/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Trivial-Transformation [SOUND, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) NonTerminationLoopProof [COMPLETE, 0 ms] (10) NO (11) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (12) QTRS (13) DependencyPairsProof [EQUIVALENT, 0 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) AND (17) QDP (18) UsableRulesProof [EQUIVALENT, 0 ms] (19) QDP (20) QReductionProof [EQUIVALENT, 0 ms] (21) QDP (22) MRRProof [EQUIVALENT, 16 ms] (23) QDP (24) MRRProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) MRRProof [EQUIVALENT, 0 ms] (29) QDP (30) UsableRulesReductionPairsProof [EQUIVALENT, 7 ms] (31) QDP (32) DependencyGraphProof [EQUIVALENT, 0 ms] (33) TRUE (34) QDP (35) UsableRulesProof [EQUIVALENT, 0 ms] (36) QDP (37) QReductionProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: p(x, y, x) -> q(p(y, x, y)) q(q(x)) -> c Outermost Strategy. ---------------------------------------- (1) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: p(x, y, x) -> q(p(y, x, y)) q(q(x)) -> c Q is empty. ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: P(x, y, x) -> Q(p(y, x, y)) P(x, y, x) -> P(y, x, y) The TRS R consists of the following rules: p(x, y, x) -> q(p(y, x, y)) q(q(x)) -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: P(x, y, x) -> P(y, x, y) The TRS R consists of the following rules: p(x, y, x) -> q(p(y, x, y)) q(q(x)) -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: p(x, y, x) -> q(p(y, x, y)) q(q(x)) -> c Used ordering: POLO with Polynomial interpretation [POLO]: POL(P(x_1, x_2, x_3)) = x_1 + 2*x_2 + x_3 ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: P(x, y, x) -> P(y, x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = P(x, y, x) evaluates to t =P(y, x, y) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [x / y, y / x] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from P(x, y, x) to P(y, x, y). ---------------------------------------- (10) NO ---------------------------------------- (11) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (12) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) redex_q(q(x)) -> result_q(c) check_p(result_p(x)) -> go_up(x) check_q(result_q(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) ---------------------------------------- (13) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) REDUCE(p(x_1, x_2, x_3)) -> REDEX_P(x_1, x_2, x_3) REDUCE(q(x_1)) -> CHECK_Q(redex_q(x_1)) REDUCE(q(x_1)) -> REDEX_Q(x_1) CHECK_P(redex_p(x_1, x_2, x_3)) -> IN_P_1(reduce(x_1), x_2, x_3) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) CHECK_P(redex_p(x_1, x_2, x_3)) -> IN_P_2(x_1, reduce(x_2), x_3) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_P(redex_p(x_1, x_2, x_3)) -> IN_P_3(x_1, x_2, reduce(x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) CHECK_Q(redex_q(x_1)) -> IN_Q_1(reduce(x_1)) CHECK_Q(redex_q(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) redex_q(q(x)) -> result_q(c) check_p(result_p(x)) -> go_up(x) check_q(result_q(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes. ---------------------------------------- (16) Complex Obligation (AND) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) REDUCE(q(x_1)) -> CHECK_Q(redex_q(x_1)) CHECK_Q(redex_q(x_1)) -> REDUCE(x_1) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) redex_q(q(x)) -> result_q(c) check_p(result_p(x)) -> go_up(x) check_q(result_q(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) REDUCE(q(x_1)) -> CHECK_Q(redex_q(x_1)) CHECK_Q(redex_q(x_1)) -> REDUCE(x_1) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_q(q(x)) -> result_q(c) redex_p(x, y, x) -> result_p(q(p(y, x, y))) The set Q consists of the following terms: top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) REDUCE(q(x_1)) -> CHECK_Q(redex_q(x_1)) CHECK_Q(redex_q(x_1)) -> REDUCE(x_1) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_q(q(x)) -> result_q(c) redex_p(x, y, x) -> result_p(q(p(y, x, y))) The set Q consists of the following terms: redex_p(x0, x1, x0) redex_q(q(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: redex_q(q(x)) -> result_q(c) Used ordering: Polynomial interpretation [POLO]: POL(CHECK_P(x_1)) = 1 + 2*x_1 POL(CHECK_Q(x_1)) = x_1 POL(REDUCE(x_1)) = 1 + 2*x_1 POL(c) = 0 POL(p(x_1, x_2, x_3)) = x_1 + 2*x_2 + x_3 POL(q(x_1)) = x_1 POL(redex_p(x_1, x_2, x_3)) = x_1 + 2*x_2 + x_3 POL(redex_q(x_1)) = 1 + 2*x_1 POL(result_p(x_1)) = x_1 POL(result_q(x_1)) = x_1 ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) REDUCE(q(x_1)) -> CHECK_Q(redex_q(x_1)) CHECK_Q(redex_q(x_1)) -> REDUCE(x_1) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_p(x, y, x) -> result_p(q(p(y, x, y))) The set Q consists of the following terms: redex_p(x0, x1, x0) redex_q(q(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: REDUCE(q(x_1)) -> CHECK_Q(redex_q(x_1)) CHECK_Q(redex_q(x_1)) -> REDUCE(x_1) Used ordering: Polynomial interpretation [POLO]: POL(CHECK_P(x_1)) = 2*x_1 POL(CHECK_Q(x_1)) = 1 + 2*x_1 POL(REDUCE(x_1)) = 2 + 2*x_1 POL(p(x_1, x_2, x_3)) = x_1 + 2*x_2 + x_3 POL(q(x_1)) = 1 + x_1 POL(redex_p(x_1, x_2, x_3)) = 1 + x_1 + 2*x_2 + x_3 POL(redex_q(x_1)) = 1 + x_1 POL(result_p(x_1)) = x_1 ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_p(x, y, x) -> result_p(q(p(y, x, y))) The set Q consists of the following terms: redex_p(x0, x1, x0) redex_q(q(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. redex_q(q(x0)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_p(x, y, x) -> result_p(q(p(y, x, y))) The set Q consists of the following terms: redex_p(x0, x1, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: redex_p(x, y, x) -> result_p(q(p(y, x, y))) Used ordering: Polynomial interpretation [POLO]: POL(CHECK_P(x_1)) = 2*x_1 POL(REDUCE(x_1)) = 2 + 2*x_1 POL(p(x_1, x_2, x_3)) = x_1 + 2*x_2 + x_3 POL(q(x_1)) = x_1 POL(redex_p(x_1, x_2, x_3)) = 1 + x_1 + 2*x_2 + x_3 POL(result_p(x_1)) = x_1 ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) R is empty. The set Q consists of the following terms: redex_p(x0, x1, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(p(x_1, x_2, x_3)) -> CHECK_P(redex_p(x_1, x_2, x_3)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_P(x_1)) = x_1 POL(REDUCE(x_1)) = 2*x_1 POL(p(x_1, x_2, x_3)) = 2*x_1 + 2*x_2 + 2*x_3 POL(redex_p(x_1, x_2, x_3)) = 2*x_1 + 2*x_2 + 2*x_3 ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_1) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_P(redex_p(x_1, x_2, x_3)) -> REDUCE(x_3) R is empty. The set Q consists of the following terms: redex_p(x0, x1, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. ---------------------------------------- (33) TRUE ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) redex_q(q(x)) -> result_q(c) check_p(result_p(x)) -> go_up(x) check_q(result_q(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_q(q(x)) -> result_q(c) check_q(result_q(x)) -> go_up(x) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) check_p(result_p(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) The set Q consists of the following terms: top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_q(q(x)) -> result_q(c) check_q(result_q(x)) -> go_up(x) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) check_p(result_p(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) The set Q consists of the following terms: reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(p(x0, x1, x2))) -> TOP(check_p(redex_p(x0, x1, x2))),TOP(go_up(p(x0, x1, x2))) -> TOP(check_p(redex_p(x0, x1, x2)))) (TOP(go_up(q(x0))) -> TOP(check_q(redex_q(x0))),TOP(go_up(q(x0))) -> TOP(check_q(redex_q(x0)))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(p(x0, x1, x2))) -> TOP(check_p(redex_p(x0, x1, x2))) TOP(go_up(q(x0))) -> TOP(check_q(redex_q(x0))) The TRS R consists of the following rules: reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_q(q(x)) -> result_q(c) check_q(result_q(x)) -> go_up(x) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) check_p(result_p(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) The set Q consists of the following terms: reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_q(q(x)) -> result_q(c) check_q(result_q(x)) -> go_up(x) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) check_p(result_p(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) The set Q consists of the following terms: top(go_up(x0)) reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(p(x_1, x_2, x_3)) -> check_p(redex_p(x_1, x_2, x_3)) reduce(q(x_1)) -> check_q(redex_q(x_1)) redex_q(q(x)) -> result_q(c) check_q(result_q(x)) -> go_up(x) check_q(redex_q(x_1)) -> in_q_1(reduce(x_1)) in_q_1(go_up(x_1)) -> go_up(q(x_1)) redex_p(x, y, x) -> result_p(q(p(y, x, y))) check_p(result_p(x)) -> go_up(x) check_p(redex_p(x_1, x_2, x_3)) -> in_p_1(reduce(x_1), x_2, x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_2(x_1, reduce(x_2), x_3) check_p(redex_p(x_1, x_2, x_3)) -> in_p_3(x_1, x_2, reduce(x_3)) in_p_3(x_1, x_2, go_up(x_3)) -> go_up(p(x_1, x_2, x_3)) in_p_2(x_1, go_up(x_2), x_3) -> go_up(p(x_1, x_2, x_3)) in_p_1(go_up(x_1), x_2, x_3) -> go_up(p(x_1, x_2, x_3)) The set Q consists of the following terms: reduce(p(x0, x1, x2)) reduce(q(x0)) redex_p(x0, x1, x0) redex_q(q(x0)) check_p(result_p(x0)) check_q(result_q(x0)) check_p(redex_p(x0, x1, x2)) check_q(redex_q(x0)) in_p_1(go_up(x0), x1, x2) in_p_2(x0, go_up(x1), x2) in_p_3(x0, x1, go_up(x2)) in_q_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains.