/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) MRRProof [EQUIVALENT, 0 ms] (13) QDP (14) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (15) QDP (16) DependencyGraphProof [EQUIVALENT, 0 ms] (17) TRUE (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) UsableRulesReductionPairsProof [EQUIVALENT, 8 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) TRUE (27) QDP (28) UsableRulesProof [EQUIVALENT, 0 ms] (29) QDP (30) QReductionProof [EQUIVALENT, 0 ms] (31) QDP (32) TransformationProof [EQUIVALENT, 0 ms] (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) Trivial-Transformation [SOUND, 0 ms] (39) QTRS (40) DependencyPairsProof [EQUIVALENT, 0 ms] (41) QDP (42) DependencyGraphProof [EQUIVALENT, 0 ms] (43) QDP (44) TransformationProof [EQUIVALENT, 0 ms] (45) QDP (46) NonTerminationLoopProof [COMPLETE, 0 ms] (47) NO (48) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (49) QTRS (50) AAECC Innermost [EQUIVALENT, 0 ms] (51) QTRS (52) DependencyPairsProof [EQUIVALENT, 0 ms] (53) QDP (54) DependencyGraphProof [EQUIVALENT, 0 ms] (55) AND (56) QDP (57) UsableRulesProof [EQUIVALENT, 0 ms] (58) QDP (59) QReductionProof [EQUIVALENT, 0 ms] (60) QDP (61) QDPSizeChangeProof [EQUIVALENT, 0 ms] (62) YES (63) QDP (64) UsableRulesProof [EQUIVALENT, 0 ms] (65) QDP (66) QReductionProof [EQUIVALENT, 0 ms] (67) QDP (68) TransformationProof [EQUIVALENT, 0 ms] (69) QDP (70) DependencyGraphProof [EQUIVALENT, 0 ms] (71) QDP (72) UsableRulesProof [EQUIVALENT, 0 ms] (73) QDP (74) TransformationProof [EQUIVALENT, 0 ms] (75) QDP (76) UsableRulesProof [EQUIVALENT, 0 ms] (77) QDP (78) TransformationProof [EQUIVALENT, 0 ms] (79) QDP (80) DependencyGraphProof [EQUIVALENT, 0 ms] (81) QDP (82) UsableRulesProof [EQUIVALENT, 0 ms] (83) QDP (84) TransformationProof [EQUIVALENT, 0 ms] (85) QDP (86) DependencyGraphProof [EQUIVALENT, 0 ms] (87) QDP (88) UsableRulesProof [EQUIVALENT, 0 ms] (89) QDP (90) QDPOrderProof [EQUIVALENT, 10 ms] (91) QDP (92) QDPOrderProof [EQUIVALENT, 7 ms] (93) QDP (94) QDPOrderProof [EQUIVALENT, 36 ms] (95) QDP (96) SplitQDPProof [EQUIVALENT, 0 ms] (97) AND (98) QDP (99) SemLabProof [SOUND, 0 ms] (100) QDP (101) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (102) QDP (103) DependencyGraphProof [EQUIVALENT, 0 ms] (104) QDP (105) UsableRulesReductionPairsProof [EQUIVALENT, 2 ms] (106) QDP (107) PisEmptyProof [SOUND, 0 ms] (108) TRUE (109) QDP (110) QReductionProof [EQUIVALENT, 0 ms] (111) QDP (112) SplitQDPProof [EQUIVALENT, 0 ms] (113) AND (114) QDP (115) SemLabProof [SOUND, 0 ms] (116) QDP (117) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (118) QDP (119) DependencyGraphProof [EQUIVALENT, 0 ms] (120) QDP (121) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (122) QDP (123) PisEmptyProof [SOUND, 0 ms] (124) TRUE (125) QDP (126) QReductionProof [EQUIVALENT, 0 ms] (127) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: f(g(x)) -> g(g(f(f(x)))) g(g(g(x))) -> c Outermost Strategy. ---------------------------------------- (1) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) redex_g(g(g(x))) -> result_g(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(f(x_1)) -> REDEX_F(x_1) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(g(x_1)) -> REDEX_G(x_1) CHECK_F(redex_f(x_1)) -> IN_F_1(reduce(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) CHECK_G(redex_g(x_1)) -> IN_G_1(reduce(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) redex_g(g(g(x))) -> result_g(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) redex_g(g(g(x))) -> result_g(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(g(x)) -> result_f(g(g(f(f(x))))) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(g(x)) -> result_f(g(g(f(f(x))))) The set Q consists of the following terms: redex_f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: redex_f(g(x)) -> result_f(g(g(f(f(x))))) Used ordering: Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = x_1 POL(REDUCE(x_1)) = 1 + 2*x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = 2*x_1 POL(redex_f(x_1)) = 1 + 2*x_1 POL(result_f(x_1)) = x_1 ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) R is empty. The set Q consists of the following terms: redex_f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = 2*x_1 POL(REDUCE(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(redex_f(x_1)) = x_1 ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_f(g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (17) TRUE ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) redex_g(g(g(x))) -> result_g(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_g(g(g(x))) -> result_g(c) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: redex_g(g(g(x))) -> result_g(c) The set Q consists of the following terms: redex_g(g(g(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) The following rules are removed from R: redex_g(g(g(x))) -> result_g(c) Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_G(x_1)) = x_1 POL(REDUCE(x_1)) = 2*x_1 POL(c) = 0 POL(g(x_1)) = 2 + 2*x_1 POL(redex_g(x_1)) = 2*x_1 POL(result_g(x_1)) = 2 + x_1 ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_G(redex_g(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_g(g(g(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (26) TRUE ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) redex_g(g(g(x))) -> result_g(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_g(g(g(x))) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_g(g(g(x))) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))),TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0)))) (TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))),TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0)))) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_g(g(g(x))) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_g(g(g(x))) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_g(g(g(x))) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(g(x)) -> result_f(g(g(f(f(x))))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) redex_f(g(x0)) redex_g(g(g(x0))) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0)) check_g(redex_g(x0)) in_f_1(go_up(x0)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (39) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(g(x)) -> g(g(f(f(x)))) g(g(g(x))) -> c Q is empty. ---------------------------------------- (40) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: F(g(x)) -> G(g(f(f(x)))) F(g(x)) -> G(f(f(x))) F(g(x)) -> F(f(x)) F(g(x)) -> F(x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(f(x)))) g(g(g(x))) -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: F(g(x)) -> F(x) F(g(x)) -> F(f(x)) The TRS R consists of the following rules: f(g(x)) -> g(g(f(f(x)))) g(g(g(x))) -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(g(x)) -> F(f(x)) at position [0] we obtained the following new rules [LPAR04]: (F(g(g(x0))) -> F(g(g(f(f(x0))))),F(g(g(x0))) -> F(g(g(f(f(x0)))))) ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: F(g(x)) -> F(x) F(g(g(x0))) -> F(g(g(f(f(x0))))) The TRS R consists of the following rules: f(g(x)) -> g(g(f(f(x)))) g(g(g(x))) -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = F(g(g(x0))) evaluates to t =F(g(g(f(f(x0))))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [x0 / f(f(x0))] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from F(g(g(x0))) to F(g(g(f(f(x0))))). ---------------------------------------- (47) NO ---------------------------------------- (48) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (49) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) top(up(x)) -> top(down(x)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) Q is empty. ---------------------------------------- (50) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (51) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) top(up(x)) -> top(down(x)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) top(up(x0)) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) ---------------------------------------- (52) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(f(f(y3))) -> F_FLAT(down(f(y3))) DOWN(f(f(y3))) -> DOWN(f(y3)) DOWN(f(c)) -> F_FLAT(down(c)) DOWN(f(c)) -> DOWN(c) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) DOWN(g(f(y6))) -> G_FLAT(down(f(y6))) DOWN(g(f(y6))) -> DOWN(f(y6)) DOWN(g(c)) -> G_FLAT(down(c)) DOWN(g(c)) -> DOWN(c) DOWN(g(fresh_constant)) -> G_FLAT(down(fresh_constant)) DOWN(g(fresh_constant)) -> DOWN(fresh_constant) DOWN(g(g(f(y9)))) -> G_FLAT(down(g(f(y9)))) DOWN(g(g(f(y9)))) -> DOWN(g(f(y9))) DOWN(g(g(c))) -> G_FLAT(down(g(c))) DOWN(g(g(c))) -> DOWN(g(c)) DOWN(g(g(fresh_constant))) -> G_FLAT(down(g(fresh_constant))) DOWN(g(g(fresh_constant))) -> DOWN(g(fresh_constant)) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) top(up(x)) -> top(down(x)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) top(up(x0)) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 18 less nodes. ---------------------------------------- (55) Complex Obligation (AND) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y3))) -> DOWN(f(y3)) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) top(up(x)) -> top(down(x)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) top(up(x0)) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y3))) -> DOWN(f(y3)) R is empty. The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) top(up(x0)) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(f(g(x0))) down(g(g(g(x0)))) top(up(x0)) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y3))) -> DOWN(f(y3)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(f(f(y3))) -> DOWN(f(y3)) The graph contains the following edges 1 > 1 ---------------------------------------- (62) YES ---------------------------------------- (63) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) top(up(x)) -> top(down(x)) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) f_flat(up(x_1)) -> up(f(x_1)) g_flat(up(x_1)) -> up(g(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) top(up(x0)) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) top(up(x0)) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (67) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (68) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(up(x)) -> TOP(down(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))),TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0))))))) (TOP(up(g(g(g(x0))))) -> TOP(up(c)),TOP(up(g(g(g(x0))))) -> TOP(up(c))) (TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))),TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0))))) (TOP(up(f(c))) -> TOP(f_flat(down(c))),TOP(up(f(c))) -> TOP(f_flat(down(c)))) (TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))),TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant)))) (TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))),TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0))))) (TOP(up(g(c))) -> TOP(g_flat(down(c))),TOP(up(g(c))) -> TOP(g_flat(down(c)))) (TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))),TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant)))) (TOP(up(g(g(f(x0))))) -> TOP(g_flat(down(g(f(x0))))),TOP(up(g(g(f(x0))))) -> TOP(g_flat(down(g(f(x0)))))) (TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c)))),TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c))))) (TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))),TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant))))) ---------------------------------------- (69) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(g(g(g(x0))))) -> TOP(up(c)) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(c))) -> TOP(f_flat(down(c))) TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(c))) -> TOP(g_flat(down(c))) TOP(up(g(fresh_constant))) -> TOP(g_flat(down(fresh_constant))) TOP(up(g(g(f(x0))))) -> TOP(g_flat(down(g(f(x0))))) TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (70) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (71) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(down(g(f(x0))))) TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(g(g(g(x)))) -> up(c) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) down(g(f(y6))) -> g_flat(down(f(y6))) down(g(c)) -> g_flat(down(c)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(g(f(y9)))) -> g_flat(down(g(f(y9)))) down(g(g(c))) -> g_flat(down(g(c))) down(g(g(fresh_constant))) -> g_flat(down(g(fresh_constant))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (72) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (73) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(down(g(f(x0))))) TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) The TRS R consists of the following rules: down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(g(c)) -> g_flat(down(c)) down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(g(f(y6))) -> g_flat(down(f(y6))) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (74) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(g(f(x0))))) -> TOP(g_flat(down(g(f(x0))))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))),TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0)))))) ---------------------------------------- (75) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(g(c)) -> g_flat(down(c)) down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) down(g(f(y6))) -> g_flat(down(f(y6))) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (76) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (77) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(c)) -> g_flat(down(c)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (78) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(g(c)))) -> TOP(g_flat(down(g(c)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(g(c)))) -> TOP(g_flat(g_flat(down(c)))),TOP(up(g(g(c)))) -> TOP(g_flat(g_flat(down(c))))) ---------------------------------------- (79) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(g(g(c)))) -> TOP(g_flat(g_flat(down(c)))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(c)) -> g_flat(down(c)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (80) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (81) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(g(fresh_constant)) -> g_flat(down(fresh_constant)) down(g(c)) -> g_flat(down(c)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (82) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (83) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) The TRS R consists of the following rules: down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (84) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(down(g(fresh_constant)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(g_flat(down(fresh_constant)))),TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(g_flat(down(fresh_constant))))) ---------------------------------------- (85) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) TOP(up(g(g(fresh_constant)))) -> TOP(g_flat(g_flat(down(fresh_constant)))) The TRS R consists of the following rules: down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (86) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (87) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) The TRS R consists of the following rules: down(g(fresh_constant)) -> g_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (88) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (89) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (90) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(g(x0)))) -> TOP(up(g(g(f(f(x0)))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(c) = 0 POL(down(x_1)) = x_1 POL(f(x_1)) = 1 + x_1 POL(f_flat(x_1)) = 1 + x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 0 POL(g_flat(x_1)) = 0 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (91) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (92) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(c) = 0 POL(down(x_1)) = x_1 POL(f(x_1)) = 1 + x_1 POL(f_flat(x_1)) = 1 + x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 0 POL(g_flat(x_1)) = 1 POL(up(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (93) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (94) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(g(f(x0)))) -> TOP(g_flat(down(f(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( c ) = [[0], [0]] >>> <<< M( down_1(x_1) ) = [[0], [0]] + [[0, 1], [1, 0]] * x_1 >>> <<< M( f_1(x_1) ) = [[0], [0]] + [[1, 1], [1, 1]] * x_1 >>> <<< M( fresh_constant ) = [[0], [0]] >>> <<< M( up_1(x_1) ) = [[1], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( f_flat_1(x_1) ) = [[0], [0]] + [[1, 1], [1, 1]] * x_1 >>> <<< M( g_1(x_1) ) = [[0], [1]] + [[0, 0], [1, 0]] * x_1 >>> <<< M( g_flat_1(x_1) ) = [[1], [0]] + [[0, 0], [1, 0]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[0, 1]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (95) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (96) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (97) Complex Obligation (AND) ---------------------------------------- (98) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (99) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. c: 0 down: 0 f: 0 fresh_constant: 1 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (100) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(f.1(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.1(x0))))) The TRS R consists of the following rules: down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.0(c.))) down.0(g.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (101) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (102) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(f.1(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.1(x0))))) The TRS R consists of the following rules: g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.0(c.))) down.0(g.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (103) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (104) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) The TRS R consists of the following rules: g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.0(c.))) down.0(g.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (105) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 ---------------------------------------- (106) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) The TRS R consists of the following rules: down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(c.)) down.0(f.1(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.0(c.)) down.0(g.1(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.0(c.))) down.0(g.0(g.1(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (107) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (108) TRUE ---------------------------------------- (109) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (110) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(fresh_constant)) down(g(fresh_constant)) down(g(g(fresh_constant))) ---------------------------------------- (111) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(g(f(x0))) down(g(c)) down(g(g(f(x0)))) down(g(g(c))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (112) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (113) Complex Obligation (AND) ---------------------------------------- (114) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) down(f(c)) -> f_flat(down(c)) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (115) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. c: 1 down: 0 f: 0 fresh_constant: 0 up: 0 f_flat: 0 TOP: 0 g_flat: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (116) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(f.1(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.1(x0))))) The TRS R consists of the following rules: down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) down.0(f.1(c.)) -> f_flat.0(down.1(c.)) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.1(c.))) down.0(g.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (117) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(f.1(c.)) -> f_flat.0(down.1(c.)) g_flat.0(up.1(x_1)) -> up.0(g.1(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (118) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) TOP.0(up.0(g.0(g.0(f.1(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.1(x0))))) The TRS R consists of the following rules: g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.1(c.))) down.0(g.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (119) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (120) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) The TRS R consists of the following rules: g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.1(c.))) down.0(g.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (121) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(f.0(g.1(x))) -> up.0(g.0(g.0(f.0(f.1(x))))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(down.0(x_1)) = 1 + x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 ---------------------------------------- (122) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(g.0(g.0(f.0(x0))))) -> TOP.0(g_flat.0(g_flat.0(down.0(f.0(x0))))) The TRS R consists of the following rules: down.0(f.0(g.0(x))) -> up.0(g.0(g.0(f.0(f.0(x))))) down.0(f.0(f.0(y3))) -> f_flat.0(down.0(f.0(y3))) down.0(f.0(f.1(y3))) -> f_flat.0(down.0(f.1(y3))) g_flat.0(up.0(x_1)) -> up.0(g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(g.0(g.0(g.0(x0)))) down.0(g.0(g.0(g.1(x0)))) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.1(c.)) down.0(f.0(fresh_constant.)) down.0(g.0(f.0(x0))) down.0(g.0(f.1(x0))) down.0(g.1(c.)) down.0(g.0(fresh_constant.)) down.0(g.0(g.0(f.0(x0)))) down.0(g.0(g.0(f.1(x0)))) down.0(g.0(g.1(c.))) down.0(g.0(g.0(fresh_constant.))) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) g_flat.0(up.0(x0)) g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (123) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (124) TRUE ---------------------------------------- (125) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(f(c)) down(f(fresh_constant)) down(g(f(x0))) down(g(c)) down(g(fresh_constant)) down(g(g(f(x0)))) down(g(g(c))) down(g(g(fresh_constant))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (126) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(c)) down(f(fresh_constant)) down(g(c)) down(g(fresh_constant)) down(g(g(c))) down(g(g(fresh_constant))) ---------------------------------------- (127) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(g(g(f(x0))))) -> TOP(g_flat(g_flat(down(f(x0))))) The TRS R consists of the following rules: down(f(g(x))) -> up(g(g(f(f(x))))) down(f(f(y3))) -> f_flat(down(f(y3))) g_flat(up(x_1)) -> up(g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(f(g(x0))) down(g(g(g(x0)))) down(f(f(x0))) down(g(f(x0))) down(g(g(f(x0)))) f_flat(up(x0)) g_flat(up(x0)) We have to consider all (P,Q,R)-chains.