/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 79 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QReductionProof [EQUIVALENT, 0 ms] (13) QDP (14) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (15) QDP (16) DependencyGraphProof [EQUIVALENT, 0 ms] (17) TRUE (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QReductionProof [EQUIVALENT, 0 ms] (29) QDP (30) TransformationProof [SOUND, 0 ms] (31) QDP (32) TransformationProof [EQUIVALENT, 0 ms] (33) QDP (34) TransformationProof [EQUIVALENT, 0 ms] (35) QDP (36) TransformationProof [SOUND, 0 ms] (37) QDP (38) TransformationProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPOrderProof [EQUIVALENT, 15 ms] (41) QDP (42) QDPOrderProof [EQUIVALENT, 0 ms] (43) QDP (44) QDPOrderProof [EQUIVALENT, 8 ms] (45) QDP (46) QDPOrderProof [EQUIVALENT, 313 ms] (47) QDP (48) UsableRulesProof [EQUIVALENT, 0 ms] (49) QDP (50) QReductionProof [EQUIVALENT, 0 ms] (51) QDP (52) Trivial-Transformation [SOUND, 0 ms] (53) QTRS (54) QTRSRRRProof [EQUIVALENT, 65 ms] (55) QTRS (56) Overlay + Local Confluence [EQUIVALENT, 0 ms] (57) QTRS (58) DependencyPairsProof [EQUIVALENT, 0 ms] (59) QDP (60) DependencyGraphProof [EQUIVALENT, 0 ms] (61) QDP (62) UsableRulesProof [EQUIVALENT, 0 ms] (63) QDP (64) QReductionProof [EQUIVALENT, 0 ms] (65) QDP (66) TransformationProof [EQUIVALENT, 0 ms] (67) QDP (68) NonTerminationLoopProof [COMPLETE, 0 ms] (69) NO (70) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] (71) QTRS (72) QTRSRRRProof [EQUIVALENT, 66 ms] (73) QTRS (74) QTRSRRRProof [EQUIVALENT, 19 ms] (75) QTRS (76) QTRSRRRProof [EQUIVALENT, 15 ms] (77) QTRS (78) QTRSRRRProof [EQUIVALENT, 18 ms] (79) QTRS (80) AAECC Innermost [EQUIVALENT, 0 ms] (81) QTRS (82) DependencyPairsProof [EQUIVALENT, 0 ms] (83) QDP (84) DependencyGraphProof [EQUIVALENT, 0 ms] (85) AND (86) QDP (87) UsableRulesProof [EQUIVALENT, 0 ms] (88) QDP (89) QReductionProof [EQUIVALENT, 0 ms] (90) QDP (91) QDPSizeChangeProof [EQUIVALENT, 0 ms] (92) YES (93) QDP (94) UsableRulesProof [EQUIVALENT, 0 ms] (95) QDP (96) QReductionProof [EQUIVALENT, 0 ms] (97) QDP (98) QDPSizeChangeProof [EQUIVALENT, 0 ms] (99) YES (100) QDP (101) UsableRulesProof [EQUIVALENT, 0 ms] (102) QDP (103) QReductionProof [EQUIVALENT, 0 ms] (104) QDP (105) TransformationProof [EQUIVALENT, 0 ms] (106) QDP (107) DependencyGraphProof [EQUIVALENT, 0 ms] (108) QDP (109) TransformationProof [EQUIVALENT, 0 ms] (110) QDP (111) TransformationProof [EQUIVALENT, 0 ms] (112) QDP (113) TransformationProof [EQUIVALENT, 0 ms] (114) QDP (115) TransformationProof [EQUIVALENT, 0 ms] (116) QDP (117) QDPOrderProof [EQUIVALENT, 13 ms] (118) QDP (119) QDPOrderProof [EQUIVALENT, 11 ms] (120) QDP (121) DependencyGraphProof [EQUIVALENT, 0 ms] (122) QDP (123) QDPOrderProof [EQUIVALENT, 8 ms] (124) QDP (125) QDPOrderProof [EQUIVALENT, 8 ms] (126) QDP (127) QDPOrderProof [EQUIVALENT, 502 ms] (128) QDP (129) MNOCProof [EQUIVALENT, 0 ms] (130) QDP (131) SplitQDPProof [EQUIVALENT, 0 ms] (132) AND (133) QDP (134) SemLabProof [SOUND, 0 ms] (135) QDP (136) DependencyGraphProof [EQUIVALENT, 0 ms] (137) QDP (138) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (139) QDP (140) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (141) QDP (142) PisEmptyProof [SOUND, 0 ms] (143) TRUE (144) QDP (145) QReductionProof [EQUIVALENT, 0 ms] (146) QDP (147) MNOCProof [EQUIVALENT, 0 ms] (148) QDP (149) SplitQDPProof [EQUIVALENT, 0 ms] (150) AND (151) QDP (152) SemLabProof [SOUND, 0 ms] (153) QDP (154) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (155) QDP (156) MRRProof [EQUIVALENT, 0 ms] (157) QDP (158) QDPOrderProof [EQUIVALENT, 0 ms] (159) QDP (160) PisEmptyProof [SOUND, 0 ms] (161) TRUE (162) QDP (163) QReductionProof [EQUIVALENT, 0 ms] (164) QDP (165) SplitQDPProof [EQUIVALENT, 0 ms] (166) AND (167) QDP (168) SemLabProof [SOUND, 0 ms] (169) QDP (170) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (171) QDP (172) MRRProof [EQUIVALENT, 0 ms] (173) QDP (174) QDPOrderProof [EQUIVALENT, 0 ms] (175) QDP (176) PisEmptyProof [SOUND, 0 ms] (177) TRUE (178) QDP (179) QReductionProof [EQUIVALENT, 0 ms] (180) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c -> n__c activate(n__g(X)) -> g(X) activate(n__c) -> c activate(X) -> X Outermost Strategy. ---------------------------------------- (1) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) redex_f(n__g(X)) -> result_f(g(activate(X))) redex_g(X) -> result_g(n__g(X)) reduce(c) -> go_up(n__c) redex_activate(n__g(X)) -> result_activate(g(X)) redex_activate(n__c) -> result_activate(c) redex_activate(X) -> result_activate(X) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_activate(result_activate(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_activate(redex_activate(x_1)) -> in_activate_1(reduce(x_1)) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_activate_1(go_up(x_1)) -> go_up(activate(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = 1 + 2*x_1 POL(c) = 1 POL(check_activate(x_1)) = x_1 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = x_1 POL(f(x_1)) = 1 + 2*x_1 POL(g(x_1)) = x_1 POL(go_up(x_1)) = x_1 POL(in_activate_1(x_1)) = 1 + 2*x_1 POL(in_f_1(x_1)) = 1 + 2*x_1 POL(in_g_1(x_1)) = x_1 POL(in_n__g_1(x_1)) = x_1 POL(n__c) = 0 POL(n__g(x_1)) = x_1 POL(redex_activate(x_1)) = 1 + 2*x_1 POL(redex_f(x_1)) = 1 + 2*x_1 POL(redex_g(x_1)) = x_1 POL(reduce(x_1)) = x_1 POL(result_activate(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = x_1 POL(top(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: reduce(c) -> go_up(n__c) redex_activate(n__g(X)) -> result_activate(g(X)) redex_activate(X) -> result_activate(X) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) redex_f(n__g(X)) -> result_f(g(activate(X))) redex_g(X) -> result_g(n__g(X)) redex_activate(n__c) -> result_activate(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_activate(result_activate(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_activate(redex_activate(x_1)) -> in_activate_1(reduce(x_1)) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_activate_1(go_up(x_1)) -> go_up(activate(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) REDUCE(f(x_1)) -> REDEX_F(x_1) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(g(x_1)) -> REDEX_G(x_1) REDUCE(activate(x_1)) -> CHECK_ACTIVATE(redex_activate(x_1)) REDUCE(activate(x_1)) -> REDEX_ACTIVATE(x_1) CHECK_F(redex_f(x_1)) -> IN_F_1(reduce(x_1)) CHECK_F(redex_f(x_1)) -> REDUCE(x_1) CHECK_G(redex_g(x_1)) -> IN_G_1(reduce(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) CHECK_ACTIVATE(redex_activate(x_1)) -> IN_ACTIVATE_1(reduce(x_1)) CHECK_ACTIVATE(redex_activate(x_1)) -> REDUCE(x_1) REDUCE(n__g(x_1)) -> IN_N__G_1(reduce(x_1)) REDUCE(n__g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) redex_f(n__g(X)) -> result_f(g(activate(X))) redex_g(X) -> result_g(n__g(X)) redex_activate(n__c) -> result_activate(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_activate(result_activate(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_activate(redex_activate(x_1)) -> in_activate_1(reduce(x_1)) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_activate_1(go_up(x_1)) -> go_up(activate(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 12 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) redex_f(n__g(X)) -> result_f(g(activate(X))) redex_g(X) -> result_g(n__g(X)) redex_activate(n__c) -> result_activate(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_activate(result_activate(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_activate(redex_activate(x_1)) -> in_activate_1(reduce(x_1)) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_activate_1(go_up(x_1)) -> go_up(activate(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(n__g(X)) -> result_f(g(activate(X))) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The TRS R consists of the following rules: redex_f(n__g(X)) -> result_f(g(activate(X))) The set Q consists of the following terms: redex_f(n__g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: REDUCE(f(x_1)) -> CHECK_F(redex_f(x_1)) The following rules are removed from R: redex_f(n__g(X)) -> result_f(g(activate(X))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = x_1 POL(REDUCE(x_1)) = 2*x_1 POL(activate(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(g(x_1)) = 2*x_1 POL(n__g(x_1)) = 2*x_1 POL(redex_f(x_1)) = 2*x_1 POL(result_f(x_1)) = x_1 ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: redex_f(n__g(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (17) TRUE ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(n__g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) redex_f(n__g(X)) -> result_f(g(activate(X))) redex_g(X) -> result_g(n__g(X)) redex_activate(n__c) -> result_activate(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_activate(result_activate(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_activate(redex_activate(x_1)) -> in_activate_1(reduce(x_1)) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_activate_1(go_up(x_1)) -> go_up(activate(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(n__g(x_1)) -> REDUCE(x_1) R is empty. The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(n__g(x_1)) -> REDUCE(x_1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *REDUCE(n__g(x_1)) -> REDUCE(x_1) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) redex_f(n__g(X)) -> result_f(g(activate(X))) redex_g(X) -> result_g(n__g(X)) redex_activate(n__c) -> result_activate(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_activate(result_activate(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) check_activate(redex_activate(x_1)) -> in_activate_1(reduce(x_1)) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) in_activate_1(go_up(x_1)) -> go_up(activate(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) TransformationProof (SOUND) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))),TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0)))) (TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))),TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0)))) (TOP(go_up(activate(x0))) -> TOP(check_activate(redex_activate(x0))),TOP(go_up(activate(x0))) -> TOP(check_activate(redex_activate(x0)))) (TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))),TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c))))) (TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))),TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0)))) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) TOP(go_up(activate(x0))) -> TOP(check_activate(redex_activate(x0))) TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(go_up(g(x0))) -> TOP(check_g(result_g(n__g(x0)))),TOP(go_up(g(x0))) -> TOP(check_g(result_g(n__g(x0))))) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(activate(x0))) -> TOP(check_activate(redex_activate(x0))) TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(check_g(result_g(n__g(x0)))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(g(x0))) -> TOP(check_g(result_g(n__g(x0)))) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(g(x0))) -> TOP(go_up(n__g(x0))),TOP(go_up(g(x0))) -> TOP(go_up(n__g(x0)))) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(activate(x0))) -> TOP(check_activate(redex_activate(x0))) TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(n__g(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) TransformationProof (SOUND) By narrowing [LPAR04] the rule TOP(go_up(activate(x0))) -> TOP(check_activate(redex_activate(x0))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(go_up(activate(n__c))) -> TOP(check_activate(result_activate(c))),TOP(go_up(activate(n__c))) -> TOP(check_activate(result_activate(c)))) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(n__g(x0))) TOP(go_up(activate(n__c))) -> TOP(check_activate(result_activate(c))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(go_up(activate(n__c))) -> TOP(check_activate(result_activate(c))) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(activate(n__c))) -> TOP(go_up(c)),TOP(go_up(activate(n__c))) -> TOP(go_up(c))) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(n__g(x0))) TOP(go_up(activate(n__c))) -> TOP(go_up(c)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(activate(n__c))) -> TOP(go_up(c)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(activate(x_1)) = x_1 POL(c) = 0 POL(check_activate(x_1)) = 1 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = 1 POL(f(x_1)) = 0 POL(g(x_1)) = 0 POL(go_up(x_1)) = x_1 POL(in_f_1(x_1)) = 0 POL(in_n__g_1(x_1)) = 0 POL(n__c) = 1 POL(n__g(x_1)) = 0 POL(redex_activate(x_1)) = x_1 POL(redex_f(x_1)) = 0 POL(redex_g(x_1)) = 1 + x_1 POL(reduce(x_1)) = 0 POL(result_activate(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) TOP(go_up(g(x0))) -> TOP(go_up(n__g(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(g(x0))) -> TOP(go_up(n__g(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(activate(x_1)) = x_1 POL(c) = 1 POL(check_activate(x_1)) = 1 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = 1 POL(f(x_1)) = 1 POL(g(x_1)) = 1 POL(go_up(x_1)) = x_1 POL(in_f_1(x_1)) = 1 POL(in_n__g_1(x_1)) = 0 POL(n__c) = 0 POL(n__g(x_1)) = 0 POL(redex_activate(x_1)) = 0 POL(redex_f(x_1)) = 1 POL(redex_g(x_1)) = 1 + x_1 POL(reduce(x_1)) = x_1 POL(result_activate(x_1)) = 1 + x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(c)) -> TOP(go_up(f(n__g(n__c)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(activate(x_1)) = x_1 POL(c) = 1 POL(check_activate(x_1)) = 1 POL(check_f(x_1)) = x_1 POL(check_g(x_1)) = 1 POL(f(x_1)) = 0 POL(g(x_1)) = 0 POL(go_up(x_1)) = x_1 POL(in_f_1(x_1)) = 0 POL(in_n__g_1(x_1)) = 0 POL(n__c) = 0 POL(n__g(x_1)) = 0 POL(redex_activate(x_1)) = 0 POL(redex_f(x_1)) = 0 POL(redex_g(x_1)) = 1 + x_1 POL(reduce(x_1)) = 0 POL(result_activate(x_1)) = x_1 POL(result_f(x_1)) = x_1 POL(result_g(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(go_up(f(x0))) -> TOP(check_f(redex_f(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( result_f_1(x_1) ) = [[0], [0]] + [[0, 1], [1, 1]] * x_1 >>> <<< M( reduce_1(x_1) ) = [[0], [0]] + [[0, 1], [1, 1]] * x_1 >>> <<< M( c ) = [[1], [1]] >>> <<< M( in_n__g_1_1(x_1) ) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( check_activate_1(x_1) ) = [[0], [1]] + [[0, 1], [1, 0]] * x_1 >>> <<< M( redex_f_1(x_1) ) = [[0], [1]] + [[1, 1], [0, 1]] * x_1 >>> <<< M( check_f_1(x_1) ) = [[0], [1]] + [[0, 1], [1, 0]] * x_1 >>> <<< M( activate_1(x_1) ) = [[0], [1]] + [[0, 0], [1, 0]] * x_1 >>> <<< M( g_1(x_1) ) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( redex_activate_1(x_1) ) = [[0], [1]] + [[1, 0], [1, 0]] * x_1 >>> <<< M( go_up_1(x_1) ) = [[0], [1]] + [[1, 1], [0, 1]] * x_1 >>> <<< M( result_g_1(x_1) ) = [[0], [0]] + [[1, 1], [0, 1]] * x_1 >>> <<< M( in_f_1_1(x_1) ) = [[1], [1]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( result_activate_1(x_1) ) = [[0], [0]] + [[0, 1], [1, 1]] * x_1 >>> <<< M( f_1(x_1) ) = [[0], [1]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( n__g_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( check_g_1(x_1) ) = [[0], [1]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( n__c ) = [[1], [0]] >>> <<< M( redex_g_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[1, 1]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(n__g(x0))) -> TOP(in_n__g_1(reduce(x0))) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) in_g_1(go_up(x0)) in_activate_1(go_up(x0)) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1)) -> check_f(redex_f(x_1)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(activate(x_1)) -> check_activate(redex_activate(x_1)) reduce(c) -> go_up(f(n__g(n__c))) reduce(n__g(x_1)) -> in_n__g_1(reduce(x_1)) in_n__g_1(go_up(x_1)) -> go_up(n__g(x_1)) redex_activate(n__c) -> result_activate(c) check_activate(result_activate(x)) -> go_up(x) redex_g(X) -> result_g(n__g(X)) check_g(result_g(x)) -> go_up(x) redex_f(n__g(X)) -> result_f(g(activate(X))) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1)) -> in_f_1(reduce(x_1)) in_f_1(go_up(x_1)) -> go_up(f(x_1)) The set Q consists of the following terms: reduce(f(x0)) reduce(g(x0)) reduce(activate(x0)) reduce(c) redex_f(n__g(x0)) redex_g(x0) redex_activate(x0) check_f(result_f(x0)) check_g(result_g(x0)) check_activate(result_activate(x0)) check_f(redex_f(x0)) reduce(n__g(x0)) in_f_1(go_up(x0)) in_n__g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (53) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c -> n__c activate(n__g(X)) -> g(X) activate(n__c) -> c activate(X) -> X Q is empty. ---------------------------------------- (54) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = 1 + 2*x_1 POL(c) = 1 POL(f(x_1)) = 1 + 2*x_1 POL(g(x_1)) = x_1 POL(n__c) = 0 POL(n__g(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: c -> n__c activate(n__g(X)) -> g(X) activate(X) -> X ---------------------------------------- (55) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c Q is empty. ---------------------------------------- (56) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (57) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) ---------------------------------------- (58) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: C -> F(n__g(n__c)) F(n__g(X)) -> G(activate(X)) F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C C -> F(n__g(n__c)) The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) activate(n__c) -> c The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (63) Obligation: Q DP problem: The TRS P consists of the following rules: F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C C -> F(n__g(n__c)) R is empty. The set Q consists of the following terms: c f(n__g(x0)) g(x0) activate(n__c) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. c f(n__g(x0)) g(x0) activate(n__c) ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: F(n__g(X)) -> ACTIVATE(X) ACTIVATE(n__c) -> C C -> F(n__g(n__c)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(n__g(X)) -> ACTIVATE(X) we obtained the following new rules [LPAR04]: (F(n__g(n__c)) -> ACTIVATE(n__c),F(n__g(n__c)) -> ACTIVATE(n__c)) ---------------------------------------- (67) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__c) -> C C -> F(n__g(n__c)) F(n__g(n__c)) -> ACTIVATE(n__c) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (68) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the right: s = ACTIVATE(n__c) evaluates to t =ACTIVATE(n__c) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence ACTIVATE(n__c) -> C with rule ACTIVATE(n__c) -> C and matcher [ ]. C -> F(n__g(n__c)) with rule C -> F(n__g(n__c)) at position [] and matcher [ ] F(n__g(n__c)) -> ACTIVATE(n__c) with rule F(n__g(n__c)) -> ACTIVATE(n__c) at position [] and matcher [ ] Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (69) NO ---------------------------------------- (70) Raffelsieper-Zantema-Transformation (SOUND) We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (71) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(c) -> up(n__c) down(activate(n__g(X))) -> up(g(X)) down(activate(n__c)) -> up(c) down(activate(X)) -> up(X) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) g_flat(up(x_1)) -> up(g(x_1)) activate_flat(up(x_1)) -> up(activate(x_1)) Q is empty. ---------------------------------------- (72) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = x_1 POL(activate_flat(x_1)) = x_1 POL(c) = 0 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(f_flat(x_1)) = 2*x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 2*x_1 POL(g_flat(x_1)) = 2 + 2*x_1 POL(n__c) = 0 POL(n__g(x_1)) = 2*x_1 POL(n__g_flat(x_1)) = 2*x_1 POL(top(x_1)) = 2*x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: g_flat(up(x_1)) -> up(g(x_1)) ---------------------------------------- (73) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(c) -> up(n__c) down(activate(n__g(X))) -> up(g(X)) down(activate(n__c)) -> up(c) down(activate(X)) -> up(X) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) activate_flat(up(x_1)) -> up(activate(x_1)) Q is empty. ---------------------------------------- (74) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = x_1 POL(activate_flat(x_1)) = 1 + x_1 POL(c) = 0 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 2*x_1 POL(n__c) = 0 POL(n__g(x_1)) = 2*x_1 POL(n__g_flat(x_1)) = 2*x_1 POL(top(x_1)) = x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: activate_flat(up(x_1)) -> up(activate(x_1)) ---------------------------------------- (75) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(c) -> up(n__c) down(activate(n__g(X))) -> up(g(X)) down(activate(n__c)) -> up(c) down(activate(X)) -> up(X) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) Q is empty. ---------------------------------------- (76) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = 2*x_1 POL(c) = 2 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(f_flat(x_1)) = 2*x_1 POL(fresh_constant) = 0 POL(g(x_1)) = x_1 POL(n__c) = 1 POL(n__g(x_1)) = x_1 POL(n__g_flat(x_1)) = x_1 POL(top(x_1)) = 2*x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: down(c) -> up(n__c) ---------------------------------------- (77) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__g(X))) -> up(g(X)) down(activate(n__c)) -> up(c) down(activate(X)) -> up(X) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) Q is empty. ---------------------------------------- (78) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = 1 + x_1 POL(c) = 1 POL(down(x_1)) = 2*x_1 POL(f(x_1)) = 1 + 2*x_1 POL(f_flat(x_1)) = 2 + 2*x_1 POL(fresh_constant) = 0 POL(g(x_1)) = x_1 POL(n__c) = 0 POL(n__g(x_1)) = x_1 POL(n__g_flat(x_1)) = x_1 POL(top(x_1)) = 2*x_1 POL(up(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: down(activate(n__g(X))) -> up(g(X)) down(activate(X)) -> up(X) ---------------------------------------- (79) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) Q is empty. ---------------------------------------- (80) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) The TRS R 2 is top(up(x)) -> top(down(x)) The signature Sigma is {top_1} ---------------------------------------- (81) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) ---------------------------------------- (82) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (83) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) TOP(up(x)) -> DOWN(x) DOWN(n__g(y1)) -> N__G_FLAT(down(y1)) DOWN(n__g(y1)) -> DOWN(y1) DOWN(f(c)) -> F_FLAT(down(c)) DOWN(f(c)) -> DOWN(c) DOWN(f(f(y5))) -> F_FLAT(down(f(y5))) DOWN(f(f(y5))) -> DOWN(f(y5)) DOWN(f(n__c)) -> F_FLAT(down(n__c)) DOWN(f(n__c)) -> DOWN(n__c) DOWN(f(g(y7))) -> F_FLAT(down(g(y7))) DOWN(f(g(y7))) -> DOWN(g(y7)) DOWN(f(activate(y8))) -> F_FLAT(down(activate(y8))) DOWN(f(activate(y8))) -> DOWN(activate(y8)) DOWN(f(fresh_constant)) -> F_FLAT(down(fresh_constant)) DOWN(f(fresh_constant)) -> DOWN(fresh_constant) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (84) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 13 less nodes. ---------------------------------------- (85) Complex Obligation (AND) ---------------------------------------- (86) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y5))) -> DOWN(f(y5)) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (87) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (88) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y5))) -> DOWN(f(y5)) R is empty. The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (89) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) ---------------------------------------- (90) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(f(f(y5))) -> DOWN(f(y5)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (91) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(f(f(y5))) -> DOWN(f(y5)) The graph contains the following edges 1 > 1 ---------------------------------------- (92) YES ---------------------------------------- (93) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(n__g(y1)) -> DOWN(y1) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (94) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (95) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(n__g(y1)) -> DOWN(y1) R is empty. The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (96) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) ---------------------------------------- (97) Obligation: Q DP problem: The TRS P consists of the following rules: DOWN(n__g(y1)) -> DOWN(y1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (98) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOWN(n__g(y1)) -> DOWN(y1) The graph contains the following edges 1 > 1 ---------------------------------------- (99) YES ---------------------------------------- (100) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) top(up(x)) -> top(down(x)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (101) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (102) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) top(up(x0)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (103) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(up(x0)) ---------------------------------------- (104) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(x)) -> TOP(down(x)) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (105) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(up(x)) -> TOP(down(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(c)) -> TOP(up(f(n__g(n__c)))),TOP(up(c)) -> TOP(up(f(n__g(n__c))))) (TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))),TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0))))) (TOP(up(g(x0))) -> TOP(up(n__g(x0))),TOP(up(g(x0))) -> TOP(up(n__g(x0)))) (TOP(up(activate(n__c))) -> TOP(up(c)),TOP(up(activate(n__c))) -> TOP(up(c))) (TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))),TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0)))) (TOP(up(f(c))) -> TOP(f_flat(down(c))),TOP(up(f(c))) -> TOP(f_flat(down(c)))) (TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))),TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0))))) (TOP(up(f(n__c))) -> TOP(f_flat(down(n__c))),TOP(up(f(n__c))) -> TOP(f_flat(down(n__c)))) (TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))),TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0))))) (TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))),TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0))))) (TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))),TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant)))) ---------------------------------------- (106) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(c)) -> TOP(up(f(n__g(n__c)))) TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(g(x0))) -> TOP(up(n__g(x0))) TOP(up(activate(n__c))) -> TOP(up(c)) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(f(c))) -> TOP(f_flat(down(c))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(n__c))) -> TOP(f_flat(down(n__c))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(fresh_constant))) -> TOP(f_flat(down(fresh_constant))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (107) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (108) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(g(x0))) -> TOP(up(n__g(x0))) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(c)) -> TOP(up(f(n__g(n__c)))) TOP(up(f(c))) -> TOP(f_flat(down(c))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (109) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(c))) -> TOP(f_flat(down(c))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(c))) -> TOP(f_flat(up(f(n__g(n__c))))),TOP(up(f(c))) -> TOP(f_flat(up(f(n__g(n__c)))))) ---------------------------------------- (110) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(g(x0))) -> TOP(up(n__g(x0))) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(c)) -> TOP(up(f(n__g(n__c)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(c))) -> TOP(f_flat(up(f(n__g(n__c))))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (111) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(x0)))) -> TOP(f_flat(down(g(x0)))) at position [0,0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(x0)))) -> TOP(f_flat(up(n__g(x0)))),TOP(up(f(g(x0)))) -> TOP(f_flat(up(n__g(x0))))) ---------------------------------------- (112) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(g(x0))) -> TOP(up(n__g(x0))) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(c)) -> TOP(up(f(n__g(n__c)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(c))) -> TOP(f_flat(up(f(n__g(n__c))))) TOP(up(f(g(x0)))) -> TOP(f_flat(up(n__g(x0)))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (113) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(c))) -> TOP(f_flat(up(f(n__g(n__c))))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c))))),TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c)))))) ---------------------------------------- (114) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(g(x0))) -> TOP(up(n__g(x0))) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(c)) -> TOP(up(f(n__g(n__c)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(g(x0)))) -> TOP(f_flat(up(n__g(x0)))) TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c))))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (115) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule TOP(up(f(g(x0)))) -> TOP(f_flat(up(n__g(x0)))) at position [0] we obtained the following new rules [LPAR04]: (TOP(up(f(g(x0)))) -> TOP(up(f(n__g(x0)))),TOP(up(f(g(x0)))) -> TOP(up(f(n__g(x0))))) ---------------------------------------- (116) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(g(x0))) -> TOP(up(n__g(x0))) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(c)) -> TOP(up(f(n__g(n__c)))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c))))) TOP(up(f(g(x0)))) -> TOP(up(f(n__g(x0)))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (117) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(c)) -> TOP(up(f(n__g(n__c)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(activate(x_1)) = 0 POL(c) = 1 POL(down(x_1)) = 0 POL(f(x_1)) = 0 POL(f_flat(x_1)) = 0 POL(fresh_constant) = 0 POL(g(x_1)) = 0 POL(n__c) = 0 POL(n__g(x_1)) = 0 POL(n__g_flat(x_1)) = 0 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (118) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(g(x0))) -> TOP(up(n__g(x0))) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c))))) TOP(up(f(g(x0)))) -> TOP(up(f(n__g(x0)))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (119) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(g(x0))) -> TOP(up(n__g(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(activate(x_1)) = 0 POL(c) = 0 POL(down(x_1)) = 0 POL(f(x_1)) = 1 POL(f_flat(x_1)) = 1 POL(fresh_constant) = 0 POL(g(x_1)) = 1 POL(n__c) = 0 POL(n__g(x_1)) = 0 POL(n__g_flat(x_1)) = 0 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (120) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(f(n__g(x0)))) -> TOP(up(g(activate(x0)))) TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c))))) TOP(up(f(g(x0)))) -> TOP(up(f(n__g(x0)))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (121) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (122) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c))))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (123) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(c))) -> TOP(up(f(f(n__g(n__c))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(activate(x_1)) = x_1 POL(c) = 1 POL(down(x_1)) = x_1 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 0 POL(n__c) = 1 POL(n__g(x_1)) = 0 POL(n__g_flat(x_1)) = 0 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (124) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (125) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(activate(x0)))) -> TOP(f_flat(down(activate(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(activate(x_1)) = 1 POL(c) = 0 POL(down(x_1)) = 0 POL(f(x_1)) = x_1 POL(f_flat(x_1)) = x_1 POL(fresh_constant) = 0 POL(g(x_1)) = 0 POL(n__c) = 0 POL(n__g(x_1)) = 0 POL(n__g_flat(x_1)) = 0 POL(up(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (126) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (127) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(up(f(f(x0)))) -> TOP(f_flat(down(f(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( c ) = [[1], [1]] >>> <<< M( down_1(x_1) ) = [[0], [0]] + [[1, 0], [1, 1]] * x_1 >>> <<< M( f_1(x_1) ) = [[1], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( n__g_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( fresh_constant ) = [[0], [0]] >>> <<< M( up_1(x_1) ) = [[0], [1]] + [[1, 1], [1, 0]] * x_1 >>> <<< M( n__g_flat_1(x_1) ) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( f_flat_1(x_1) ) = [[1], [1]] + [[1, 0], [0, 1]] * x_1 >>> <<< M( n__c ) = [[1], [0]] >>> <<< M( activate_1(x_1) ) = [[1], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< M( g_1(x_1) ) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 >>> Tuple symbols: <<< M( TOP_1(x_1) ) = [[0]] + [[1, 1]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) ---------------------------------------- (128) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (129) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (130) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (131) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (132) Complex Obligation (AND) ---------------------------------------- (133) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) down(f(fresh_constant)) -> f_flat(down(fresh_constant)) f_flat(up(x_1)) -> up(f(x_1)) n__g_flat(up(x_1)) -> up(n__g(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (134) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. c: 0 down: 0 f: 0 n__g: 0 fresh_constant: 1 up: 0 n__g_flat: 0 f_flat: 0 n__c: 0 activate: 0 TOP: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (135) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) TOP.0(up.0(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.0(activate.0(X))) down.0(f.0(n__g.1(X))) -> up.0(g.0(activate.1(X))) down.0(g.0(X)) -> up.0(n__g.0(X)) down.0(g.1(X)) -> up.0(n__g.1(X)) down.0(activate.0(n__c.)) -> up.0(c.) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) down.0(f.0(activate.0(y8))) -> f_flat.0(down.0(activate.0(y8))) down.0(f.0(activate.1(y8))) -> f_flat.0(down.0(activate.1(y8))) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) n__g_flat.0(up.1(x_1)) -> up.0(n__g.1(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(activate.0(x0))) down.0(f.0(activate.1(x0))) down.0(f.1(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (136) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (137) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.0(activate.0(X))) down.0(f.0(n__g.1(X))) -> up.0(g.0(activate.1(X))) down.0(g.0(X)) -> up.0(n__g.0(X)) down.0(g.1(X)) -> up.0(n__g.1(X)) down.0(activate.0(n__c.)) -> up.0(c.) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) down.0(f.0(activate.0(y8))) -> f_flat.0(down.0(activate.0(y8))) down.0(f.0(activate.1(y8))) -> f_flat.0(down.0(activate.1(y8))) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) n__g_flat.0(up.1(x_1)) -> up.0(n__g.1(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(activate.0(x0))) down.0(f.0(activate.1(x0))) down.0(f.1(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (138) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(g.1(X)) -> up.0(n__g.1(X)) down.0(f.1(fresh_constant.)) -> f_flat.0(down.1(fresh_constant.)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) n__g_flat.0(up.1(x_1)) -> up.0(n__g.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = x_1 POL(activate.1(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(fresh_constant.) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(n__c.) = 0 POL(n__g.0(x_1)) = x_1 POL(n__g.1(x_1)) = x_1 POL(n__g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (139) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.0(activate.0(X))) down.0(f.0(n__g.1(X))) -> up.0(g.0(activate.1(X))) down.0(g.0(X)) -> up.0(n__g.0(X)) down.0(activate.0(n__c.)) -> up.0(c.) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) down.0(f.0(activate.0(y8))) -> f_flat.0(down.0(activate.0(y8))) down.0(f.0(activate.1(y8))) -> f_flat.0(down.0(activate.1(y8))) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(activate.0(x0))) down.0(f.0(activate.1(x0))) down.0(f.1(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (140) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(f.0(n__g.1(X))) -> up.0(g.0(activate.1(X))) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = 1 + x_1 POL(activate.1(x_1)) = 1 + x_1 POL(c.) = 1 POL(down.0(x_1)) = 1 + x_1 POL(down.1(x_1)) = 1 + x_1 POL(f.0(x_1)) = 1 + x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = 1 + x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(n__c.) = 0 POL(n__g.0(x_1)) = x_1 POL(n__g.1(x_1)) = 1 + x_1 POL(n__g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 ---------------------------------------- (141) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.0(activate.0(X))) down.0(g.0(X)) -> up.0(n__g.0(X)) down.0(activate.0(n__c.)) -> up.0(c.) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) down.0(f.0(activate.0(y8))) -> f_flat.0(down.0(activate.0(y8))) down.0(f.0(activate.1(y8))) -> f_flat.0(down.0(activate.1(y8))) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.0(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.0(activate.0(x0))) down.0(f.0(activate.1(x0))) down.0(f.1(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (142) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (143) TRUE ---------------------------------------- (144) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (145) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(fresh_constant)) ---------------------------------------- (146) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (147) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (148) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (149) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (150) Complex Obligation (AND) ---------------------------------------- (151) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(activate(n__c)) -> up(c) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) down(f(activate(y8))) -> f_flat(down(activate(y8))) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (152) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. c: 0 down: 0 f: 0 fresh_constant: 0 n__g: 0 up: 0 n__g_flat: 0 f_flat: 0 n__c: 0 activate: 1 TOP: 0 g: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (153) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) TOP.0(up.0(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.1(activate.0(X))) down.0(f.0(n__g.1(X))) -> up.0(g.1(activate.1(X))) down.0(g.0(X)) -> up.0(n__g.0(X)) down.0(g.1(X)) -> up.0(n__g.1(X)) down.1(activate.0(n__c.)) -> up.0(c.) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) down.0(f.1(activate.0(y8))) -> f_flat.0(down.1(activate.0(y8))) down.0(f.1(activate.1(y8))) -> f_flat.0(down.1(activate.1(y8))) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) n__g_flat.0(up.1(x_1)) -> up.0(n__g.1(x_1)) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.1(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(activate.0(x0))) down.0(f.1(activate.1(x0))) down.0(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (154) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: down.0(g.0(X)) -> up.0(n__g.0(X)) down.0(f.1(activate.0(y8))) -> f_flat.0(down.1(activate.0(y8))) down.0(f.1(activate.1(y8))) -> f_flat.0(down.1(activate.1(y8))) n__g_flat.0(up.1(x_1)) -> up.0(n__g.1(x_1)) f_flat.0(up.1(x_1)) -> up.0(f.1(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = x_1 POL(activate.1(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = 1 + x_1 POL(g.1(x_1)) = x_1 POL(n__c.) = 0 POL(n__g.0(x_1)) = x_1 POL(n__g.1(x_1)) = x_1 POL(n__g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 POL(up.1(x_1)) = 1 + x_1 ---------------------------------------- (155) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) TOP.0(up.0(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(activate.0(n__c.)) -> up.0(c.) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.1(activate.0(X))) down.0(f.0(n__g.1(X))) -> up.0(g.1(activate.1(X))) down.0(g.1(X)) -> up.0(n__g.1(X)) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.1(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(activate.0(x0))) down.0(f.1(activate.1(x0))) down.0(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (156) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.0(f.0(n__g.1(X))) -> up.0(g.1(activate.1(X))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = 1 + x_1 POL(activate.1(x_1)) = x_1 POL(c.) = 1 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = 1 + x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = 1 + x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(n__c.) = 0 POL(n__g.0(x_1)) = x_1 POL(n__g.1(x_1)) = x_1 POL(n__g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = x_1 ---------------------------------------- (157) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) TOP.0(up.0(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(activate.0(n__c.)) -> up.0(c.) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.1(activate.0(X))) down.0(g.1(X)) -> up.0(n__g.1(X)) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.1(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(activate.0(x0))) down.0(f.1(activate.1(x0))) down.0(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (158) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(up.0(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = 0 POL(down.1(x_1)) = 0 POL(f.0(x_1)) = 0 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = 0 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 0 POL(n__c.) = 0 POL(n__g.0(x_1)) = 0 POL(n__g.1(x_1)) = 1 + x_1 POL(n__g_flat.0(x_1)) = 0 POL(up.0(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) ---------------------------------------- (159) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.0(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) The TRS R consists of the following rules: down.1(activate.0(n__c.)) -> up.0(c.) n__g_flat.0(up.0(x_1)) -> up.0(n__g.0(x_1)) down.0(c.) -> up.0(f.0(n__g.0(n__c.))) down.0(f.0(n__g.0(X))) -> up.0(g.1(activate.0(X))) down.0(g.1(X)) -> up.0(n__g.1(X)) down.0(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.0(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.0(f.0(c.)) -> f_flat.0(down.0(c.)) down.0(f.0(f.0(y5))) -> f_flat.0(down.0(f.0(y5))) down.0(f.0(f.1(y5))) -> f_flat.0(down.0(f.1(y5))) down.0(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.0(f.0(g.0(y7))) -> f_flat.0(down.0(g.0(y7))) down.0(f.0(g.1(y7))) -> f_flat.0(down.0(g.1(y7))) f_flat.0(up.0(x_1)) -> up.0(f.0(x_1)) The set Q consists of the following terms: down.0(c.) down.0(f.0(n__g.0(x0))) down.0(f.0(n__g.1(x0))) down.0(g.0(x0)) down.0(g.1(x0)) down.1(activate.0(n__c.)) down.0(n__g.0(x0)) down.0(n__g.1(x0)) down.0(f.0(c.)) down.0(f.0(f.0(x0))) down.0(f.0(f.1(x0))) down.0(f.0(n__c.)) down.0(f.0(g.0(x0))) down.0(f.0(g.1(x0))) down.0(f.1(activate.0(x0))) down.0(f.1(activate.1(x0))) down.0(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (160) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (161) TRUE ---------------------------------------- (162) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(activate(n__c)) -> up(c) n__g_flat(up(x_1)) -> up(n__g(x_1)) down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (163) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(fresh_constant)) ---------------------------------------- (164) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(activate(n__c)) -> up(c) n__g_flat(up(x_1)) -> up(n__g(x_1)) down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all (P,Q,R)-chains. ---------------------------------------- (165) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (166) Complex Obligation (AND) ---------------------------------------- (167) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(activate(n__c)) -> up(c) n__g_flat(up(x_1)) -> up(n__g(x_1)) down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(n__c)) -> f_flat(down(n__c)) down(f(g(y7))) -> f_flat(down(g(y7))) f_flat(up(x_1)) -> up(f(x_1)) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (168) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. c: 1 down: 0 f: 1 fresh_constant: 0 n__g: 1 up: 0 n__g_flat: 0 f_flat: 0 activate: 0 n__c: 0 TOP: 0 g: 1 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (169) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) TOP.0(up.1(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.0(activate.0(n__c.)) -> up.1(c.) n__g_flat.0(up.0(x_1)) -> up.1(n__g.0(x_1)) n__g_flat.0(up.1(x_1)) -> up.1(n__g.1(x_1)) down.1(c.) -> up.1(f.1(n__g.0(n__c.))) down.1(f.1(n__g.0(X))) -> up.1(g.0(activate.0(X))) down.1(f.1(n__g.1(X))) -> up.1(g.0(activate.1(X))) down.1(g.0(X)) -> up.1(n__g.0(X)) down.1(g.1(X)) -> up.1(n__g.1(X)) down.1(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.1(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.1(f.1(c.)) -> f_flat.0(down.1(c.)) down.1(f.1(f.0(y5))) -> f_flat.0(down.1(f.0(y5))) down.1(f.1(f.1(y5))) -> f_flat.0(down.1(f.1(y5))) down.1(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) down.1(f.1(g.0(y7))) -> f_flat.0(down.1(g.0(y7))) down.1(f.1(g.1(y7))) -> f_flat.0(down.1(g.1(y7))) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) The set Q consists of the following terms: down.1(c.) down.1(f.1(n__g.0(x0))) down.1(f.1(n__g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.0(activate.0(n__c.)) down.1(n__g.0(x0)) down.1(n__g.1(x0)) down.1(f.1(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(n__c.)) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(f.0(activate.0(x0))) down.1(f.0(activate.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (170) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: n__g_flat.0(up.0(x_1)) -> up.1(n__g.0(x_1)) down.1(g.1(X)) -> up.1(n__g.1(X)) down.1(f.0(n__c.)) -> f_flat.0(down.0(n__c.)) f_flat.0(up.0(x_1)) -> up.1(f.0(x_1)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = x_1 POL(activate.1(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = 1 + x_1 POL(f.1(x_1)) = x_1 POL(f_flat.0(x_1)) = x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = 1 + x_1 POL(n__c.) = 0 POL(n__g.0(x_1)) = x_1 POL(n__g.1(x_1)) = x_1 POL(n__g_flat.0(x_1)) = x_1 POL(up.0(x_1)) = 1 + x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (171) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) TOP.0(up.1(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(c.) -> up.1(f.1(n__g.0(n__c.))) down.1(f.1(n__g.0(X))) -> up.1(g.0(activate.0(X))) down.1(f.1(n__g.1(X))) -> up.1(g.0(activate.1(X))) down.1(g.0(X)) -> up.1(n__g.0(X)) down.1(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.1(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.1(f.1(c.)) -> f_flat.0(down.1(c.)) down.1(f.1(f.0(y5))) -> f_flat.0(down.1(f.0(y5))) down.1(f.1(f.1(y5))) -> f_flat.0(down.1(f.1(y5))) down.1(f.1(g.0(y7))) -> f_flat.0(down.1(g.0(y7))) down.1(f.1(g.1(y7))) -> f_flat.0(down.1(g.1(y7))) n__g_flat.0(up.1(x_1)) -> up.1(n__g.1(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(activate.0(n__c.)) -> up.1(c.) The set Q consists of the following terms: down.1(c.) down.1(f.1(n__g.0(x0))) down.1(f.1(n__g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.0(activate.0(n__c.)) down.1(n__g.0(x0)) down.1(n__g.1(x0)) down.1(f.1(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(n__c.)) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(f.0(activate.0(x0))) down.1(f.0(activate.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (172) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: down.1(f.1(n__g.1(X))) -> up.1(g.0(activate.1(X))) Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = 1 + x_1 POL(activate.1(x_1)) = x_1 POL(c.) = 1 POL(down.0(x_1)) = x_1 POL(down.1(x_1)) = x_1 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 1 + x_1 POL(f_flat.0(x_1)) = 1 + x_1 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 POL(n__c.) = 0 POL(n__g.0(x_1)) = x_1 POL(n__g.1(x_1)) = x_1 POL(n__g_flat.0(x_1)) = x_1 POL(up.1(x_1)) = x_1 ---------------------------------------- (173) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) TOP.0(up.1(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(c.) -> up.1(f.1(n__g.0(n__c.))) down.1(f.1(n__g.0(X))) -> up.1(g.0(activate.0(X))) down.1(g.0(X)) -> up.1(n__g.0(X)) down.1(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.1(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.1(f.1(c.)) -> f_flat.0(down.1(c.)) down.1(f.1(f.0(y5))) -> f_flat.0(down.1(f.0(y5))) down.1(f.1(f.1(y5))) -> f_flat.0(down.1(f.1(y5))) down.1(f.1(g.0(y7))) -> f_flat.0(down.1(g.0(y7))) down.1(f.1(g.1(y7))) -> f_flat.0(down.1(g.1(y7))) n__g_flat.0(up.1(x_1)) -> up.1(n__g.1(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(activate.0(n__c.)) -> up.1(c.) The set Q consists of the following terms: down.1(c.) down.1(f.1(n__g.0(x0))) down.1(f.1(n__g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.0(activate.0(n__c.)) down.1(n__g.0(x0)) down.1(n__g.1(x0)) down.1(f.1(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(n__c.)) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(f.0(activate.0(x0))) down.1(f.0(activate.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (174) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(up.1(n__g.0(x0))) -> TOP.0(n__g_flat.0(down.0(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(activate.0(x_1)) = x_1 POL(c.) = 0 POL(down.0(x_1)) = 0 POL(down.1(x_1)) = 0 POL(f.0(x_1)) = x_1 POL(f.1(x_1)) = 0 POL(f_flat.0(x_1)) = 0 POL(g.0(x_1)) = 0 POL(g.1(x_1)) = x_1 POL(n__c.) = 1 POL(n__g.0(x_1)) = 1 POL(n__g.1(x_1)) = 0 POL(n__g_flat.0(x_1)) = 0 POL(up.1(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: n__g_flat.0(up.1(x_1)) -> up.1(n__g.1(x_1)) ---------------------------------------- (175) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(up.1(n__g.1(x0))) -> TOP.0(n__g_flat.0(down.1(x0))) The TRS R consists of the following rules: down.1(c.) -> up.1(f.1(n__g.0(n__c.))) down.1(f.1(n__g.0(X))) -> up.1(g.0(activate.0(X))) down.1(g.0(X)) -> up.1(n__g.0(X)) down.1(n__g.0(y1)) -> n__g_flat.0(down.0(y1)) down.1(n__g.1(y1)) -> n__g_flat.0(down.1(y1)) down.1(f.1(c.)) -> f_flat.0(down.1(c.)) down.1(f.1(f.0(y5))) -> f_flat.0(down.1(f.0(y5))) down.1(f.1(f.1(y5))) -> f_flat.0(down.1(f.1(y5))) down.1(f.1(g.0(y7))) -> f_flat.0(down.1(g.0(y7))) down.1(f.1(g.1(y7))) -> f_flat.0(down.1(g.1(y7))) n__g_flat.0(up.1(x_1)) -> up.1(n__g.1(x_1)) f_flat.0(up.1(x_1)) -> up.1(f.1(x_1)) down.0(activate.0(n__c.)) -> up.1(c.) The set Q consists of the following terms: down.1(c.) down.1(f.1(n__g.0(x0))) down.1(f.1(n__g.1(x0))) down.1(g.0(x0)) down.1(g.1(x0)) down.0(activate.0(n__c.)) down.1(n__g.0(x0)) down.1(n__g.1(x0)) down.1(f.1(c.)) down.1(f.1(f.0(x0))) down.1(f.1(f.1(x0))) down.1(f.0(n__c.)) down.1(f.1(g.0(x0))) down.1(f.1(g.1(x0))) down.1(f.0(activate.0(x0))) down.1(f.0(activate.1(x0))) down.1(f.0(fresh_constant.)) f_flat.0(up.0(x0)) f_flat.0(up.1(x0)) n__g_flat.0(up.0(x0)) n__g_flat.0(up.1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (176) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (177) TRUE ---------------------------------------- (178) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(g(y7))) -> f_flat(down(g(y7))) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(activate(n__c)) -> up(c) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) down(f(fresh_constant)) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (179) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. down(f(fresh_constant)) ---------------------------------------- (180) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(up(n__g(x0))) -> TOP(n__g_flat(down(x0))) The TRS R consists of the following rules: down(c) -> up(f(n__g(n__c))) down(f(n__g(X))) -> up(g(activate(X))) down(g(X)) -> up(n__g(X)) down(n__g(y1)) -> n__g_flat(down(y1)) down(f(c)) -> f_flat(down(c)) down(f(f(y5))) -> f_flat(down(f(y5))) down(f(g(y7))) -> f_flat(down(g(y7))) n__g_flat(up(x_1)) -> up(n__g(x_1)) f_flat(up(x_1)) -> up(f(x_1)) down(activate(n__c)) -> up(c) The set Q consists of the following terms: down(c) down(f(n__g(x0))) down(g(x0)) down(activate(n__c)) down(n__g(x0)) down(f(c)) down(f(f(x0))) down(f(n__c)) down(f(g(x0))) down(f(activate(x0))) f_flat(up(x0)) n__g_flat(up(x0)) We have to consider all (P,Q,R)-chains.