/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could be proven: (0) OTRS (1) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 45 ms] (4) QTRS (5) AAECC Innermost [EQUIVALENT, 0 ms] (6) QTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QReductionProof [EQUIVALENT, 0 ms] (14) QDP (15) RFCMatchBoundsDPProof [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: f(x) -> g(f(x)) g(g(x)) -> c Outermost Strategy. ---------------------------------------- (1) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) top(up(x)) -> top(down(x)) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(c) = 0 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = 2 + x_1 POL(fresh_constant) = 0 POL(g(x_1)) = x_1 POL(g_flat(x_1)) = x_1 POL(top(x_1)) = 2*x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) top(up(x)) -> top(down(x)) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) Q is empty. ---------------------------------------- (5) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) top(up(x)) -> top(down(x)) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(x0)) down(g(g(x0))) top(up(x0)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) g_flat(up(x0)) ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(g(f(y3))) -> G_FLAT(down(f(y3))) DOWN(g(f(y3))) -> DOWN(f(y3)) DOWN(g(c)) -> G_FLAT(down(c)) DOWN(g(c)) -> DOWN(c) DOWN(g(fresh_constant)) -> G_FLAT(down(fresh_constant)) DOWN(g(fresh_constant)) -> DOWN(fresh_constant) The TRS R consists of the following rules: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) top(up(x)) -> top(down(x)) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(x0)) down(g(g(x0))) top(up(x0)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) top(up(x)) -> top(down(x)) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(x0)) down(g(g(x0))) top(up(x0)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(x0)) down(g(g(x0))) top(up(x0)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(x0)) down(g(g(x0))) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) RFCMatchBoundsDPProof (EQUIVALENT) Finiteness of the DP problem can be shown by a matchbound of 3. As the DP problem is minimal we only have to initialize the certificate graph by the rules of P: TOP(up(x)) -> TOP(down(x)) To find matches we regarded all rules of R and P: down(f(x)) -> up(g(f(x))) down(g(g(x))) -> up(c) down(g(f(y3))) -> g_flat(down(f(y3))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) TOP(up(x)) -> TOP(down(x)) The certificate found is represented by the following graph. The certificate consists of the following enumerated nodes: 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313 Node 293 is start node and node 294 is final node. Those nodes are connected through the following edges: * 293 to 295 labelled TOP_1(0)* 293 to 300 labelled TOP_1(1)* 293 to 311 labelled TOP_1(2)* 293 to 313 labelled TOP_1(3)* 294 to 294 labelled #_1(0)* 295 to 294 labelled down_1(0)* 295 to 296 labelled up_1(1)* 295 to 298 labelled g_flat_1(1)* 295 to 303 labelled up_1(2)* 296 to 297 labelled g_1(1)* 296 to 294 labelled c(1)* 297 to 294 labelled f_1(1)* 298 to 299 labelled down_1(1)* 298 to 301 labelled up_1(2)* 299 to 294 labelled f_1(1), c(1), fresh_constant(1)* 300 to 296 labelled down_1(1)* 300 to 304 labelled g_flat_1(2)* 300 to 303 labelled down_1(1)* 300 to 309 labelled up_1(3)* 300 to 310 labelled up_1(2)* 301 to 302 labelled g_1(2)* 302 to 294 labelled f_1(2)* 303 to 301 labelled g_1(2)* 304 to 305 labelled down_1(2)* 304 to 306 labelled up_1(3)* 305 to 294 labelled f_1(2)* 306 to 307 labelled g_1(3)* 307 to 294 labelled f_1(3)* 309 to 306 labelled g_1(3)* 310 to 302 labelled c(2)* 311 to 309 labelled down_1(2)* 311 to 310 labelled down_1(2)* 311 to 312 labelled up_1(3)* 312 to 307 labelled c(3)* 313 to 312 labelled down_1(3) ---------------------------------------- (16) YES