/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (2) QTRS (3) AAECC Innermost [EQUIVALENT, 0 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QReductionProof [EQUIVALENT, 0 ms] (13) QDP (14) QDPSizeChangeProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) TransformationProof [EQUIVALENT, 0 ms] (29) QDP (30) DependencyGraphProof [EQUIVALENT, 0 ms] (31) QDP (32) TransformationProof [EQUIVALENT, 0 ms] (33) QDP (34) TransformationProof [EQUIVALENT, 0 ms] (35) QDP (36) QDPOrderProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPOrderProof [EQUIVALENT, 6 ms] (39) QDP (40) QDPOrderProof [EQUIVALENT, 49 ms] (41) QDP (42) MNOCProof [EQUIVALENT, 0 ms] (43) QDP (44) SplitQDPProof [EQUIVALENT, 0 ms] (45) AND (46) QDP (47) SemLabProof [SOUND, 0 ms] (48) QDP (49) DependencyGraphProof [EQUIVALENT, 0 ms] (50) QDP (51) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (52) QDP (53) PisEmptyProof [SOUND, 0 ms] (54) TRUE (55) QDP (56) QReductionProof [EQUIVALENT, 0 ms] (57) QDP (58) MNOCProof [EQUIVALENT, 0 ms] (59) QDP (60) SplitQDPProof [EQUIVALENT, 0 ms] (61) AND (62) QDP (63) SemLabProof [SOUND, 0 ms] (64) QDP (65) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (66) QDP (67) MRRProof [EQUIVALENT, 0 ms] (68) QDP (69) QDPOrderProof [EQUIVALENT, 0 ms] (70) QDP (71) PisEmptyProof [SOUND, 0 ms] (72) TRUE (73) QDP (74) QReductionProof [EQUIVALENT, 0 ms] (75) QDP (76) Trivial-Transformation [SOUND, 0 ms] (77) QTRS (78) Overlay + Local Confluence [EQUIVALENT, 0 ms] (79) QTRS (80) DependencyPairsProof [EQUIVALENT, 0 ms] (81) QDP (82) DependencyGraphProof [EQUIVALENT, 0 ms] (83) QDP (84) UsableRulesProof [EQUIVALENT, 0 ms] (85) QDP (86) QReductionProof [EQUIVALENT, 0 ms] (87) QDP (88) NonTerminationLoopProof [COMPLETE, 0 ms] (89) NO (90) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (91) QTRS (92) DependencyPairsProof [EQUIVALENT, 0 ms] (93) QDP (94) DependencyGraphProof [EQUIVALENT, 0 ms] (95) AND (96) QDP (97) UsableRulesProof [EQUIVALENT, 0 ms] (98) QDP (99) QReductionProof [EQUIVALENT, 0 ms] (100) QDP (101) UsableRulesReductionPairsProof [EQUIVALENT, 5 ms] (102) QDP (103) DependencyGraphProof [EQUIVALENT, 0 ms] (104) TRUE (105) QDP (106) UsableRulesProof [EQUIVALENT, 0 ms] (107) QDP (108) QReductionProof [EQUIVALENT, 0 ms] (109) QDP (110) QDPSizeChangeProof [EQUIVALENT, 0 ms] (111) YES (112) QDP (113) UsableRulesProof [EQUIVALENT, 0 ms] (114) QDP (115) QReductionProof [EQUIVALENT, 0 ms] (116) QDP (117) TransformationProof [EQUIVALENT, 0 ms] (118) QDP (119) QDPOrderProof [EQUIVALENT, 8 ms] (120) QDP (121) QDPOrderProof [EQUIVALENT, 24 ms] (122) QDP (123) UsableRulesProof [EQUIVALENT, 0 ms] (124) QDP (125) QReductionProof [EQUIVALENT, 0 ms] (126) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: c -> f(g(c)) f(g(X)) -> g(X) Outermost Strategy. ---------------------------------------- (1) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) top(up(x)) -> top(down(x)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) Q is empty. ---------------------------------------- (3) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) top(up(x)) -> top(down(x)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(g(y1)) -> G_FLAT(down(y1)) DOWN(g(y1)) -> DOWN(y1) DOWN(f(c)) -> F_FLAT(down(c)) DOWN(f(c)) -> DOWN(c) DOWN(f(f(y3))) -> F_FLAT(down(f(y3))) DOWN(f(f(y3))) -> DOWN(f(y3)) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) top(up(x)) -> top(down(x)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y3))) -> DOWN(f(y3)) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) top(up(x)) -> top(down(x)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y3))) -> DOWN(f(y3)) R is empty. The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y3))) -> DOWN(f(y3)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(f(f(y3))) -> DOWN(f(y3)) The graph contains the following edges 1 > 1 ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(y1)) -> DOWN(y1) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) top(up(x)) -> top(down(x)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(y1)) -> DOWN(y1) R is empty. The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(g(y1)) -> DOWN(y1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(g(y1)) -> DOWN(y1) The graph contains the following edges 1 > 1 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) top(up(x)) -> top(down(x)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) top(up(x0)) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(up(x)) -> TOP(down(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(c)) -> TOP(up(f(g(c)))),TOP(up(c)) -> TOP(up(f(g(c))))) (TOP(up(f(g(x0)))) -> TOP(up(g(x0))),TOP(up(f(g(x0)))) -> TOP(up(g(x0)))) (TOP(up(g(x0))) -> TOP(g_flat(down(x0))),TOP(up(g(x0))) -> TOP(g_flat(down(x0)))) (TOP(up(f(c))) -> TOP(f_flat(down(c))),TOP(up(f(c))) -> TOP(f_flat(down(c)))) (TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))),TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0))))) (TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))),TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant)))) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(c)) -> TOP(up(f(g(c)))) TOP(up(f(g(x0)))) -> TOP(up(g(x0))) TOP(up(g(x0))) -> TOP(g_flat(down(x0))) TOP(up(f(c))) -> TOP(f_flat(down(c))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) TOP(up(f(g(x0)))) -> TOP(up(g(x0))) TOP(up(f(c))) -> TOP(f_flat(down(c))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(c))) -> TOP(f_flat(down(c))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(c))) -> TOP(f_flat(up(f(g(c))))),TOP(up(f(c))) -> TOP(f_flat(up(f(g(c)))))) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) TOP(up(f(g(x0)))) -> TOP(up(g(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(c))) -> TOP(f_flat(up(f(g(c))))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(c))) -> TOP(f_flat(up(f(g(c))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(c))) -> TOP(up(f(f(g(c))))),TOP(up(f(c))) -> TOP(up(f(f(g(c)))))) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) TOP(up(f(g(x0)))) -> TOP(up(g(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(c))) -> TOP(up(f(f(g(c))))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(g(x0)))) -> TOP(up(g(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(c) = 0 POL(down(x_1)) = 0 POL(f(x_1)) = 1 POL(f_flat(x_1)) = 1 POL(fresh_constant) = 0 POL(g(x_1)) = 0 POL(g_flat(x_1)) = 0 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(c))) -> TOP(up(f(f(g(c))))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(c))) -> TOP(up(f(f(g(c))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(c) = 1 POL(down(x_1)) = 0 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 0 POL(g_flat(x_1)) = 0 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( c ) = [[1], [1]] >>> <<< M( down_1(x_1) ) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< M( f_1(x_1) ) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 >>> <<< M( fresh_constant ) = [[0], [1]] >>> <<< M( up_1(x_1) ) = [[0], [0]] + [[1, 1], [0, 0]] * x_1 >>> <<< M( f_flat_1(x_1) ) = [[1], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< M( g_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( g_flat_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[1, 0]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (44) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (45) Complex Obligation (AND) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. c: 0 down: 0 f: 0 fresh_constant: 1 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(x0))) -> TOP.0(g_flat.0(down.0(x0))) TOP.0(up.0(g.1(x0))) -> TOP.0(g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(g.0(c.))) down.0(f.0(g.0(X))) -> up.0(g.0(X)) down.0(f.0(g.1(X))) -> up.0(g.1(X)) down.0(g.0(y1)) -> g_flat.0(down.0(y1)) down.0(g.1(y1)) -> g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(x0))) -> TOP.0(g_flat.0(down.0(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(g.0(c.))) down.0(f.0(g.0(X))) -> up.0(g.0(X)) down.0(f.0(g.1(X))) -> up.0(g.1(X)) down.0(g.0(y1)) -> g_flat.0(down.0(y1)) down.0(g.1(y1)) -> g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(g.1(y1)) -> g_flat.0(down.1(y1)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(x0))) -> TOP.0(g_flat.0(down.0(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(g.0(c.))) down.0(f.0(g.0(X))) -> up.0(g.0(X)) down.0(f.0(g.1(X))) -> up.0(g.1(X)) down.0(g.0(y1)) -> g_flat.0(down.0(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (54) TRUE ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(fresh_constant)) ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (58) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (60) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (61) Complex Obligation (AND) ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(g(c))) down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. c: 0 down: 0 f: 1 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 1 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(g.0(x0))) -> TOP.0(g_flat.0(down.0(x0))) TOP.0(up.1(g.1(x0))) -> TOP.0(g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.0(c.) -> up.1(f.1(g.0(c.))) down.1(f.1(g.0(X))) -> up.1(g.0(X)) down.1(f.1(g.1(X))) -> up.1(g.1(X)) down.1(g.0(y1)) -> g_flat.0(down.0(y1)) down.1(g.1(y1)) -> g_flat.0(down.1(y1)) down.1(f.0(c.)) -> f_flat.0(down.0(c.)) down.1(f.1(f.0(y3))) -> f_flat.0(down.1(f.0(y3))) down.1(f.1(f.1(y3))) -> f_flat.0(down.1(f.1(y3))) g_flat.0(up.0(x_1)) -> up.1(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.1(g.1(x_1)) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) The set Q consists of the following terms: down.0(c.) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.1(f.0(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: g_flat.0(up.0(x_1)) -> up.1(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = 1 + x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(g.0(x0))) -> TOP.0(g_flat.0(down.0(x0))) TOP.0(up.1(g.1(x0))) -> TOP.0(g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(f.1(g.0(X))) -> up.1(g.0(X)) down.1(f.1(g.1(X))) -> up.1(g.1(X)) down.1(g.0(y1)) -> g_flat.0(down.0(y1)) down.1(g.1(y1)) -> g_flat.0(down.1(y1)) down.1(f.0(c.)) -> f_flat.0(down.0(c.)) down.1(f.1(f.0(y3))) -> f_flat.0(down.1(f.0(y3))) down.1(f.1(f.1(y3))) -> f_flat.0(down.1(f.1(y3))) g_flat.0(up.1(x_1)) -> up.1(g.1(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(c.) -> up.1(f.1(g.0(c.))) The set Q consists of the following terms: down.0(c.) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.1(f.0(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.1(f.0(c.)) -> f_flat.0(down.0(c.)) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = 1 + x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (68) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(g.0(x0))) -> TOP.0(g_flat.0(down.0(x0))) TOP.0(up.1(g.1(x0))) -> TOP.0(g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(f.1(g.0(X))) -> up.1(g.0(X)) down.1(f.1(g.1(X))) -> up.1(g.1(X)) down.1(g.0(y1)) -> g_flat.0(down.0(y1)) down.1(g.1(y1)) -> g_flat.0(down.1(y1)) down.1(f.1(f.0(y3))) -> f_flat.0(down.1(f.0(y3))) down.1(f.1(f.1(y3))) -> f_flat.0(down.1(f.1(y3))) g_flat.0(up.1(x_1)) -> up.1(g.1(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(c.) -> up.1(f.1(g.0(c.))) The set Q consists of the following terms: down.0(c.) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.1(f.0(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (69) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(up.1(g.0(x0))) -> TOP.0(g_flat.0(down.0(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = 0 POL(down.1(x_1)) = 0 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 0 POL(f_flat.0(x_1)) = 0 POL(g.0(x_1)) = 1 POL(g.1(x_1)) = 0 POL(g_flat.0(x_1)) = 0 POL(up.1(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: g_flat.0(up.1(x_1)) -> up.1(g.1(x_1)) ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(g.1(x0))) -> TOP.0(g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(f.1(g.0(X))) -> up.1(g.0(X)) down.1(f.1(g.1(X))) -> up.1(g.1(X)) down.1(g.0(y1)) -> g_flat.0(down.0(y1)) down.1(g.1(y1)) -> g_flat.0(down.1(y1)) down.1(f.1(f.0(y3))) -> f_flat.0(down.1(f.0(y3))) down.1(f.1(f.1(y3))) -> f_flat.0(down.1(f.1(y3))) g_flat.0(up.1(x_1)) -> up.1(g.1(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(c.) -> up.1(f.1(g.0(c.))) The set Q consists of the following terms: down.0(c.) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.1(f.0(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (72) TRUE ---------------------------------------- (73) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(c) -> up(f(g(c))) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) down(f(fresh_constant)) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (74) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(fresh_constant)) ---------------------------------------- (75) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(x0))) -> TOP(g_flat(down(x0))) The TRS R consists of the following rules: down(f(g(X))) -> up(g(X)) down(g(y1)) -> g_flat(down(y1)) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(c) -> up(f(g(c))) The set Q consists of the following terms: down(c) down(f(g(x0))) down(g(x0)) down(f(c)) down(f(f(x0))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (76) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (77) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(g(c)) f(g(X)) -> g(X) Q is empty. ---------------------------------------- (78) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (79) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(g(c)) f(g(X)) -> g(X) The set Q consists of the following terms: c f(g(x0)) ---------------------------------------- (80) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (81) Obligation: Q DP problem: The TRS P consists of the following rules: C -> F(g(c)) C -> C The TRS R consists of the following rules: c -> f(g(c)) f(g(X)) -> g(X) The set Q consists of the following terms: c f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (82) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (83) Obligation: Q DP problem: The TRS P consists of the following rules: C -> C The TRS R consists of the following rules: c -> f(g(c)) f(g(X)) -> g(X) The set Q consists of the following terms: c f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (84) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (85) Obligation: Q DP problem: The TRS P consists of the following rules: C -> C R is empty. The set Q consists of the following terms: c f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (86) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. c f(g(x0)) ---------------------------------------- (87) Obligation: Q DP problem: The TRS P consists of the following rules: C -> C R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (88) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = C evaluates to t =C Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from C to C. ---------------------------------------- (89) NO ---------------------------------------- (90) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (91) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (92) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (93) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(f(x_1)) -> REDEX_F(x_1) CHECK_F(redex_f(x_1)) -> IN_F_1(reduce(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(g(x_1)) -> IN_G_1(reduce(x_1)) REDUCE(g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (94) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes. ---------------------------------------- (95) Complex Obligation (AND) ---------------------------------------- (96) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (97) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (98) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(g(X)) -> result_f(g(X)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (99) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(c) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (100) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(g(X)) -> result_f(g(X)) The set Q consists of the following terms: redex_f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (101) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = x_1 POL(REDUCE(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(g(x_1)) = 2*x_1 POL(redex_f(x_1)) = 2*x_1 POL(result_f(x_1)) = x_1 ---------------------------------------- (102) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_f(g(X)) -> result_f(g(X)) The set Q consists of the following terms: redex_f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (103) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (104) TRUE ---------------------------------------- (105) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (106) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (107) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(g(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (108) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (109) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(g(x_1)) -> REDUCE(x_1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (110) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *REDUCE(g(x_1)) -> REDUCE(x_1) The graph contains the following edges 1 > 1 ---------------------------------------- (111) YES ---------------------------------------- (112) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (113) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (114) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (115) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (116) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (117) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))),TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0)))) (TOP(go_up(c)) -> TOP(go_up(f(g(c)))),TOP(go_up(c)) -> TOP(go_up(f(g(c))))) (TOP(go_up(g(x0))) -> TOP(in_g_1(reduce(x0))),TOP(go_up(g(x0))) -> TOP(in_g_1(reduce(x0)))) ---------------------------------------- (118) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(c)) -> TOP(go_up(f(g(c)))) TOP(go_up(g(x0))) -> TOP(in_g_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (119) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(c)) -> TOP(go_up(f(g(c)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(c) = 1 POL(check_f(x_1)) = x_1 POL(f(x_1)) = 0 POL(g(x_1)) = 0 POL(go_up(x_1)) = x_1 POL(in_f_1(x_1)) = 0 POL(in_g_1(x_1)) = 0 POL(redex_f(x_1)) = 0 POL(reduce(x_1)) = 0 POL(result_f(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) ---------------------------------------- (120) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(g(x0))) -> TOP(in_g_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (121) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( result_f_1(x_1) ) = [[0], [0]] + [[1, 1], [0, 0]] * x_1 >>> <<< M( go_up_1(x_1) ) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 >>> <<< M( in_f_1_1(x_1) ) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 >>> <<< M( reduce_1(x_1) ) = [[0], [0]] + [[0, 1], [1, 0]] * x_1 >>> <<< M( in_g_1_1(x_1) ) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( c ) = [[1], [1]] >>> <<< M( f_1(x_1) ) = [[1], [0]] + [[0, 0], [1, 1]] * x_1 >>> <<< M( redex_f_1(x_1) ) = [[0], [0]] + [[1, 1], [0, 0]] * x_1 >>> <<< M( check_f_1(x_1) ) = [[0], [1]] + [[1, 0], [0, 0]] * x_1 >>> <<< M( g_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[1, 0]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) ---------------------------------------- (122) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(g(x0))) -> TOP(in_g_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (123) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (124) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (125) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (126) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(c) -> go_up(f(g(c))) reduce(g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(X)) -> result_f(g(X)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(c) redex_f(g(x0)) check_f(result_f(x0)) check_f(redex_f(x0)) reduce(g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains.