/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could be proven: (0) OTRS (1) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (2) QTRS (3) AAECC Innermost [EQUIVALENT, 4 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QReductionProof [EQUIVALENT, 0 ms] (13) QDP (14) QDPSizeChangeProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) TransformationProof [EQUIVALENT, 0 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) QDP (25) UsableRulesProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 0 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 0 ms] (36) QDP (37) QDPOrderProof [EQUIVALENT, 8 ms] (38) QDP (39) DependencyGraphProof [EQUIVALENT, 0 ms] (40) QDP (41) QDPOrderProof [EQUIVALENT, 7 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 48 ms] (44) QDP (45) PisEmptyProof [EQUIVALENT, 0 ms] (46) YES ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: a -> f(a) g(f(x)) -> f(g(g(x))) f(f(x)) -> b Outermost Strategy. ---------------------------------------- (1) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) top(up(x)) -> top(down(x)) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) Q is empty. ---------------------------------------- (3) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) top(up(x)) -> top(down(x)) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) top(up(x0)) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(f(a)) -> F_FLAT(down(a)) DOWN(f(a)) -> DOWN(a) DOWN(f(g(y4))) -> F_FLAT(down(g(y4))) DOWN(f(g(y4))) -> DOWN(g(y4)) DOWN(f(b)) -> F_FLAT(down(b)) DOWN(f(b)) -> DOWN(b) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) DOWN(g(a)) -> G_FLAT(down(a)) DOWN(g(a)) -> DOWN(a) DOWN(g(g(y7))) -> G_FLAT(down(g(y7))) DOWN(g(g(y7))) -> DOWN(g(y7)) DOWN(g(b)) -> G_FLAT(down(b)) DOWN(g(b)) -> DOWN(b) DOWN(g(fresh_constant)) -> G_FLAT(down(fresh_constant)) DOWN(g(fresh_constant)) -> DOWN(fresh_constant) The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) top(up(x)) -> top(down(x)) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) top(up(x0)) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 16 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(g(y7))) -> DOWN(g(y7)) The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) top(up(x)) -> top(down(x)) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) top(up(x0)) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(g(y7))) -> DOWN(g(y7)) R is empty. The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) top(up(x0)) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(a) down(g(f(x0))) down(f(f(x0))) top(up(x0)) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(g(y7))) -> DOWN(g(y7)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(g(g(y7))) -> DOWN(g(y7)) The graph contains the following edges 1 > 1 ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) top(up(x)) -> top(down(x)) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) top(up(x0)) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) top(up(x0)) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(up(x)) -> TOP(down(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(a)) -> TOP(up(f(a))),TOP(up(a)) -> TOP(up(f(a)))) (TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))),TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0)))))) (TOP(up(f(f(x0)))) -> TOP(up(b)),TOP(up(f(f(x0)))) -> TOP(up(b))) (TOP(up(f(a))) -> TOP(f_flat(down(a))),TOP(up(f(a))) -> TOP(f_flat(down(a)))) (TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))),TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0))))) (TOP(up(f(b))) -> TOP(f_flat(down(b))),TOP(up(f(b))) -> TOP(f_flat(down(b)))) (TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))),TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant)))) (TOP(up(g(a))) -> TOP(g_flat(down(a))),TOP(up(g(a))) -> TOP(g_flat(down(a)))) (TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))),TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0))))) (TOP(up(g(b))) -> TOP(g_flat(down(b))),TOP(up(g(b))) -> TOP(g_flat(down(b)))) (TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))),TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant)))) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(a)) -> TOP(up(f(a))) TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(f(f(x0)))) -> TOP(up(b)) TOP(up(f(a))) -> TOP(f_flat(down(a))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(b))) -> TOP(f_flat(down(b))) TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))) TOP(up(g(a))) -> TOP(g_flat(down(a))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(g(b))) -> TOP(g_flat(down(b))) TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))) The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(f(a))) -> TOP(f_flat(down(a))) TOP(up(g(a))) -> TOP(g_flat(down(a))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) The TRS R consists of the following rules: down(a) -> up(f(a)) down(g(f(x))) -> up(f(g(g(x)))) down(f(f(x))) -> up(b) down(f(a)) -> f_flat(down(a)) down(f(g(y4))) -> f_flat(down(g(y4))) down(f(b)) -> f_flat(down(b)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(f(a))) -> TOP(f_flat(down(a))) TOP(up(g(a))) -> TOP(g_flat(down(a))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(a))) -> TOP(f_flat(down(a))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(a))) -> TOP(f_flat(up(f(a)))),TOP(up(f(a))) -> TOP(f_flat(up(f(a))))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(g(a))) -> TOP(g_flat(down(a))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(a))) -> TOP(f_flat(up(f(a)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(a))) -> TOP(g_flat(down(a))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(a))) -> TOP(g_flat(up(f(a)))),TOP(up(g(a))) -> TOP(g_flat(up(f(a))))) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(f(a))) -> TOP(f_flat(up(f(a)))) TOP(up(g(a))) -> TOP(g_flat(up(f(a)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(a))) -> TOP(f_flat(up(f(a)))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(a))) -> TOP(up(f(f(a)))),TOP(up(f(a))) -> TOP(up(f(f(a))))) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(g(a))) -> TOP(g_flat(up(f(a)))) TOP(up(f(a))) -> TOP(up(f(f(a)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(g(a))) -> TOP(g_flat(up(f(a)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(a))) -> TOP(g_flat(up(f(a)))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(g(a))) -> TOP(up(g(f(a)))),TOP(up(g(a))) -> TOP(up(g(f(a))))) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(g(a))) -> TOP(up(g(f(a)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(g(f(x0)))) -> TOP(up(f(g(g(x0))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(a) = 0 POL(b) = 0 POL(down(x_1)) = 0 POL(f(x_1)) = 0 POL(f_flat(x_1)) = 0 POL(fresh_constant) = 0 POL(g(x_1)) = 1 POL(g_flat(x_1)) = 1 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) TOP(up(g(a))) -> TOP(up(g(f(a)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(g(g(x0)))) -> TOP(g_flat(down(g(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(a) = 1 POL(b) = 0 POL(down(x_1)) = x_1 POL(f(x_1)) = 0 POL(f_flat(x_1)) = 1 POL(fresh_constant) = 0 POL(g(x_1)) = 1 + x_1 POL(g_flat(x_1)) = 1 + x_1 POL(up(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( a ) = [[1], [0]] >>> <<< M( b ) = [[1], [0]] >>> <<< M( down_1(x_1) ) = [[1], [0]] + [[1, 1], [1, 0]] * x_1 >>> <<< M( f_1(x_1) ) = [[0], [1]] + [[0, 0], [1, 0]] * x_1 >>> <<< M( fresh_constant ) = [[0], [0]] >>> <<< M( up_1(x_1) ) = [[0], [1]] + [[0, 1], [1, 0]] * x_1 >>> <<< M( f_flat_1(x_1) ) = [[0], [1]] + [[0, 1], [0, 0]] * x_1 >>> <<< M( g_1(x_1) ) = [[1], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( g_flat_1(x_1) ) = [[0], [1]] + [[1, 0], [0, 1]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[1, 0]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) ---------------------------------------- (44) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: down(g(f(x))) -> up(f(g(g(x)))) down(g(a)) -> g_flat(down(a)) down(g(g(y7))) -> g_flat(down(g(y7))) down(g(b)) -> g_flat(down(b)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(a) -> up(f(a)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(a) down(g(f(x0))) down(f(f(x0))) down(f(a)) down(f(g(x0))) down(f(b)) down(f(fresh_constant)) down(g(a)) down(g(g(x0))) down(g(b)) down(g(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (46) YES