(x, x) -> a Outermost Strategy. ---------------------------------------- (1) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, y) -> result_f(x) redex_g(x) -> result_g(i(x)) redex_f(x, i(x)) -> result_f(f(x, x)) redex_f(i(x), i(g(x))) -> result_f(a) redex_h(x, x) -> result_h(a) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_h(result_h(x)) -> go_up(x) check_f(redex_f(x_1, x_2)) -> in_f_1(reduce(x_1), x_2) check_f(redex_f(x_1, x_2)) -> in_f_2(x_1, reduce(x_2)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_f_1(go_up(x_1), x_2) -> go_up(f(x_1, x_2)) in_f_2(x_1, go_up(x_2)) -> go_up(f(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 0 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = x_1 POL(check_h(x_1)) = 1 + 2*x_1 POL(f(x_1, x_2)) = 2*x_1 + 2*x_2 POL(g(x_1)) = x_1 POL(go_up(x_1)) = x_1 POL(h(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 POL(i(x_1)) = x_1 POL(in_f_1(x_1, x_2)) = 2*x_1 + 2*x_2 POL(in_f_2(x_1, x_2)) = 2*x_1 + 2*x_2 POL(in_g_1(x_1)) = x_1 POL(in_h_1(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 POL(in_h_2(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 POL(in_i_1(x_1)) = x_1 POL(redex_f(x_1, x_2)) = 2*x_1 + 2*x_2 POL(redex_g(x_1)) = x_1 POL(redex_h(x_1, x_2)) = x_1 + x_2 POL(reduce(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = x_1 POL(result_h(x_1)) = 2*x_1 POL(top(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: check_h(result_h(x)) -> go_up(x) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, y) -> result_f(x) redex_g(x) -> result_g(i(x)) redex_f(x, i(x)) -> result_f(f(x, x)) redex_f(i(x), i(g(x))) -> result_f(a) redex_h(x, x) -> result_h(a) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2)) -> in_f_1(reduce(x_1), x_2) check_f(redex_f(x_1, x_2)) -> in_f_2(x_1, reduce(x_2)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_f_1(go_up(x_1), x_2) -> go_up(f(x_1, x_2)) in_f_2(x_1, go_up(x_2)) -> go_up(f(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 0 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = x_1 POL(check_h(x_1)) = x_1 POL(f(x_1, x_2)) = x_1 + x_2 POL(g(x_1)) = x_1 POL(go_up(x_1)) = 2*x_1 POL(h(x_1, x_2)) = 1 + x_1 + x_2 POL(i(x_1)) = x_1 POL(in_f_1(x_1, x_2)) = x_1 + 2*x_2 POL(in_f_2(x_1, x_2)) = 2*x_1 + x_2 POL(in_g_1(x_1)) = x_1 POL(in_h_1(x_1, x_2)) = 2 + x_1 + 2*x_2 POL(in_h_2(x_1, x_2)) = 2 + 2*x_1 + x_2 POL(in_i_1(x_1)) = x_1 POL(redex_f(x_1, x_2)) = 2*x_1 + 2*x_2 POL(redex_g(x_1)) = 2*x_1 POL(redex_h(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(reduce(x_1)) = 2*x_1 POL(result_f(x_1)) = 2*x_1 POL(result_g(x_1)) = 2*x_1 POL(result_h(x_1)) = 1 + 2*x_1 POL(top(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: redex_h(x, x) -> result_h(a) ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, y) -> result_f(x) redex_g(x) -> result_g(i(x)) redex_f(x, i(x)) -> result_f(f(x, x)) redex_f(i(x), i(g(x))) -> result_f(a) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2)) -> in_f_1(reduce(x_1), x_2) check_f(redex_f(x_1, x_2)) -> in_f_2(x_1, reduce(x_2)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_f_1(go_up(x_1), x_2) -> go_up(f(x_1, x_2)) in_f_2(x_1, go_up(x_2)) -> go_up(f(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) ---------------------------------------- (7) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 0 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = x_1 POL(check_h(x_1)) = x_1 POL(f(x_1, x_2)) = 1 + 2*x_1 + x_2 POL(g(x_1)) = x_1 POL(go_up(x_1)) = x_1 POL(h(x_1, x_2)) = 2*x_1 + x_2 POL(i(x_1)) = x_1 POL(in_f_1(x_1, x_2)) = 1 + 2*x_1 + x_2 POL(in_f_2(x_1, x_2)) = 1 + 2*x_1 + x_2 POL(in_g_1(x_1)) = x_1 POL(in_h_1(x_1, x_2)) = 2*x_1 + x_2 POL(in_h_2(x_1, x_2)) = 2*x_1 + x_2 POL(in_i_1(x_1)) = x_1 POL(redex_f(x_1, x_2)) = 1 + 2*x_1 + x_2 POL(redex_g(x_1)) = x_1 POL(redex_h(x_1, x_2)) = 2*x_1 + x_2 POL(reduce(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = x_1 POL(top(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: redex_f(x, y) -> result_f(x) redex_f(i(x), i(g(x))) -> result_f(a) ---------------------------------------- (8) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_g(x) -> result_g(i(x)) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2)) -> in_f_1(reduce(x_1), x_2) check_f(redex_f(x_1, x_2)) -> in_f_2(x_1, reduce(x_2)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_f_1(go_up(x_1), x_2) -> go_up(f(x_1, x_2)) in_f_2(x_1, go_up(x_2)) -> go_up(f(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) ---------------------------------------- (9) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(f(x_1, x_2)) -> CHECK_F(redex_f(x_1, x_2)) REDUCE(f(x_1, x_2)) -> REDEX_F(x_1, x_2) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(g(x_1)) -> REDEX_G(x_1) REDUCE(h(x_1, x_2)) -> CHECK_H(redex_h(x_1, x_2)) CHECK_F(redex_f(x_1, x_2)) -> IN_F_1(reduce(x_1), x_2) CHECK_F(redex_f(x_1, x_2)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2)) -> IN_F_2(x_1, reduce(x_2)) CHECK_F(redex_f(x_1, x_2)) -> REDUCE(x_2) CHECK_G(redex_g(x_1)) -> IN_G_1(reduce(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) CHECK_H(redex_h(x_1, x_2)) -> IN_H_1(reduce(x_1), x_2) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_1) CHECK_H(redex_h(x_1, x_2)) -> IN_H_2(x_1, reduce(x_2)) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_2) REDUCE(i(x_1)) -> IN_I_1(reduce(x_1)) REDUCE(i(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_g(x) -> result_g(i(x)) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2)) -> in_f_1(reduce(x_1), x_2) check_f(redex_f(x_1, x_2)) -> in_f_2(x_1, reduce(x_2)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_f_1(go_up(x_1), x_2) -> go_up(f(x_1, x_2)) in_f_2(x_1, go_up(x_2)) -> go_up(f(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 14 less nodes. ---------------------------------------- (12) Complex Obligation (AND) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(h(x_1, x_2)) -> CHECK_H(redex_h(x_1, x_2)) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_1) REDUCE(i(x_1)) -> REDUCE(x_1) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_2) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_g(x) -> result_g(i(x)) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2)) -> in_f_1(reduce(x_1), x_2) check_f(redex_f(x_1, x_2)) -> in_f_2(x_1, reduce(x_2)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_f_1(go_up(x_1), x_2) -> go_up(f(x_1, x_2)) in_f_2(x_1, go_up(x_2)) -> go_up(f(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(h(x_1, x_2)) -> CHECK_H(redex_h(x_1, x_2)) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_1) REDUCE(i(x_1)) -> REDUCE(x_1) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_2) R is empty. The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(h(x_1, x_2)) -> CHECK_H(redex_h(x_1, x_2)) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_1) REDUCE(i(x_1)) -> REDUCE(x_1) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_2) R is empty. The set Q consists of the following terms: redex_h(x0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(h(x_1, x_2)) -> CHECK_H(redex_h(x_1, x_2)) REDUCE(i(x_1)) -> REDUCE(x_1) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_H(x_1)) = x_1 POL(REDUCE(x_1)) = 2*x_1 POL(h(x_1, x_2)) = 2*x_1 + 2*x_2 POL(i(x_1)) = 2*x_1 POL(redex_h(x_1, x_2)) = 2*x_1 + 2*x_2 ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_1) CHECK_H(redex_h(x_1, x_2)) -> REDUCE(x_2) R is empty. The set Q consists of the following terms: redex_h(x0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (21) TRUE ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_g(x) -> result_g(i(x)) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2)) -> in_f_1(reduce(x_1), x_2) check_f(redex_f(x_1, x_2)) -> in_f_2(x_1, reduce(x_2)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_f_1(go_up(x_1), x_2) -> go_up(f(x_1, x_2)) in_f_2(x_1, go_up(x_2)) -> go_up(f(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_i_1(go_up(x0)) in_g_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) in_f_1(go_up(x0), x1) in_f_2(x0, go_up(x1)) in_g_1(go_up(x0)) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (SOUND) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0, x1))) -> TOP(check_f(redex_f(x0, x1))),TOP(go_up(f(x0, x1))) -> TOP(check_f(redex_f(x0, x1)))) (TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))),TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0)))) (TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))),TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1)))) (TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))),TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0)))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0, x1))) -> TOP(check_f(redex_f(x0, x1))) TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(go_up(g(x0))) -> TOP(check_g(result_g(i(x0)))),TOP(go_up(g(x0))) -> TOP(check_g(result_g(i(x0))))) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0, x1))) -> TOP(check_f(redex_f(x0, x1))) TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(check_g(result_g(i(x0)))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(g(x0))) -> TOP(check_g(result_g(i(x0)))) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(g(x0))) -> TOP(go_up(i(x0))),TOP(go_up(g(x0))) -> TOP(go_up(i(x0)))) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0, x1))) -> TOP(check_f(redex_f(x0, x1))) TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(i(x0))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (SOUND) By narrowing [LPAR04] the rule TOP(go_up(f(x0, x1))) -> TOP(check_f(redex_f(x0, x1))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0, x0))) -> TOP(check_f(result_f(f(i(x0), g(g(x0)))))),TOP(go_up(f(x0, x0))) -> TOP(check_f(result_f(f(i(x0), g(g(x0))))))) (TOP(go_up(f(x0, i(x0)))) -> TOP(check_f(result_f(f(x0, x0)))),TOP(go_up(f(x0, i(x0)))) -> TOP(check_f(result_f(f(x0, x0))))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(i(x0))) TOP(go_up(f(x0, x0))) -> TOP(check_f(result_f(f(i(x0), g(g(x0)))))) TOP(go_up(f(x0, i(x0)))) -> TOP(check_f(result_f(f(x0, x0)))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(f(x0, x0))) -> TOP(check_f(result_f(f(i(x0), g(g(x0)))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0, x0))) -> TOP(go_up(f(i(x0), g(g(x0))))),TOP(go_up(f(x0, x0))) -> TOP(go_up(f(i(x0), g(g(x0)))))) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(i(x0))) TOP(go_up(f(x0, i(x0)))) -> TOP(check_f(result_f(f(x0, x0)))) TOP(go_up(f(x0, x0))) -> TOP(go_up(f(i(x0), g(g(x0))))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(i(x0))) TOP(go_up(f(x0, i(x0)))) -> TOP(check_f(result_f(f(x0, x0)))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(f(x0, i(x0)))) -> TOP(check_f(result_f(f(x0, x0)))) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0, i(x0)))) -> TOP(go_up(f(x0, x0))),TOP(go_up(f(x0, i(x0)))) -> TOP(go_up(f(x0, x0)))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(i(x0))) TOP(go_up(f(x0, i(x0)))) -> TOP(go_up(f(x0, x0))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(i(x0))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(g(x0))) -> TOP(go_up(i(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(check_f(x_1)) = 1 POL(check_g(x_1)) = 1 POL(check_h(x_1)) = 0 POL(f(x_1, x_2)) = 0 POL(g(x_1)) = 1 POL(go_up(x_1)) = x_1 POL(h(x_1, x_2)) = 0 POL(i(x_1)) = 0 POL(in_h_1(x_1, x_2)) = 0 POL(in_h_2(x_1, x_2)) = 0 POL(in_i_1(x_1)) = 0 POL(redex_f(x_1, x_2)) = x_1 POL(redex_g(x_1)) = 1 + x_1 POL(redex_h(x_1, x_2)) = x_1 + x_2 POL(reduce(x_1)) = 0 POL(result_f(x_1)) = 0 POL(result_g(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(h(x0, x1))) -> TOP(check_h(redex_h(x0, x1))) TOP(go_up(i(x0))) -> TOP(in_i_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1, x_2)) -> check_f(redex_f(x_1, x_2)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(h(x_1, x_2)) -> check_h(redex_h(x_1, x_2)) reduce(i(x_1)) -> in_i_1(reduce(x_1)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) check_h(redex_h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) check_h(redex_h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_g(x) -> result_g(i(x)) check_g(result_g(x)) -> go_up(x) redex_f(x, x) -> result_f(f(i(x), g(g(x)))) redex_f(x, i(x)) -> result_f(f(x, x)) check_f(result_f(x)) -> go_up(x) The set Q consists of the following terms: reduce(f(x0, x1)) reduce(g(x0)) reduce(h(x0, x1)) redex_f(x0, x1) redex_g(x0) redex_h(x0, x0) check_f(result_f(x0)) check_g(result_g(x0)) check_h(result_h(x0)) check_h(redex_h(x0, x1)) reduce(i(x0)) in_i_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. result_f: 0 result_h: 0 reduce: 0 in_i_1: 0 in_h_2: 0 redex_f: 0 check_f: 0 TOP: 0 in_h_1: 0 g: 0 go_up: 0 result_g: 0 check_h: 0 f: 0 redex_h: 0 i: 1 h: 0 check_g: 0 redex_g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.0(f.0-0(x_1, x_2)) -> check_f.0(redex_f.0-0(x_1, x_2)) reduce.0(f.0-1(x_1, x_2)) -> check_f.0(redex_f.0-1(x_1, x_2)) reduce.0(f.1-0(x_1, x_2)) -> check_f.0(redex_f.1-0(x_1, x_2)) reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) reduce.0(g.0(x_1)) -> check_g.0(redex_g.0(x_1)) reduce.0(g.1(x_1)) -> check_g.0(redex_g.1(x_1)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) redex_g.0(x) -> result_g.1(i.0(x)) redex_g.1(x) -> result_g.1(i.1(x)) check_g.0(result_g.0(x)) -> go_up.0(x) check_g.0(result_g.1(x)) -> go_up.1(x) redex_f.0-0(x, x) -> result_f.0(f.1-0(i.0(x), g.0(g.0(x)))) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) redex_f.0-1(x, i.0(x)) -> result_f.0(f.0-0(x, x)) redex_f.1-1(x, i.1(x)) -> result_f.0(f.1-1(x, x)) check_f.0(result_f.0(x)) -> go_up.0(x) check_f.0(result_f.1(x)) -> go_up.1(x) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: reduce.0(f.0-1(x_1, x_2)) -> check_f.0(redex_f.0-1(x_1, x_2)) redex_g.1(x) -> result_g.1(i.1(x)) check_g.0(result_g.0(x)) -> go_up.0(x) redex_f.0-0(x, x) -> result_f.0(f.1-0(i.0(x), g.0(g.0(x)))) check_f.0(result_f.1(x)) -> go_up.1(x) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_f.0(x_1)) = x_1 POL(check_g.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(f.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(f.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_f.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_f.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_f.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_g.0(x_1)) = x_1 POL(redex_g.1(x_1)) = 1 + x_1 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 POL(result_f.0(x_1)) = x_1 POL(result_f.1(x_1)) = x_1 POL(result_g.0(x_1)) = x_1 POL(result_g.1(x_1)) = x_1 ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(f.0-0(x_1, x_2)) -> check_f.0(redex_f.0-0(x_1, x_2)) reduce.0(f.1-0(x_1, x_2)) -> check_f.0(redex_f.1-0(x_1, x_2)) reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) reduce.0(g.0(x_1)) -> check_g.0(redex_g.0(x_1)) reduce.0(g.1(x_1)) -> check_g.0(redex_g.1(x_1)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) check_g.0(result_g.1(x)) -> go_up.1(x) redex_g.0(x) -> result_g.1(i.0(x)) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) redex_f.1-1(x, i.1(x)) -> result_f.0(f.1-1(x, x)) check_f.0(result_f.0(x)) -> go_up.0(x) redex_f.0-1(x, i.0(x)) -> result_f.0(f.0-0(x, x)) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: reduce.0(f.0-0(x_1, x_2)) -> check_f.0(redex_f.0-0(x_1, x_2)) check_g.0(result_g.1(x)) -> go_up.1(x) redex_f.0-1(x, i.0(x)) -> result_f.0(f.0-0(x, x)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_f.0(x_1)) = x_1 POL(check_g.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(f.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_f.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_f.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_g.0(x_1)) = 1 + x_1 POL(redex_g.1(x_1)) = x_1 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 POL(result_f.0(x_1)) = x_1 POL(result_g.1(x_1)) = 1 + x_1 ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(f.1-0(x_1, x_2)) -> check_f.0(redex_f.1-0(x_1, x_2)) reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) reduce.0(g.0(x_1)) -> check_g.0(redex_g.0(x_1)) reduce.0(g.1(x_1)) -> check_g.0(redex_g.1(x_1)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) redex_g.0(x) -> result_g.1(i.0(x)) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) redex_f.1-1(x, i.1(x)) -> result_f.0(f.1-1(x, x)) check_f.0(result_f.0(x)) -> go_up.0(x) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: reduce.0(g.1(x_1)) -> check_g.0(redex_g.1(x_1)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_f.0(x_1)) = x_1 POL(check_g.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_f.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_g.0(x_1)) = x_1 POL(redex_g.1(x_1)) = x_1 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 POL(result_f.0(x_1)) = x_1 POL(result_g.1(x_1)) = x_1 ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(f.1-0(x_1, x_2)) -> check_f.0(redex_f.1-0(x_1, x_2)) reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) reduce.0(g.0(x_1)) -> check_g.0(redex_g.0(x_1)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) redex_g.0(x) -> result_g.1(i.0(x)) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) redex_f.1-1(x, i.1(x)) -> result_f.0(f.1-1(x, x)) check_f.0(result_f.0(x)) -> go_up.0(x) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: reduce.0(g.0(x_1)) -> check_g.0(redex_g.0(x_1)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_f.0(x_1)) = x_1 POL(check_g.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_f.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_g.0(x_1)) = x_1 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 POL(result_f.0(x_1)) = x_1 POL(result_g.1(x_1)) = x_1 ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(f.1-0(x_1, x_2)) -> check_f.0(redex_f.1-0(x_1, x_2)) reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) redex_g.0(x) -> result_g.1(i.0(x)) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) redex_f.1-1(x, i.1(x)) -> result_f.0(f.1-1(x, x)) check_f.0(result_f.0(x)) -> go_up.0(x) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: reduce.0(f.1-0(x_1, x_2)) -> check_f.0(redex_f.1-0(x_1, x_2)) redex_g.0(x) -> result_g.1(i.0(x)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_f.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(f.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_f.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 POL(result_f.0(x_1)) = x_1 ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) redex_f.1-1(x, i.1(x)) -> result_f.0(f.1-1(x, x)) check_f.0(result_f.0(x)) -> go_up.0(x) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: redex_f.1-1(x, i.1(x)) -> result_f.0(f.1-1(x, x)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_f.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = 1 + x_1 POL(i.1(x_1)) = 1 + x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = 1 + x_1 POL(redex_f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 POL(result_f.0(x_1)) = x_1 ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) check_f.0(result_f.0(x)) -> go_up.0(x) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: reduce.0(f.1-1(x_1, x_2)) -> check_f.0(redex_f.1-1(x_1, x_2)) check_f.0(result_f.0(x)) -> go_up.0(x) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_f.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 POL(result_f.0(x_1)) = 1 + x_1 ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: redex_f.1-1(x, x) -> result_f.0(f.1-0(i.1(x), g.0(g.1(x)))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(go_up.0(x_1)) = x_1 POL(go_up.1(x_1)) = x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP.0(go_up.0(h.0-0(x0, x1))) -> TOP.0(check_h.0(redex_h.0-0(x0, x1))) TOP.0(go_up.0(h.0-1(x0, x1))) -> TOP.0(check_h.0(redex_h.0-1(x0, x1))) TOP.0(go_up.0(h.1-0(x0, x1))) -> TOP.0(check_h.0(redex_h.1-0(x0, x1))) TOP.0(go_up.0(h.1-1(x0, x1))) -> TOP.0(check_h.0(redex_h.1-1(x0, x1))) TOP.0(go_up.1(i.0(x0))) -> TOP.0(in_i_1.0(reduce.0(x0))) TOP.0(go_up.1(i.1(x0))) -> TOP.0(in_i_1.0(reduce.1(x0))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(check_h.0(x_1)) = x_1 POL(go_up.0(x_1)) = 1 + x_1 POL(go_up.1(x_1)) = 1 + x_1 POL(h.0-0(x_1, x_2)) = x_1 + x_2 POL(h.0-1(x_1, x_2)) = x_1 + x_2 POL(h.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1-1(x_1, x_2)) = x_1 + x_2 POL(i.0(x_1)) = x_1 POL(i.1(x_1)) = x_1 POL(in_h_1.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_1.0-1(x_1, x_2)) = x_1 + x_2 POL(in_h_2.0-0(x_1, x_2)) = x_1 + x_2 POL(in_h_2.1-0(x_1, x_2)) = x_1 + x_2 POL(in_i_1.0(x_1)) = x_1 POL(redex_h.0-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.0-1(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-0(x_1, x_2)) = x_1 + x_2 POL(redex_h.1-1(x_1, x_2)) = x_1 + x_2 POL(reduce.0(x_1)) = x_1 POL(reduce.1(x_1)) = x_1 ---------------------------------------- (64) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: reduce.1(i.0(x_1)) -> in_i_1.0(reduce.0(x_1)) reduce.1(i.1(x_1)) -> in_i_1.0(reduce.1(x_1)) in_i_1.0(go_up.0(x_1)) -> go_up.1(i.0(x_1)) in_i_1.0(go_up.1(x_1)) -> go_up.1(i.1(x_1)) reduce.0(h.0-0(x_1, x_2)) -> check_h.0(redex_h.0-0(x_1, x_2)) reduce.0(h.0-1(x_1, x_2)) -> check_h.0(redex_h.0-1(x_1, x_2)) reduce.0(h.1-0(x_1, x_2)) -> check_h.0(redex_h.1-0(x_1, x_2)) reduce.0(h.1-1(x_1, x_2)) -> check_h.0(redex_h.1-1(x_1, x_2)) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_1.0-1(reduce.1(x_1), x_2) check_h.0(redex_h.1-1(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.1(x_2)) in_h_2.1-0(x_1, go_up.0(x_2)) -> go_up.0(h.1-0(x_1, x_2)) in_h_2.1-0(x_1, go_up.1(x_2)) -> go_up.0(h.1-1(x_1, x_2)) in_h_1.0-1(go_up.0(x_1), x_2) -> go_up.0(h.0-1(x_1, x_2)) in_h_1.0-1(go_up.1(x_1), x_2) -> go_up.0(h.1-1(x_1, x_2)) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_1.0-0(reduce.1(x_1), x_2) check_h.0(redex_h.1-0(x_1, x_2)) -> in_h_2.1-0(x_1, reduce.0(x_2)) in_h_1.0-0(go_up.0(x_1), x_2) -> go_up.0(h.0-0(x_1, x_2)) in_h_1.0-0(go_up.1(x_1), x_2) -> go_up.0(h.1-0(x_1, x_2)) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_1.0-1(reduce.0(x_1), x_2) check_h.0(redex_h.0-1(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.1(x_2)) in_h_2.0-0(x_1, go_up.0(x_2)) -> go_up.0(h.0-0(x_1, x_2)) in_h_2.0-0(x_1, go_up.1(x_2)) -> go_up.0(h.0-1(x_1, x_2)) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_1.0-0(reduce.0(x_1), x_2) check_h.0(redex_h.0-0(x_1, x_2)) -> in_h_2.0-0(x_1, reduce.0(x_2)) The set Q consists of the following terms: reduce.0(f.0-0(x0, x1)) reduce.0(f.0-1(x0, x1)) reduce.0(f.1-0(x0, x1)) reduce.0(f.1-1(x0, x1)) reduce.0(g.0(x0)) reduce.0(g.1(x0)) reduce.0(h.0-0(x0, x1)) reduce.0(h.0-1(x0, x1)) reduce.0(h.1-0(x0, x1)) reduce.0(h.1-1(x0, x1)) redex_f.0-0(x0, x1) redex_f.0-1(x0, x1) redex_f.1-0(x0, x1) redex_f.1-1(x0, x1) redex_g.0(x0) redex_g.1(x0) redex_h.0-0(x0, x0) redex_h.1-1(x0, x0) check_f.0(result_f.0(x0)) check_f.0(result_f.1(x0)) check_g.0(result_g.0(x0)) check_g.0(result_g.1(x0)) check_h.0(result_h.0(x0)) check_h.0(result_h.1(x0)) check_h.0(redex_h.0-0(x0, x1)) check_h.0(redex_h.0-1(x0, x1)) check_h.0(redex_h.1-0(x0, x1)) check_h.0(redex_h.1-1(x0, x1)) reduce.1(i.0(x0)) reduce.1(i.1(x0)) in_i_1.0(go_up.0(x0)) in_i_1.0(go_up.1(x0)) in_h_1.0-0(go_up.0(x0), x1) in_h_1.0-1(go_up.0(x0), x1) in_h_1.0-0(go_up.1(x0), x1) in_h_1.0-1(go_up.1(x0), x1) in_h_2.0-0(x0, go_up.0(x1)) in_h_2.0-0(x0, go_up.1(x1)) in_h_2.1-0(x0, go_up.0(x1)) in_h_2.1-0(x0, go_up.1(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (66) YES