/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Trivial-Transformation [SOUND, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 50 ms] (4) QTRS (5) AAECC Innermost [EQUIVALENT, 0 ms] (6) QTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QReductionProof [EQUIVALENT, 0 ms] (14) QDP (15) TransformationProof [EQUIVALENT, 0 ms] (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) NonTerminationLoopProof [COMPLETE, 0 ms] (22) NO (23) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (24) QTRS (25) QTRSRRRProof [EQUIVALENT, 80 ms] (26) QTRS (27) DependencyPairsProof [EQUIVALENT, 0 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) AND (31) QDP (32) UsableRulesProof [EQUIVALENT, 0 ms] (33) QDP (34) QReductionProof [EQUIVALENT, 0 ms] (35) QDP (36) UsableRulesReductionPairsProof [EQUIVALENT, 8 ms] (37) QDP (38) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (39) QDP (40) DependencyGraphProof [EQUIVALENT, 0 ms] (41) TRUE (42) QDP (43) UsableRulesProof [EQUIVALENT, 0 ms] (44) QDP (45) QReductionProof [EQUIVALENT, 0 ms] (46) QDP (47) TransformationProof [SOUND, 0 ms] (48) QDP (49) TransformationProof [EQUIVALENT, 0 ms] (50) QDP (51) TransformationProof [EQUIVALENT, 0 ms] (52) QDP (53) QDPOrderProof [EQUIVALENT, 0 ms] (54) QDP (55) UsableRulesProof [EQUIVALENT, 0 ms] (56) QDP (57) QReductionProof [EQUIVALENT, 0 ms] (58) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: f(h(x, x)) -> f(i(x)) f(i(x)) -> a i(x) -> h(x, x) Outermost Strategy. ---------------------------------------- (1) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(h(x, x)) -> f(i(x)) f(i(x)) -> a i(x) -> h(x, x) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 2 POL(f(x_1)) = 1 + 2*x_1 POL(h(x_1, x_2)) = 1 + x_1 + x_2 POL(i(x_1)) = 1 + 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f(i(x)) -> a ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(h(x, x)) -> f(i(x)) i(x) -> h(x, x) Q is empty. ---------------------------------------- (5) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is i(x) -> h(x, x) The TRS R 2 is f(h(x, x)) -> f(i(x)) The signature Sigma is {f_1} ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(h(x, x)) -> f(i(x)) i(x) -> h(x, x) The set Q consists of the following terms: f(h(x0, x0)) i(x0) ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(x, x)) -> F(i(x)) F(h(x, x)) -> I(x) The TRS R consists of the following rules: f(h(x, x)) -> f(i(x)) i(x) -> h(x, x) The set Q consists of the following terms: f(h(x0, x0)) i(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(x, x)) -> F(i(x)) The TRS R consists of the following rules: f(h(x, x)) -> f(i(x)) i(x) -> h(x, x) The set Q consists of the following terms: f(h(x0, x0)) i(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(x, x)) -> F(i(x)) The TRS R consists of the following rules: i(x) -> h(x, x) The set Q consists of the following terms: f(h(x0, x0)) i(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(h(x0, x0)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(x, x)) -> F(i(x)) The TRS R consists of the following rules: i(x) -> h(x, x) The set Q consists of the following terms: i(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(h(x, x)) -> F(i(x)) at position [0] we obtained the following new rules [LPAR04]: (F(h(x, x)) -> F(h(x, x)),F(h(x, x)) -> F(h(x, x))) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(x, x)) -> F(h(x, x)) The TRS R consists of the following rules: i(x) -> h(x, x) The set Q consists of the following terms: i(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(x, x)) -> F(h(x, x)) R is empty. The set Q consists of the following terms: i(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. i(x0) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(x, x)) -> F(h(x, x)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = F(h(x, x)) evaluates to t =F(h(x, x)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from F(h(x, x)) to F(h(x, x)). ---------------------------------------- (22) NO ---------------------------------------- (23) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (24) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) redex_f(h(x, x)) -> result_f(f(i(x))) redex_f(i(x)) -> result_f(a) redex_i(x) -> result_i(h(x, x)) check_f(result_f(x)) -> go_up(x) check_i(result_i(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_i(redex_i(x_1)) -> in_i_1(reduce(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) ---------------------------------------- (25) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a) = 0 POL(check_f(x_1)) = x_1 POL(check_i(x_1)) = x_1 POL(f(x_1)) = 1 + x_1 POL(go_up(x_1)) = x_1 POL(h(x_1, x_2)) = x_1 + x_2 POL(i(x_1)) = 2*x_1 POL(in_f_1(x_1)) = 1 + x_1 POL(in_h_1(x_1, x_2)) = x_1 + x_2 POL(in_h_2(x_1, x_2)) = x_1 + x_2 POL(in_i_1(x_1)) = 2*x_1 POL(redex_f(x_1)) = 1 + x_1 POL(redex_i(x_1)) = 2*x_1 POL(reduce(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_i(x_1)) = x_1 POL(top(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: redex_f(i(x)) -> result_f(a) ---------------------------------------- (26) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) redex_f(h(x, x)) -> result_f(f(i(x))) redex_i(x) -> result_i(h(x, x)) check_f(result_f(x)) -> go_up(x) check_i(result_i(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_i(redex_i(x_1)) -> in_i_1(reduce(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) ---------------------------------------- (27) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(f(x_1)) -> REDEX_F(x_1) REDUCE(i(x_1)) -> CHECK_I(redex_i(x_1)) REDUCE(i(x_1)) -> REDEX_I(x_1) CHECK_F(redex_f(x_1)) -> IN_F_1(reduce(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) CHECK_I(redex_i(x_1)) -> IN_I_1(reduce(x_1)) CHECK_I(redex_i(x_1)) -> REDUCE(x_1) REDUCE(h(x_1, x_2)) -> IN_H_1(reduce(x_1), x_2) REDUCE(h(x_1, x_2)) -> REDUCE(x_1) REDUCE(h(x_1, x_2)) -> IN_H_2(x_1, reduce(x_2)) REDUCE(h(x_1, x_2)) -> REDUCE(x_2) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) redex_f(h(x, x)) -> result_f(f(i(x))) redex_i(x) -> result_i(h(x, x)) check_f(result_f(x)) -> go_up(x) check_i(result_i(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_i(redex_i(x_1)) -> in_i_1(reduce(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes. ---------------------------------------- (30) Complex Obligation (AND) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(h(x_1, x_2)) -> REDUCE(x_1) REDUCE(h(x_1, x_2)) -> REDUCE(x_2) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) redex_f(h(x, x)) -> result_f(f(i(x))) redex_i(x) -> result_i(h(x, x)) check_f(result_f(x)) -> go_up(x) check_i(result_i(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_i(redex_i(x_1)) -> in_i_1(reduce(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(h(x_1, x_2)) -> REDUCE(x_1) REDUCE(h(x_1, x_2)) -> REDUCE(x_2) The TRS R consists of the following rules: redex_f(h(x, x)) -> result_f(f(i(x))) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(h(x_1, x_2)) -> REDUCE(x_1) REDUCE(h(x_1, x_2)) -> REDUCE(x_2) The TRS R consists of the following rules: redex_f(h(x, x)) -> result_f(f(i(x))) The set Q consists of the following terms: redex_f(h(x0, x0)) redex_f(i(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(h(x_1, x_2)) -> REDUCE(x_1) REDUCE(h(x_1, x_2)) -> REDUCE(x_2) The following rules are removed from R: redex_f(h(x, x)) -> result_f(f(i(x))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = x_1 POL(REDUCE(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(h(x_1, x_2)) = 2*x_1 + x_2 POL(i(x_1)) = x_1 POL(redex_f(x_1)) = 2*x_1 POL(result_f(x_1)) = 2*x_1 ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) R is empty. The set Q consists of the following terms: redex_f(h(x0, x0)) redex_f(i(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = 2*x_1 POL(REDUCE(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(redex_f(x_1)) = x_1 ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_f(h(x0, x0)) redex_f(i(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (41) TRUE ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) redex_f(h(x, x)) -> result_f(f(i(x))) redex_i(x) -> result_i(h(x, x)) check_f(result_f(x)) -> go_up(x) check_i(result_i(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_i(redex_i(x_1)) -> in_i_1(reduce(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_i_1(go_up(x_1)) -> go_up(i(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) in_i_1(go_up(x0)) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) TransformationProof (SOUND) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))),TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0)))) (TOP(go_up(i(x0))) -> TOP(check_i(redex_i(x0))),TOP(go_up(i(x0))) -> TOP(check_i(redex_i(x0)))) (TOP(go_up(h(x0, x1))) -> TOP(in_h_1(reduce(x0), x1)),TOP(go_up(h(x0, x1))) -> TOP(in_h_1(reduce(x0), x1))) (TOP(go_up(h(x0, x1))) -> TOP(in_h_2(x0, reduce(x1))),TOP(go_up(h(x0, x1))) -> TOP(in_h_2(x0, reduce(x1)))) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(i(x0))) -> TOP(check_i(redex_i(x0))) TOP(go_up(h(x0, x1))) -> TOP(in_h_1(reduce(x0), x1)) TOP(go_up(h(x0, x1))) -> TOP(in_h_2(x0, reduce(x1))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(i(x0))) -> TOP(check_i(redex_i(x0))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(go_up(i(x0))) -> TOP(check_i(result_i(h(x0, x0)))),TOP(go_up(i(x0))) -> TOP(check_i(result_i(h(x0, x0))))) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(h(x0, x1))) -> TOP(in_h_1(reduce(x0), x1)) TOP(go_up(h(x0, x1))) -> TOP(in_h_2(x0, reduce(x1))) TOP(go_up(i(x0))) -> TOP(check_i(result_i(h(x0, x0)))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(i(x0))) -> TOP(check_i(result_i(h(x0, x0)))) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(i(x0))) -> TOP(go_up(h(x0, x0))),TOP(go_up(i(x0))) -> TOP(go_up(h(x0, x0)))) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(h(x0, x1))) -> TOP(in_h_1(reduce(x0), x1)) TOP(go_up(h(x0, x1))) -> TOP(in_h_2(x0, reduce(x1))) TOP(go_up(i(x0))) -> TOP(go_up(h(x0, x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(i(x0))) -> TOP(go_up(h(x0, x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(check_f(x_1)) = x_1 POL(check_i(x_1)) = 1 POL(f(x_1)) = 0 POL(go_up(x_1)) = x_1 POL(h(x_1, x_2)) = 0 POL(i(x_1)) = 1 + x_1 POL(in_f_1(x_1)) = 0 POL(in_h_1(x_1, x_2)) = 0 POL(in_h_2(x_1, x_2)) = 0 POL(redex_f(x_1)) = 0 POL(redex_i(x_1)) = 1 + x_1 POL(reduce(x_1)) = 0 POL(result_f(x_1)) = x_1 POL(result_i(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(h(x0, x1))) -> TOP(in_h_1(reduce(x0), x1)) TOP(go_up(h(x0, x1))) -> TOP(in_h_2(x0, reduce(x1))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) in_i_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) in_i_1(go_up(x0)) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(i(x_1)) -> check_i(redex_i(x_1)) reduce(h(x_1, x_2)) -> in_h_1(reduce(x_1), x_2) reduce(h(x_1, x_2)) -> in_h_2(x_1, reduce(x_2)) in_h_2(x_1, go_up(x_2)) -> go_up(h(x_1, x_2)) in_h_1(go_up(x_1), x_2) -> go_up(h(x_1, x_2)) redex_i(x) -> result_i(h(x, x)) check_i(result_i(x)) -> go_up(x) redex_f(h(x, x)) -> result_f(f(i(x))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(i(x0)) redex_f(h(x0, x0)) redex_f(i(x0)) redex_i(x0) check_f(result_f(x0)) check_i(result_i(x0)) check_f(redex_f(x0)) reduce(h(x0, x1)) in_f_1(go_up(x0)) in_h_1(go_up(x0), x1) in_h_2(x0, go_up(x1)) We have to consider all minimal (P,Q,R)-chains.