/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Outermost Termination of the given OTRS could not be shown: (0) OTRS (1) Trivial-Transformation [SOUND, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) NonTerminationLoopProof [COMPLETE, 0 ms] (8) NO (9) Thiemann-SpecialC-Transformation [EQUIVALENT, 0 ms] (10) QTRS (11) DependencyPairsProof [EQUIVALENT, 0 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) AND (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QReductionProof [EQUIVALENT, 0 ms] (19) QDP (20) QDPOrderProof [EQUIVALENT, 8 ms] (21) QDP (22) DependencyGraphProof [EQUIVALENT, 0 ms] (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPOrderProof [EQUIVALENT, 13 ms] (29) QDP (30) DependencyGraphProof [EQUIVALENT, 0 ms] (31) TRUE (32) QDP (33) UsableRulesProof [EQUIVALENT, 0 ms] (34) QDP (35) QReductionProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) DependencyGraphProof [EQUIVALENT, 0 ms] (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP ---------------------------------------- (0) Obligation: Term rewrite system R: The TRS R consists of the following rules: f(X, g(X), Y) -> f(Y, Y, Y) g(b) -> c b -> c Outermost Strategy. ---------------------------------------- (1) Trivial-Transformation (SOUND) We applied the Trivial transformation to transform the outermost TRS to a standard TRS. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(X, g(X), Y) -> f(Y, Y, Y) g(b) -> c b -> c Q is empty. ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(X, g(X), Y) -> F(Y, Y, Y) The TRS R consists of the following rules: f(X, g(X), Y) -> f(Y, Y, Y) g(b) -> c b -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(X, g(X), Y) -> F(Y, Y, Y) we obtained the following new rules [LPAR04]: (F(x0, g(x0), g(y_1)) -> F(g(y_1), g(y_1), g(y_1)),F(x0, g(x0), g(y_1)) -> F(g(y_1), g(y_1), g(y_1))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(x0, g(x0), g(y_1)) -> F(g(y_1), g(y_1), g(y_1)) The TRS R consists of the following rules: f(X, g(X), Y) -> f(Y, Y, Y) g(b) -> c b -> c Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the right: s = F(x0, g(x0), g(b)) evaluates to t =F(c, g(c), g(b)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [x0 / c] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence F(x0, g(x0), g(b)) -> F(g(b), g(b), g(b)) with rule F(x0, g(x0), g(y_1)) -> F(g(y_1), g(y_1), g(y_1)) and matcher [y_1 / b]. F(g(b), g(b), g(b)) -> F(c, g(b), g(b)) with rule g(b) -> c at position [0] and matcher [ ] F(c, g(b), g(b)) -> F(c, g(c), g(b)) with rule b -> c at position [1,0] and matcher [ ] Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (8) NO ---------------------------------------- (9) Thiemann-SpecialC-Transformation (EQUIVALENT) We applied the Thiemann-SpecialC transformation to transform the outermost TRS to an innermost TRS. ---------------------------------------- (10) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) redex_g(b) -> result_g(c) reduce(b) -> go_up(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) ---------------------------------------- (11) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) TOP(go_up(x)) -> REDUCE(x) REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) REDUCE(f(x_1, x_2, x_3)) -> REDEX_F(x_1, x_2, x_3) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) REDUCE(g(x_1)) -> REDEX_G(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> IN_F_1(reduce(x_1), x_2, x_3) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> IN_F_2(x_1, reduce(x_2), x_3) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_F(redex_f(x_1, x_2, x_3)) -> IN_F_3(x_1, x_2, reduce(x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) CHECK_G(redex_g(x_1)) -> IN_G_1(reduce(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) redex_g(b) -> result_g(c) reduce(b) -> go_up(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes. ---------------------------------------- (14) Complex Obligation (AND) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) redex_g(b) -> result_g(c) reduce(b) -> go_up(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_g(b) -> result_g(c) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_g(b) -> result_g(c) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) The set Q consists of the following terms: redex_f(x0, g(x0), x1) redex_g(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. REDUCE(g(x_1)) -> CHECK_G(redex_g(x_1)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(CHECK_F(x_1)) = x_1 POL(CHECK_G(x_1)) = x_1 POL(REDUCE(x_1)) = x_1 POL(b) = 1 POL(c) = 1 POL(f(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g(x_1)) = 1 + x_1 POL(redex_f(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(redex_g(x_1)) = x_1 POL(result_f(x_1)) = 1 POL(result_g(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) redex_g(b) -> result_g(c) ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_G(redex_g(x_1)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_g(b) -> result_g(c) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) The set Q consists of the following terms: redex_f(x0, g(x0), x1) redex_g(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_g(b) -> result_g(c) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) The set Q consists of the following terms: redex_f(x0, g(x0), x1) redex_g(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) The set Q consists of the following terms: redex_f(x0, g(x0), x1) redex_g(b) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. redex_g(b) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) The set Q consists of the following terms: redex_f(x0, g(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. REDUCE(f(x_1, x_2, x_3)) -> CHECK_F(redex_f(x_1, x_2, x_3)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( result_f_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( f_3(x_1, ..., x_3) ) = [[0], [1]] + [[0, 0], [0, 1]] * x_1 + [[0, 0], [0, 1]] * x_2 + [[0, 0], [0, 1]] * x_3 >>> <<< M( redex_f_3(x_1, ..., x_3) ) = [[0], [0]] + [[1, 1], [0, 1]] * x_1 + [[0, 0], [0, 1]] * x_2 + [[1, 1], [0, 1]] * x_3 >>> <<< M( g_1(x_1) ) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> Tuple symbols: <<< M( CHECK_F_1(x_1) ) = [[0]] + [[0, 1]] * x_1 >>> <<< M( REDUCE_1(x_1) ) = [[0]] + [[0, 1]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_1) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_2) CHECK_F(redex_f(x_1, x_2, x_3)) -> REDUCE(x_3) The TRS R consists of the following rules: redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) The set Q consists of the following terms: redex_f(x0, g(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. ---------------------------------------- (31) TRUE ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: top(go_up(x)) -> top(reduce(x)) reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) redex_g(b) -> result_g(c) reduce(b) -> go_up(c) check_f(result_f(x)) -> go_up(x) check_g(result_g(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(b) -> go_up(c) redex_g(b) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(b) -> go_up(c) redex_g(b) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) The set Q consists of the following terms: reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(go_up(x)) -> TOP(reduce(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(go_up(f(x0, x1, x2))) -> TOP(check_f(redex_f(x0, x1, x2))),TOP(go_up(f(x0, x1, x2))) -> TOP(check_f(redex_f(x0, x1, x2)))) (TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))),TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0)))) (TOP(go_up(b)) -> TOP(go_up(c)),TOP(go_up(b)) -> TOP(go_up(c))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0, x1, x2))) -> TOP(check_f(redex_f(x0, x1, x2))) TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) TOP(go_up(b)) -> TOP(go_up(c)) The TRS R consists of the following rules: reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(b) -> go_up(c) redex_g(b) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) The set Q consists of the following terms: reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(f(x0, x1, x2))) -> TOP(check_f(redex_f(x0, x1, x2))) TOP(go_up(g(x0))) -> TOP(check_g(redex_g(x0))) The TRS R consists of the following rules: reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(b) -> go_up(c) redex_g(b) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) The set Q consists of the following terms: reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(b) -> go_up(c) redex_g(b) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) The set Q consists of the following terms: top(go_up(x0)) reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. top(go_up(x0)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(go_up(x)) -> TOP(reduce(x)) The TRS R consists of the following rules: reduce(f(x_1, x_2, x_3)) -> check_f(redex_f(x_1, x_2, x_3)) reduce(g(x_1)) -> check_g(redex_g(x_1)) reduce(b) -> go_up(c) redex_g(b) -> result_g(c) check_g(result_g(x)) -> go_up(x) check_g(redex_g(x_1)) -> in_g_1(reduce(x_1)) in_g_1(go_up(x_1)) -> go_up(g(x_1)) redex_f(X, g(X), Y) -> result_f(f(Y, Y, Y)) check_f(result_f(x)) -> go_up(x) check_f(redex_f(x_1, x_2, x_3)) -> in_f_1(reduce(x_1), x_2, x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_2(x_1, reduce(x_2), x_3) check_f(redex_f(x_1, x_2, x_3)) -> in_f_3(x_1, x_2, reduce(x_3)) in_f_3(x_1, x_2, go_up(x_3)) -> go_up(f(x_1, x_2, x_3)) in_f_2(x_1, go_up(x_2), x_3) -> go_up(f(x_1, x_2, x_3)) in_f_1(go_up(x_1), x_2, x_3) -> go_up(f(x_1, x_2, x_3)) The set Q consists of the following terms: reduce(f(x0, x1, x2)) reduce(g(x0)) redex_f(x0, g(x0), x1) redex_g(b) reduce(b) check_f(result_f(x0)) check_g(result_g(x0)) check_f(redex_f(x0, x1, x2)) check_g(redex_g(x0)) in_f_1(go_up(x0), x1, x2) in_f_2(x0, go_up(x1), x2) in_f_3(x0, x1, go_up(x2)) in_g_1(go_up(x0)) We have to consider all minimal (P,Q,R)-chains.