/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.jar /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.jar # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty termination of the given Bare JBC problem could be proven: (0) Bare JBC problem (1) BareJBCToJBCProof [EQUIVALENT, 97 ms] (2) JBC problem (3) JBCToGraph [EQUIVALENT, 2803 ms] (4) JBCTerminationGraph (5) TerminationGraphToSCCProof [SOUND, 0 ms] (6) AND (7) JBCTerminationSCC (8) SCCToIRSProof [SOUND, 276 ms] (9) IRSwT (10) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (11) IRSwT (12) IRSwTTerminationDigraphProof [EQUIVALENT, 45 ms] (13) IRSwT (14) IntTRSCompressionProof [EQUIVALENT, 0 ms] (15) IRSwT (16) TempFilterProof [SOUND, 1946 ms] (17) IRSwT (18) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] (19) IRSwT (20) IntTRSUnneededArgumentFilterProof [EQUIVALENT, 0 ms] (21) IRSwT (22) TempFilterProof [SOUND, 3 ms] (23) IRSwT (24) IRSwTToQDPProof [SOUND, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) JBCTerminationSCC (29) SCCToIRSProof [SOUND, 216 ms] (30) IRSwT (31) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (32) IRSwT (33) IRSwTTerminationDigraphProof [EQUIVALENT, 53 ms] (34) IRSwT (35) TempFilterProof [SOUND, 32 ms] (36) IRSwT (37) IRSwTToQDPProof [SOUND, 0 ms] (38) QDP (39) QDPSizeChangeProof [EQUIVALENT, 0 ms] (40) YES (41) JBCTerminationSCC (42) SCCToIRSProof [SOUND, 714 ms] (43) IRSwT (44) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (45) IRSwT (46) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] (47) IRSwT (48) IntTRSCompressionProof [EQUIVALENT, 0 ms] (49) IRSwT (50) TempFilterProof [SOUND, 11 ms] (51) IntTRS (52) RankingReductionPairProof [EQUIVALENT, 0 ms] (53) YES ---------------------------------------- (0) Obligation: need to prove termination of the following program: /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * This class provides a skeletal implementation of the Collection * interface, to minimize the effort required to implement this interface.

* * To implement an unmodifiable collection, the programmer needs only to * extend this class and provide implementations for the iterator and * size methods. (The iterator returned by the iterator * method must implement hasNext and next.)

* * To implement a modifiable collection, the programmer must additionally * override this class's add method (which otherwise throws an * UnsupportedOperationException), and the iterator returned by the * iterator method must additionally implement its remove * method.

* * The programmer should generally provide a void (no argument) and * Collection constructor, as per the recommendation in the * Collection interface specification.

* * The documentation for each non-abstract method in this class describes its * implementation in detail. Each of these methods may be overridden if * the collection being implemented admits a more efficient implementation.

* * This class is a member of the * * Java Collections Framework. * * @author Josh Bloch * @author Neal Gafter * @see Collection * @since 1.2 */ public abstract class AbstractCollection implements Collection { /** * Sole constructor. (For invocation by subclass constructors, typically * implicit.) */ protected AbstractCollection() { } // Query Operations /** * Returns an iterator over the elements contained in this collection. * * @return an iterator over the elements contained in this collection */ public abstract Iterator iterator(); public abstract int size(); /** * {@inheritDoc} * *

This implementation returns size() == 0. */ public boolean isEmpty() { return size() == 0; } /** * {@inheritDoc} * *

This implementation iterates over the elements in the collection, * checking each element in turn for equality with the specified element. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean contains(Object o) { Iterator e = iterator(); if (o==null) { while (e.hasNext()) if (e.next()==null) return true; } else { while (e.hasNext()) if (o.equals(e.next())) return true; } return false; } // Modification Operations /** * {@inheritDoc} * *

This implementation always throws an * UnsupportedOperationException. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @throws IllegalStateException {@inheritDoc} */ public boolean add(E e) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * *

This implementation iterates over the collection looking for the * specified element. If it finds the element, it removes the element * from the collection using the iterator's remove method. * *

Note that this implementation throws an * UnsupportedOperationException if the iterator returned by this * collection's iterator method does not implement the remove * method and this collection contains the specified object. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean remove(Object o) { Iterator e = iterator(); if (o==null) { while (e.hasNext()) { if (e.next()==null) { e.remove(); return true; } } } else { while (e.hasNext()) { if (o.equals(e.next())) { e.remove(); return true; } } } return false; } // Bulk Operations /** * {@inheritDoc} * *

This implementation iterates over the specified collection, * checking each element returned by the iterator in turn to see * if it's contained in this collection. If all elements are so * contained true is returned, otherwise false. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @see #contains(Object) */ public boolean containsAll(Collection c) { Iterator e = c.iterator(); while (e.hasNext()) if (!contains(e.next())) return false; return true; } /** * {@inheritDoc} * *

This implementation iterates over the specified collection, and adds * each object returned by the iterator to this collection, in turn. * *

Note that this implementation will throw an * UnsupportedOperationException unless add is * overridden (assuming the specified collection is non-empty). * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @throws IllegalStateException {@inheritDoc} * * @see #add(Object) */ public boolean addAll(Collection c) { boolean modified = false; Iterator e = c.iterator(); while (e.hasNext()) { if (add(e.next())) modified = true; } return modified; } /** * {@inheritDoc} * *

This implementation iterates over this collection, checking each * element returned by the iterator in turn to see if it's contained * in the specified collection. If it's so contained, it's removed from * this collection with the iterator's remove method. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by the * iterator method does not implement the remove method * and this collection contains one or more elements in common with the * specified collection. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * * @see #remove(Object) * @see #contains(Object) */ public boolean removeAll(Collection c) { boolean modified = false; Iterator e = iterator(); while (e.hasNext()) { if (c.contains(e.next())) { e.remove(); modified = true; } } return modified; } /** * {@inheritDoc} * *

This implementation iterates over this collection, checking each * element returned by the iterator in turn to see if it's contained * in the specified collection. If it's not so contained, it's removed * from this collection with the iterator's remove method. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by the * iterator method does not implement the remove method * and this collection contains one or more elements not present in the * specified collection. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * * @see #remove(Object) * @see #contains(Object) */ public boolean retainAll(Collection c) { boolean modified = false; Iterator e = iterator(); while (e.hasNext()) { if (!c.contains(e.next())) { e.remove(); modified = true; } } return modified; } /** * {@inheritDoc} * *

This implementation iterates over this collection, removing each * element using the Iterator.remove operation. Most * implementations will probably choose to override this method for * efficiency. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by this * collection's iterator method does not implement the * remove method and this collection is non-empty. * * @throws UnsupportedOperationException {@inheritDoc} */ public void clear() { Iterator e = iterator(); while (e.hasNext()) { e.next(); e.remove(); } } // String conversion /** * Returns a string representation of this collection. The string * representation consists of a list of the collection's elements in the * order they are returned by its iterator, enclosed in square brackets * ("[]"). Adjacent elements are separated by the characters * ", " (comma and space). Elements are converted to strings as * by {@link String#valueOf(Object)}. * * @return a string representation of this collection */ public String toString() { Iterator i = iterator(); if (! i.hasNext()) return "[]"; String sb = ""; sb = sb + "["; for (;;) { E e = i.next(); sb = sb + (e == this ? "(this Collection)" : e); if (! i.hasNext()) { sb = sb + "]"; return sb; } sb = sb + ", "; } } } /* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; import javaUtilEx.Map.Entry; /** * This class provides a skeletal implementation of the Map * interface, to minimize the effort required to implement this interface. * *

To implement an unmodifiable map, the programmer needs only to extend this * class and provide an implementation for the entrySet method, which * returns a set-view of the map's mappings. Typically, the returned set * will, in turn, be implemented atop AbstractSet. This set should * not support the add or remove methods, and its iterator * should not support the remove method. * *

To implement a modifiable map, the programmer must additionally override * this class's put method (which otherwise throws an * UnsupportedOperationException), and the iterator returned by * entrySet().iterator() must additionally implement its * remove method. * *

The programmer should generally provide a void (no argument) and map * constructor, as per the recommendation in the Map interface * specification. * *

The documentation for each non-abstract method in this class describes its * implementation in detail. Each of these methods may be overridden if the * map being implemented admits a more efficient implementation. * *

This class is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Josh Bloch * @author Neal Gafter * @see Map * @see Collection * @since 1.2 */ public abstract class AbstractMap implements Map { /** * Sole constructor. (For invocation by subclass constructors, typically * implicit.) */ protected AbstractMap() { } // Query Operations /** * {@inheritDoc} * *

This implementation returns entrySet().size(). */ public int size() { return entrySet().size(); } /** * {@inheritDoc} * *

This implementation returns size() == 0. */ public boolean isEmpty() { return size() == 0; } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching * for an entry with the specified value. If such an entry is found, * true is returned. If the iteration terminates without * finding such an entry, false is returned. Note that this * implementation requires linear time in the size of the map. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean containsValue(Object value) { Iterator> i = entrySet().iterator(); if (value==null) { while (i.hasNext()) { Entry e = i.next(); if (e.getValue()==null) return true; } } else { while (i.hasNext()) { Entry e = i.next(); if (value.equals(e.getValue())) return true; } } return false; } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching * for an entry with the specified key. If such an entry is found, * true is returned. If the iteration terminates without * finding such an entry, false is returned. Note that this * implementation requires linear time in the size of the map; many * implementations will override this method. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean containsKey(Object key) { Iterator> i = entrySet().iterator(); if (key==null) { while (i.hasNext()) { Entry e = i.next(); if (e.getKey()==null) return true; } } else { while (i.hasNext()) { Entry e = i.next(); if (key.equals(e.getKey())) return true; } } return false; } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching * for an entry with the specified key. If such an entry is found, * the entry's value is returned. If the iteration terminates without * finding such an entry, null is returned. Note that this * implementation requires linear time in the size of the map; many * implementations will override this method. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public V get(Object key) { Iterator> i = entrySet().iterator(); if (key==null) { while (i.hasNext()) { Entry e = i.next(); if (e.getKey()==null) return e.getValue(); } } else { while (i.hasNext()) { Entry e = i.next(); if (key.equals(e.getKey())) return e.getValue(); } } return null; } // Modification Operations /** * {@inheritDoc} * *

This implementation always throws an * UnsupportedOperationException. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public V put(K key, V value) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching for an * entry with the specified key. If such an entry is found, its value is * obtained with its getValue operation, the entry is removed * from the collection (and the backing map) with the iterator's * remove operation, and the saved value is returned. If the * iteration terminates without finding such an entry, null is * returned. Note that this implementation requires linear time in the * size of the map; many implementations will override this method. * *

Note that this implementation throws an * UnsupportedOperationException if the entrySet * iterator does not support the remove method and this map * contains a mapping for the specified key. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public V remove(Object key) { Iterator> i = entrySet().iterator(); Entry correctEntry = null; if (key==null) { while (correctEntry==null && i.hasNext()) { Entry e = i.next(); if (e.getKey()==null) correctEntry = e; } } else { while (correctEntry==null && i.hasNext()) { Entry e = i.next(); if (key.equals(e.getKey())) correctEntry = e; } } V oldValue = null; if (correctEntry !=null) { oldValue = correctEntry.getValue(); i.remove(); } return oldValue; } // Bulk Operations /** * {@inheritDoc} * *

This implementation iterates over the specified map's * entrySet() collection, and calls this map's put * operation once for each entry returned by the iteration. * *

Note that this implementation throws an * UnsupportedOperationException if this map does not support * the put operation and the specified map is nonempty. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public void putAll(Map m) { Iterator it = m.entrySet().iterator(); while (it.hasNext()) { Map.Entry e = (Map.Entry) it.next(); put((K) e.getKey(), (V) e.getValue()); } } /** * {@inheritDoc} * *

This implementation calls entrySet().clear(). * *

Note that this implementation throws an * UnsupportedOperationException if the entrySet * does not support the clear operation. * * @throws UnsupportedOperationException {@inheritDoc} */ public void clear() { entrySet().clear(); } // Views /** * Each of these fields are initialized to contain an instance of the * appropriate view the first time this view is requested. The views are * stateless, so there's no reason to create more than one of each. */ transient volatile Set keySet = null; transient volatile Collection values = null; /** * {@inheritDoc} * *

This implementation returns a set that subclasses {@link AbstractSet}. * The subclass's iterator method returns a "wrapper object" over this * map's entrySet() iterator. The size method * delegates to this map's size method and the * contains method delegates to this map's * containsKey method. * *

The set is created the first time this method is called, * and returned in response to all subsequent calls. No synchronization * is performed, so there is a slight chance that multiple calls to this * method will not all return the same set. */ public Set keySet() { if (keySet == null) { keySet = new AbstractSet() { public Iterator iterator() { return new Iterator() { private Iterator> i = entrySet().iterator(); public boolean hasNext() { return i.hasNext(); } public K next() { return i.next().getKey(); } public void remove() { i.remove(); } }; } public int size() { return AbstractMap.this.size(); } public boolean isEmpty() { return AbstractMap.this.isEmpty(); } public void clear() { AbstractMap.this.clear(); } public boolean contains(Object k) { return AbstractMap.this.containsKey(k); } public Object[] toArray() { Object[] res = new Object[AbstractMap.this.size()]; Iterator> it = entrySet().iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next().getKey(); return res; } public T[] toArray(T[] a) { a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), AbstractMap.this.size()); Object[] res = a; Iterator> it = entrySet().iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next().getKey(); return a; } }; } return keySet; } /** * {@inheritDoc} * *

This implementation returns a collection that subclasses {@link * AbstractCollection}. The subclass's iterator method returns a * "wrapper object" over this map's entrySet() iterator. * The size method delegates to this map's size * method and the contains method delegates to this map's * containsValue method. * *

The collection is created the first time this method is called, and * returned in response to all subsequent calls. No synchronization is * performed, so there is a slight chance that multiple calls to this * method will not all return the same collection. */ public Collection values() { if (values == null) { values = new AbstractCollection() { public Iterator iterator() { return new Iterator() { private Iterator> i = entrySet().iterator(); public boolean hasNext() { return i.hasNext(); } public V next() { return i.next().getValue(); } public void remove() { i.remove(); } }; } public int size() { return AbstractMap.this.size(); } public boolean isEmpty() { return AbstractMap.this.isEmpty(); } public void clear() { AbstractMap.this.clear(); } public boolean contains(Object v) { return AbstractMap.this.containsValue(v); } }; } return values; } public abstract Set> entrySet(); // Comparison and hashing /** * Compares the specified object with this map for equality. Returns * true if the given object is also a map and the two maps * represent the same mappings. More formally, two maps m1 and * m2 represent the same mappings if * m1.entrySet().equals(m2.entrySet()). This ensures that the * equals method works properly across different implementations * of the Map interface. * *

This implementation first checks if the specified object is this map; * if so it returns true. Then, it checks if the specified * object is a map whose size is identical to the size of this map; if * not, it returns false. If so, it iterates over this map's * entrySet collection, and checks that the specified map * contains each mapping that this map contains. If the specified map * fails to contain such a mapping, false is returned. If the * iteration completes, true is returned. * * @param o object to be compared for equality with this map * @return true if the specified object is equal to this map */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Map)) return false; Map m = (Map) o; if (m.size() != size()) return false; try { Iterator> i = entrySet().iterator(); while (i.hasNext()) { Entry e = i.next(); K key = e.getKey(); V value = e.getValue(); if (value == null) { if (!(m.get(key)==null && m.containsKey(key))) return false; } else { if (!value.equals(m.get(key))) return false; } } } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } return true; } /** * Returns the hash code value for this map. The hash code of a map is * defined to be the sum of the hash codes of each entry in the map's * entrySet() view. This ensures that m1.equals(m2) * implies that m1.hashCode()==m2.hashCode() for any two maps * m1 and m2, as required by the general contract of * {@link Object#hashCode}. * *

This implementation iterates over entrySet(), calling * {@link Map.Entry#hashCode hashCode()} on each element (entry) in the * set, and adding up the results. * * @return the hash code value for this map * @see Map.Entry#hashCode() * @see Object#equals(Object) * @see Set#equals(Object) */ public int hashCode() { int h = 0; Iterator> i = entrySet().iterator(); while (i.hasNext()) h += i.next().hashCode(); return h; } /** * Returns a string representation of this map. The string representation * consists of a list of key-value mappings in the order returned by the * map's entrySet view's iterator, enclosed in braces * ("{}"). Adjacent mappings are separated by the characters * ", " (comma and space). Each key-value mapping is rendered as * the key followed by an equals sign ("=") followed by the * associated value. Keys and values are converted to strings as by * {@link String#valueOf(Object)}. * * @return a string representation of this map */ public String toString() { Iterator> i = entrySet().iterator(); if (! i.hasNext()) return "{}"; StringBuilder sb = new StringBuilder(); sb.append('{'); for (;;) { Entry e = i.next(); K key = e.getKey(); V value = e.getValue(); sb.append(key == this ? "(this Map)" : key); sb.append('='); sb.append(value == this ? "(this Map)" : value); if (! i.hasNext()) return sb.append('}').toString(); sb.append(", "); } } /** * Returns a shallow copy of this AbstractMap instance: the keys * and values themselves are not cloned. * * @return a shallow copy of this map */ protected Object clone() throws CloneNotSupportedException { AbstractMap result = (AbstractMap)super.clone(); result.keySet = null; result.values = null; return result; } /** * Utility method for SimpleEntry and SimpleImmutableEntry. * Test for equality, checking for nulls. */ private static boolean eq(Object o1, Object o2) { return o1 == null ? o2 == null : o1.equals(o2); } // Implementation Note: SimpleEntry and SimpleImmutableEntry // are distinct unrelated classes, even though they share // some code. Since you can't add or subtract final-ness // of a field in a subclass, they can't share representations, // and the amount of duplicated code is too small to warrant // exposing a common abstract class. /** * An Entry maintaining a key and a value. The value may be * changed using the setValue method. This class * facilitates the process of building custom map * implementations. For example, it may be convenient to return * arrays of SimpleEntry instances in method * Map.entrySet().toArray. * * @since 1.6 */ public static class SimpleEntry implements Entry, java.io.Serializable { private static final long serialVersionUID = -8499721149061103585L; private final K key; private V value; /** * Creates an entry representing a mapping from the specified * key to the specified value. * * @param key the key represented by this entry * @param value the value represented by this entry */ public SimpleEntry(K key, V value) { this.key = key; this.value = value; } /** * Creates an entry representing the same mapping as the * specified entry. * * @param entry the entry to copy */ public SimpleEntry(Entry entry) { this.key = entry.getKey(); this.value = entry.getValue(); } /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry */ public K getKey() { return key; } /** * Returns the value corresponding to this entry. * * @return the value corresponding to this entry */ public V getValue() { return value; } /** * Replaces the value corresponding to this entry with the specified * value. * * @param value new value to be stored in this entry * @return the old value corresponding to the entry */ public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } /** * Compares the specified object with this entry for equality. * Returns {@code true} if the given object is also a map entry and * the two entries represent the same mapping. More formally, two * entries {@code e1} and {@code e2} represent the same mapping * if

         *   (e1.getKey()==null ?
         *    e2.getKey()==null :
         *    e1.getKey().equals(e2.getKey()))
         *   &&
         *   (e1.getValue()==null ?
         *    e2.getValue()==null :
         *    e1.getValue().equals(e2.getValue()))
* This ensures that the {@code equals} method works properly across * different implementations of the {@code Map.Entry} interface. * * @param o object to be compared for equality with this map entry * @return {@code true} if the specified object is equal to this map * entry * @see #hashCode */ public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return eq(key, e.getKey()) && eq(value, e.getValue()); } /** * Returns the hash code value for this map entry. The hash code * of a map entry {@code e} is defined to be:
         *   (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *   (e.getValue()==null ? 0 : e.getValue().hashCode())
* This ensures that {@code e1.equals(e2)} implies that * {@code e1.hashCode()==e2.hashCode()} for any two Entries * {@code e1} and {@code e2}, as required by the general * contract of {@link Object#hashCode}. * * @return the hash code value for this map entry * @see #equals */ public int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } /** * Returns a String representation of this map entry. This * implementation returns the string representation of this * entry's key followed by the equals character ("=") * followed by the string representation of this entry's value. * * @return a String representation of this map entry */ public String toString() { return key + "=" + value; } } /** * An Entry maintaining an immutable key and value. This class * does not support method setValue. This class may be * convenient in methods that return thread-safe snapshots of * key-value mappings. * * @since 1.6 */ public static class SimpleImmutableEntry implements Entry, java.io.Serializable { private static final long serialVersionUID = 7138329143949025153L; private final K key; private final V value; /** * Creates an entry representing a mapping from the specified * key to the specified value. * * @param key the key represented by this entry * @param value the value represented by this entry */ public SimpleImmutableEntry(K key, V value) { this.key = key; this.value = value; } /** * Creates an entry representing the same mapping as the * specified entry. * * @param entry the entry to copy */ public SimpleImmutableEntry(Entry entry) { this.key = entry.getKey(); this.value = entry.getValue(); } /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry */ public K getKey() { return key; } /** * Returns the value corresponding to this entry. * * @return the value corresponding to this entry */ public V getValue() { return value; } /** * Replaces the value corresponding to this entry with the specified * value (optional operation). This implementation simply throws * UnsupportedOperationException, as this class implements * an immutable map entry. * * @param value new value to be stored in this entry * @return (Does not return) * @throws UnsupportedOperationException always */ public V setValue(V value) { throw new UnsupportedOperationException(); } /** * Compares the specified object with this entry for equality. * Returns {@code true} if the given object is also a map entry and * the two entries represent the same mapping. More formally, two * entries {@code e1} and {@code e2} represent the same mapping * if
         *   (e1.getKey()==null ?
         *    e2.getKey()==null :
         *    e1.getKey().equals(e2.getKey()))
         *   &&
         *   (e1.getValue()==null ?
         *    e2.getValue()==null :
         *    e1.getValue().equals(e2.getValue()))
* This ensures that the {@code equals} method works properly across * different implementations of the {@code Map.Entry} interface. * * @param o object to be compared for equality with this map entry * @return {@code true} if the specified object is equal to this map * entry * @see #hashCode */ public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return eq(key, e.getKey()) && eq(value, e.getValue()); } /** * Returns the hash code value for this map entry. The hash code * of a map entry {@code e} is defined to be:
         *   (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *   (e.getValue()==null ? 0 : e.getValue().hashCode())
* This ensures that {@code e1.equals(e2)} implies that * {@code e1.hashCode()==e2.hashCode()} for any two Entries * {@code e1} and {@code e2}, as required by the general * contract of {@link Object#hashCode}. * * @return the hash code value for this map entry * @see #equals */ public int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } /** * Returns a String representation of this map entry. This * implementation returns the string representation of this * entry's key followed by the equals character ("=") * followed by the string representation of this entry's value. * * @return a String representation of this map entry */ public String toString() { return key + "=" + value; } } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * This class provides a skeletal implementation of the Set * interface to minimize the effort required to implement this * interface.

* * The process of implementing a set by extending this class is identical * to that of implementing a Collection by extending AbstractCollection, * except that all of the methods and constructors in subclasses of this * class must obey the additional constraints imposed by the Set * interface (for instance, the add method must not permit addition of * multiple instances of an object to a set).

* * Note that this class does not override any of the implementations from * the AbstractCollection class. It merely adds implementations * for equals and hashCode.

* * This class is a member of the * * Java Collections Framework. * * @param the type of elements maintained by this set * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see AbstractCollection * @see Set * @since 1.2 */ public abstract class AbstractSet extends AbstractCollection implements Set { /** * Sole constructor. (For invocation by subclass constructors, typically * implicit.) */ protected AbstractSet() { } // Comparison and hashing /** * Compares the specified object with this set for equality. Returns * true if the given object is also a set, the two sets have * the same size, and every member of the given set is contained in * this set. This ensures that the equals method works * properly across different implementations of the Set * interface.

* * This implementation first checks if the specified object is this * set; if so it returns true. Then, it checks if the * specified object is a set whose size is identical to the size of * this set; if not, it returns false. If so, it returns * containsAll((Collection) o). * * @param o object to be compared for equality with this set * @return true if the specified object is equal to this set */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Set)) return false; Collection c = (Collection) o; if (c.size() != size()) return false; try { return containsAll(c); } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } } /** * Returns the hash code value for this set. The hash code of a set is * defined to be the sum of the hash codes of the elements in the set, * where the hash code of a null element is defined to be zero. * This ensures that s1.equals(s2) implies that * s1.hashCode()==s2.hashCode() for any two sets s1 * and s2, as required by the general contract of * {@link Object#hashCode}. * *

This implementation iterates over the set, calling the * hashCode method on each element in the set, and adding up * the results. * * @return the hash code value for this set * @see Object#equals(Object) * @see Set#equals(Object) */ public int hashCode() { int h = 0; Iterator i = iterator(); while (i.hasNext()) { E obj = i.next(); if (obj != null) h += obj.hashCode(); } return h; } /** * Removes from this set all of its elements that are contained in the * specified collection (optional operation). If the specified * collection is also a set, this operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * *

This implementation determines which is the smaller of this set * and the specified collection, by invoking the size * method on each. If this set has fewer elements, then the * implementation iterates over this set, checking each element * returned by the iterator in turn to see if it is contained in * the specified collection. If it is so contained, it is removed * from this set with the iterator's remove method. If * the specified collection has fewer elements, then the * implementation iterates over the specified collection, removing * from this set each element returned by the iterator, using this * set's remove method. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by the * iterator method does not implement the remove method. * * @param c collection containing elements to be removed from this set * @return true if this set changed as a result of the call * @throws UnsupportedOperationException if the removeAll operation * is not supported by this set * @throws ClassCastException if the class of an element of this set * is incompatible with the specified collection (optional) * @throws NullPointerException if this set contains a null element and the * specified collection does not permit null elements (optional), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ public boolean removeAll(Collection c) { boolean modified = false; if (size() > c.size()) { for (Iterator i = c.iterator(); i.hasNext(); ) modified |= remove(i.next()); } else { for (Iterator i = iterator(); i.hasNext(); ) { if (c.contains(i.next())) { i.remove(); modified = true; } } } return modified; } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * The root interface in the collection hierarchy. A collection * represents a group of objects, known as its elements. Some * collections allow duplicate elements and others do not. Some are ordered * and others unordered. The JDK does not provide any direct * implementations of this interface: it provides implementations of more * specific subinterfaces like Set and List. This interface * is typically used to pass collections around and manipulate them where * maximum generality is desired. * *

Bags or multisets (unordered collections that may contain * duplicate elements) should implement this interface directly. * *

All general-purpose Collection implementation classes (which * typically implement Collection indirectly through one of its * subinterfaces) should provide two "standard" constructors: a void (no * arguments) constructor, which creates an empty collection, and a * constructor with a single argument of type Collection, which * creates a new collection with the same elements as its argument. In * effect, the latter constructor allows the user to copy any collection, * producing an equivalent collection of the desired implementation type. * There is no way to enforce this convention (as interfaces cannot contain * constructors) but all of the general-purpose Collection * implementations in the Java platform libraries comply. * *

The "destructive" methods contained in this interface, that is, the * methods that modify the collection on which they operate, are specified to * throw UnsupportedOperationException if this collection does not * support the operation. If this is the case, these methods may, but are not * required to, throw an UnsupportedOperationException if the * invocation would have no effect on the collection. For example, invoking * the {@link #addAll(Collection)} method on an unmodifiable collection may, * but is not required to, throw the exception if the collection to be added * is empty. * *

Some collection implementations have restrictions on the elements that * they may contain. For example, some implementations prohibit null elements, * and some have restrictions on the types of their elements. Attempting to * add an ineligible element throws an unchecked exception, typically * NullPointerException or ClassCastException. Attempting * to query the presence of an ineligible element may throw an exception, * or it may simply return false; some implementations will exhibit the former * behavior and some will exhibit the latter. More generally, attempting an * operation on an ineligible element whose completion would not result in * the insertion of an ineligible element into the collection may throw an * exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *

It is up to each collection to determine its own synchronization * policy. In the absence of a stronger guarantee by the * implementation, undefined behavior may result from the invocation * of any method on a collection that is being mutated by another * thread; this includes direct invocations, passing the collection to * a method that might perform invocations, and using an existing * iterator to examine the collection. * *

Many methods in Collections Framework interfaces are defined in * terms of the {@link Object#equals(Object) equals} method. For example, * the specification for the {@link #contains(Object) contains(Object o)} * method says: "returns true if and only if this collection * contains at least one element e such that * (o==null ? e==null : o.equals(e))." This specification should * not be construed to imply that invoking Collection.contains * with a non-null argument o will cause o.equals(e) to be * invoked for any element e. Implementations are free to implement * optimizations whereby the equals invocation is avoided, for * example, by first comparing the hash codes of the two elements. (The * {@link Object#hashCode()} specification guarantees that two objects with * unequal hash codes cannot be equal.) More generally, implementations of * the various Collections Framework interfaces are free to take advantage of * the specified behavior of underlying {@link Object} methods wherever the * implementor deems it appropriate. * *

This interface is a member of the * * Java Collections Framework. * * @author Josh Bloch * @author Neal Gafter * @see Set * @see List * @see Map * @see SortedSet * @see SortedMap * @see HashSet * @see TreeSet * @see ArrayList * @see LinkedList * @see Vector * @see Collections * @see Arrays * @see AbstractCollection * @since 1.2 */ public interface Collection { // Query Operations /** * Returns the number of elements in this collection. If this collection * contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of elements in this collection */ int size(); /** * Returns true if this collection contains no elements. * * @return true if this collection contains no elements */ boolean isEmpty(); /** * Returns true if this collection contains the specified element. * More formally, returns true if and only if this collection * contains at least one element e such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this collection is to be tested * @return true if this collection contains the specified * element * @throws ClassCastException if the type of the specified element * is incompatible with this collection (optional) * @throws NullPointerException if the specified element is null and this * collection does not permit null elements (optional) */ boolean contains(Object o); /** * Returns an iterator over the elements in this collection. There are no * guarantees concerning the order in which the elements are returned * (unless this collection is an instance of some class that provides a * guarantee). * * @return an Iterator over the elements in this collection */ Iterator iterator(); // Modification Operations /** * Ensures that this collection contains the specified element (optional * operation). Returns true if this collection changed as a * result of the call. (Returns false if this collection does * not permit duplicates and already contains the specified element.)

* * Collections that support this operation may place limitations on what * elements may be added to this collection. In particular, some * collections will refuse to add null elements, and others will * impose restrictions on the type of elements that may be added. * Collection classes should clearly specify in their documentation any * restrictions on what elements may be added.

* * If a collection refuses to add a particular element for any reason * other than that it already contains the element, it must throw * an exception (rather than returning false). This preserves * the invariant that a collection always contains the specified element * after this call returns. * * @param e element whose presence in this collection is to be ensured * @return true if this collection changed as a result of the * call * @throws UnsupportedOperationException if the add operation * is not supported by this collection * @throws ClassCastException if the class of the specified element * prevents it from being added to this collection * @throws NullPointerException if the specified element is null and this * collection does not permit null elements * @throws IllegalArgumentException if some property of the element * prevents it from being added to this collection * @throws IllegalStateException if the element cannot be added at this * time due to insertion restrictions */ boolean add(E e); /** * Removes a single instance of the specified element from this * collection, if it is present (optional operation). More formally, * removes an element e such that * (o==null ? e==null : o.equals(e)), if * this collection contains one or more such elements. Returns * true if this collection contained the specified element (or * equivalently, if this collection changed as a result of the call). * * @param o element to be removed from this collection, if present * @return true if an element was removed as a result of this call * @throws ClassCastException if the type of the specified element * is incompatible with this collection (optional) * @throws NullPointerException if the specified element is null and this * collection does not permit null elements (optional) * @throws UnsupportedOperationException if the remove operation * is not supported by this collection */ boolean remove(Object o); // Bulk Operations /** * Returns true if this collection contains all of the elements * in the specified collection. * * @param c collection to be checked for containment in this collection * @return true if this collection contains all of the elements * in the specified collection * @throws ClassCastException if the types of one or more elements * in the specified collection are incompatible with this * collection (optional) * @throws NullPointerException if the specified collection contains one * or more null elements and this collection does not permit null * elements (optional), or if the specified collection is null * @see #contains(Object) */ boolean containsAll(Collection c); /** * Adds all of the elements in the specified collection to this collection * (optional operation). The behavior of this operation is undefined if * the specified collection is modified while the operation is in progress. * (This implies that the behavior of this call is undefined if the * specified collection is this collection, and this collection is * nonempty.) * * @param c collection containing elements to be added to this collection * @return true if this collection changed as a result of the call * @throws UnsupportedOperationException if the addAll operation * is not supported by this collection * @throws ClassCastException if the class of an element of the specified * collection prevents it from being added to this collection * @throws NullPointerException if the specified collection contains a * null element and this collection does not permit null elements, * or if the specified collection is null * @throws IllegalArgumentException if some property of an element of the * specified collection prevents it from being added to this * collection * @throws IllegalStateException if not all the elements can be added at * this time due to insertion restrictions * @see #add(Object) */ boolean addAll(Collection c); /** * Removes all of this collection's elements that are also contained in the * specified collection (optional operation). After this call returns, * this collection will contain no elements in common with the specified * collection. * * @param c collection containing elements to be removed from this collection * @return true if this collection changed as a result of the * call * @throws UnsupportedOperationException if the removeAll method * is not supported by this collection * @throws ClassCastException if the types of one or more elements * in this collection are incompatible with the specified * collection (optional) * @throws NullPointerException if this collection contains one or more * null elements and the specified collection does not support * null elements (optional), or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean removeAll(Collection c); /** * Retains only the elements in this collection that are contained in the * specified collection (optional operation). In other words, removes from * this collection all of its elements that are not contained in the * specified collection. * * @param c collection containing elements to be retained in this collection * @return true if this collection changed as a result of the call * @throws UnsupportedOperationException if the retainAll operation * is not supported by this collection * @throws ClassCastException if the types of one or more elements * in this collection are incompatible with the specified * collection (optional) * @throws NullPointerException if this collection contains one or more * null elements and the specified collection does not permit null * elements (optional), or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean retainAll(Collection c); /** * Removes all of the elements from this collection (optional operation). * The collection will be empty after this method returns. * * @throws UnsupportedOperationException if the clear operation * is not supported by this collection */ void clear(); // Comparison and hashing /** * Compares the specified object with this collection for equality.

* * While the Collection interface adds no stipulations to the * general contract for the Object.equals, programmers who * implement the Collection interface "directly" (in other words, * create a class that is a Collection but is not a Set * or a List) must exercise care if they choose to override the * Object.equals. It is not necessary to do so, and the simplest * course of action is to rely on Object's implementation, but * the implementor may wish to implement a "value comparison" in place of * the default "reference comparison." (The List and * Set interfaces mandate such value comparisons.)

* * The general contract for the Object.equals method states that * equals must be symmetric (in other words, a.equals(b) if and * only if b.equals(a)). The contracts for List.equals * and Set.equals state that lists are only equal to other lists, * and sets to other sets. Thus, a custom equals method for a * collection class that implements neither the List nor * Set interface must return false when this collection * is compared to any list or set. (By the same logic, it is not possible * to write a class that correctly implements both the Set and * List interfaces.) * * @param o object to be compared for equality with this collection * @return true if the specified object is equal to this * collection * * @see Object#equals(Object) * @see Set#equals(Object) * @see List#equals(Object) */ boolean equals(Object o); /** * Returns the hash code value for this collection. While the * Collection interface adds no stipulations to the general * contract for the Object.hashCode method, programmers should * take note that any class that overrides the Object.equals * method must also override the Object.hashCode method in order * to satisfy the general contract for the Object.hashCodemethod. * In particular, c1.equals(c2) implies that * c1.hashCode()==c2.hashCode(). * * @return the hash code value for this collection * * @see Object#hashCode() * @see Object#equals(Object) */ int hashCode(); } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * This exception may be thrown by methods that have detected concurrent * modification of an object when such modification is not permissible. *

* For example, it is not generally permissible for one thread to modify a Collection * while another thread is iterating over it. In general, the results of the * iteration are undefined under these circumstances. Some Iterator * implementations (including those of all the general purpose collection implementations * provided by the JRE) may choose to throw this exception if this behavior is * detected. Iterators that do this are known as fail-fast iterators, * as they fail quickly and cleanly, rather that risking arbitrary, * non-deterministic behavior at an undetermined time in the future. *

* Note that this exception does not always indicate that an object has * been concurrently modified by a different thread. If a single * thread issues a sequence of method invocations that violates the * contract of an object, the object may throw this exception. For * example, if a thread modifies a collection directly while it is * iterating over the collection with a fail-fast iterator, the iterator * will throw this exception. * *

Note that fail-fast behavior cannot be guaranteed as it is, generally * speaking, impossible to make any hard guarantees in the presence of * unsynchronized concurrent modification. Fail-fast operations * throw ConcurrentModificationException on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: ConcurrentModificationException * should be used only to detect bugs. * * @author Josh Bloch * @see Collection * @see Iterator * @see ListIterator * @see Vector * @see LinkedList * @see HashSet * @see Hashtable * @see TreeMap * @see AbstractList * @since 1.2 */ public class ConcurrentModificationException extends RuntimeException { /** * Constructs a ConcurrentModificationException with no * detail message. */ public ConcurrentModificationException() { } /** * Constructs a ConcurrentModificationException with the * specified detail message. * * @param message the detail message pertaining to this exception. */ public ConcurrentModificationException(String message) { super(message); } } /* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Hash table based implementation of the Map interface. This * implementation provides all of the optional map operations, and permits * null values and the null key. (The HashMap * class is roughly equivalent to Hashtable, except that it is * unsynchronized and permits nulls.) This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * *

This implementation provides constant-time performance for the basic * operations (get and put), assuming the hash function * disperses the elements properly among the buckets. Iteration over * collection views requires time proportional to the "capacity" of the * HashMap instance (the number of buckets) plus its size (the number * of key-value mappings). Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * *

An instance of HashMap has two parameters that affect its * performance: initial capacity and load factor. The * capacity is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created. The * load factor is a measure of how full the hash table is allowed to * get before its capacity is automatically increased. When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the hash table is rehashed (that is, internal data * structures are rebuilt) so that the hash table has approximately twice the * number of buckets. * *

As a general rule, the default load factor (.75) offers a good tradeoff * between time and space costs. Higher values decrease the space overhead * but increase the lookup cost (reflected in most of the operations of the * HashMap class, including get and put). The * expected number of entries in the map and its load factor should be taken * into account when setting its initial capacity, so as to minimize the * number of rehash operations. If the initial capacity is greater * than the maximum number of entries divided by the load factor, no * rehash operations will ever occur. * *

If many mappings are to be stored in a HashMap instance, * creating it with a sufficiently large capacity will allow the mappings to * be stored more efficiently than letting it perform automatic rehashing as * needed to grow the table. * *

Note that this implementation is not synchronized. * If multiple threads access a hash map concurrently, and at least one of * the threads modifies the map structurally, it must be * synchronized externally. (A structural modification is any operation * that adds or deletes one or more mappings; merely changing the value * associated with a key that an instance already contains is not a * structural modification.) This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:

 *   Map m = Collections.synchronizedMap(new HashMap(...));
* *

The iterators returned by all of this class's "collection view methods" * are fail-fast: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * remove method, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw ConcurrentModificationException on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Doug Lea * @author Josh Bloch * @author Arthur van Hoff * @author Neal Gafter * @see Object#hashCode() * @see Collection * @see Map * @see TreeMap * @see Hashtable * @since 1.2 */ public class HashMap extends AbstractMap implements Map, Cloneable { /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry[] table; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The next size value at which to resize (capacity * load factor). * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient volatile int modCount; /** * Constructs an empty HashMap with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init(); } /** * Constructs an empty HashMap with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty HashMap with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } /** * Constructs a new HashMap with the same mappings as the * specified Map. The HashMap is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified Map. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public HashMap(Map m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); putAllForCreate(m); } // internal utilities /** * Initialization hook for subclasses. This method is called * in all constructors and pseudo-constructors (clone, readObject) * after HashMap has been initialized but before any entries have * been inserted. (In the absence of this method, readObject would * require explicit knowledge of subclasses.) */ void init() { } /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because HashMap uses power-of-two length hash tables, that * otherwise encounter collisions for hashCodes that do not differ * in lower bits. Note: Null keys always map to hash 0, thus index 0. */ static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } /** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */ public int size() { return size; } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { if (key == null) return getForNullKey(); int hash = hash(key.hashCode()); for (Entry e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; } /** * Offloaded version of get() to look up null keys. Null keys map * to index 0. This null case is split out into separate methods * for the sake of performance in the two most commonly used * operations (get and put), but incorporated with conditionals in * others. */ private V getForNullKey() { for (Entry e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } /** * Returns true if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { return getEntry(key) != null; } /** * Returns the entry associated with the specified key in the * HashMap. Returns null if the HashMap contains no mapping * for the key. */ final Entry getEntry(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); for (Entry e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; } /** * Offloaded version of put for null keys */ private V putForNullKey(V value) { for (Entry e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } /** * This method is used instead of put by constructors and * pseudoconstructors (clone, readObject). It does not resize the table, * check for comodification, etc. It calls createEntry rather than * addEntry. */ private void putForCreate(K key, V value) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); /** * Look for preexisting entry for key. This will never happen for * clone or deserialize. It will only happen for construction if the * input Map is a sorted map whose ordering is inconsistent w/ equals. */ for (Entry e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } createEntry(hash, key, value, i); } private void putAllForCreate(Map m) { for (Iterator> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry e = i.next(); putForCreate(e.getKey(), e.getValue()); } } /** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor); } /** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry e = src[j]; if (e != null) { src[j] = null; do { Entry next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param m mappings to be stored in this map * @throws NullPointerException if the specified map is null */ public void putAll(Map m) { int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; /* * Expand the map if the map if the number of mappings to be added * is greater than or equal to threshold. This is conservative; the * obvious condition is (m.size() + size) >= threshold, but this * condition could result in a map with twice the appropriate capacity, * if the keys to be added overlap with the keys already in this map. * By using the conservative calculation, we subject ourself * to at most one extra resize. */ if (numKeysToBeAdded > threshold) { int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) resize(newCapacity); } for (Iterator> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry e = i.next(); put(e.getKey(), e.getValue()); } } /** * Removes the mapping for the specified key from this map if present. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V remove(Object key) { Entry e = removeEntryForKey(key); return (e == null ? null : e.value); } /** * Removes and returns the entry associated with the specified key * in the HashMap. Returns null if the HashMap contains no mapping * for this key. */ final Entry removeEntryForKey(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry prev = table[i]; Entry e = prev; while (e != null) { Entry next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Special version of remove for EntrySet. */ final Entry removeMapping(Object o) { if (!(o instanceof Map.Entry)) return null; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry prev = table[i]; Entry e = prev; while (e != null) { Entry next = e.next; if (e.hash == hash && e.equals(entry)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ public void clear() { modCount++; Entry[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } /** * Returns true if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified value */ public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } /** * Special-case code for containsValue with null argument */ private boolean containsNullValue() { Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } /** * Returns a shallow copy of this HashMap instance: the keys and * values themselves are not cloned. * * @return a shallow copy of this map */ public Object clone() { HashMap result = null; try { result = (HashMap)super.clone(); } catch (CloneNotSupportedException e) { // assert false; } result.table = new Entry[table.length]; result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); result.putAllForCreate(this); return result; } static class Entry implements Map.Entry { final K key; V value; Entry next; final int hash; /** * Creates new entry. */ Entry(int h, K k, V v, Entry n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap m) { } } /** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { Entry e = table[bucketIndex]; table[bucketIndex] = new Entry(hash, key, value, e); if (size++ >= threshold) resize(2 * table.length); } /** * Like addEntry except that this version is used when creating entries * as part of Map construction or "pseudo-construction" (cloning, * deserialization). This version needn't worry about resizing the table. * * Subclass overrides this to alter the behavior of HashMap(Map), * clone, and readObject. */ void createEntry(int hash, K key, V value, int bucketIndex) { Entry e = table[bucketIndex]; table[bucketIndex] = new Entry(hash, key, value, e); size++; } private abstract class HashIterator implements Iterator { Entry next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private final class ValueIterator extends HashIterator { public V next() { return nextEntry().value; } } private final class KeyIterator extends HashIterator { public K next() { return nextEntry().getKey(); } } private final class EntryIterator extends HashIterator> { public Map.Entry next() { return nextEntry(); } } // Subclass overrides these to alter behavior of views' iterator() method Iterator newKeyIterator() { return new KeyIterator(); } Iterator newValueIterator() { return new ValueIterator(); } Iterator> newEntryIterator() { return new EntryIterator(); } // Views private transient Set> entrySet = null; /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or addAll * operations. */ public Set keySet() { Set ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet { public Iterator iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return HashMap.this.removeEntryForKey(o) != null; } public void clear() { HashMap.this.clear(); } public Object[] toArray() { Object[] res = new Object[size]; Iterator it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return res; } public T[] toArray(T[] a) { a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); Object[] res = a; Iterator it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return a; } } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own remove operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll and clear operations. It does not * support the add or addAll operations. */ public Collection values() { Collection vs = values; return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection { public Iterator iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { HashMap.this.clear(); } } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation, or through the * setValue operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll and * clear operations. It does not support the * add or addAll operations. * * @return a set view of the mappings contained in this map */ public Set> entrySet() { return entrySet0(); } private Set> entrySet0() { Set> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet> { public Iterator> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; Entry candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { HashMap.this.clear(); } public Object[] toArray() { Object[] res = new Object[size]; Iterator> it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return res; } public T[] toArray(T[] a) { a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); Object[] res = a; Iterator> it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return a; } } private static final long serialVersionUID = 362498820763181265L; } /* * Copyright 1994-2003 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Thrown to indicate that a method has been passed an illegal or * inappropriate argument. * * @author unascribed * @see java.lang.Thread#setPriority(int) * @since JDK1.0 */ public class IllegalArgumentException extends RuntimeException { /** * Constructs an IllegalArgumentException with no * detail message. */ public IllegalArgumentException() { super(); } /** * Constructs an IllegalArgumentException with the * specified detail message. * * @param s the detail message. */ public IllegalArgumentException(String s) { super(s); } /** * Constructs a new exception with the specified detail message and * cause. * *

Note that the detail message associated with cause is * not automatically incorporated in this exception's detail * message. * * @param message the detail message (which is saved for later retrieval * by the {@link Throwable#getMessage()} method). * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value * is permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalArgumentException(String message, Throwable cause) { super(message, cause); } /** * Constructs a new exception with the specified cause and a detail * message of (cause==null ? null : cause.toString()) (which * typically contains the class and detail message of cause). * This constructor is useful for exceptions that are little more than * wrappers for other throwables (for example, {@link * java.security.PrivilegedActionException}). * * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value is * permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalArgumentException(Throwable cause) { super(cause); } private static final long serialVersionUID = -5365630128856068164L; } /* * Copyright 1996-2003 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Signals that a method has been invoked at an illegal or * inappropriate time. In other words, the Java environment or * Java application is not in an appropriate state for the requested * operation. * * @author Jonni Kanerva * @since JDK1.1 */ public class IllegalStateException extends RuntimeException { /** * Constructs an IllegalStateException with no detail message. * A detail message is a String that describes this particular exception. */ public IllegalStateException() { super(); } /** * Constructs an IllegalStateException with the specified detail * message. A detail message is a String that describes this particular * exception. * * @param s the String that contains a detailed message */ public IllegalStateException(String s) { super(s); } /** * Constructs a new exception with the specified detail message and * cause. * *

Note that the detail message associated with cause is * not automatically incorporated in this exception's detail * message. * * @param message the detail message (which is saved for later retrieval * by the {@link Throwable#getMessage()} method). * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value * is permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalStateException(String message, Throwable cause) { super(message, cause); } /** * Constructs a new exception with the specified cause and a detail * message of (cause==null ? null : cause.toString()) (which * typically contains the class and detail message of cause). * This constructor is useful for exceptions that are little more than * wrappers for other throwables (for example, {@link * java.security.PrivilegedActionException}). * * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value is * permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalStateException(Throwable cause) { super(cause); } static final long serialVersionUID = -1848914673093119416L; } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * An iterator over a collection. {@code Iterator} takes the place of * {@link Enumeration} in the Java Collections Framework. Iterators * differ from enumerations in two ways: * *

* *

This interface is a member of the * * Java Collections Framework. * * @author Josh Bloch * @see Collection * @see ListIterator * @see Iterable * @since 1.2 */ public interface Iterator { /** * Returns {@code true} if the iteration has more elements. * (In other words, returns {@code true} if {@link #next} would * return an element rather than throwing an exception.) * * @return {@code true} if the iteration has more elements */ boolean hasNext(); /** * Returns the next element in the iteration. * * @return the next element in the iteration * @throws NoSuchElementException if the iteration has no more elements */ E next(); /** * Removes from the underlying collection the last element returned * by this iterator (optional operation). This method can be called * only once per call to {@link #next}. The behavior of an iterator * is unspecified if the underlying collection is modified while the * iteration is in progress in any way other than by calling this * method. * * @throws UnsupportedOperationException if the {@code remove} * operation is not supported by this iterator * * @throws IllegalStateException if the {@code next} method has not * yet been called, or the {@code remove} method has already * been called after the last call to the {@code next} * method */ void remove(); } package javaUtilEx; public class juHashMapCreateIsEmpty { public static void main(String[] args) { Random.args = args; HashMap m = createMap(Random.random()); m.isEmpty(); } public static HashMap createMap(int n) { HashMap m = new HashMap(); while (n > 0) { Content key = new Content(Random.random()); Content val = new Content(Random.random()); m.put(key, val); n--; } return m; } } final class Content { int val; public Content(int v) { this.val = v; } public int hashCode() { return val^31; } public boolean equals(Object o) { if (o instanceof Content) { return this.val == ((Content) o).val; } return false; } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * An object that maps keys to values. A map cannot contain duplicate keys; * each key can map to at most one value. * *

This interface takes the place of the Dictionary class, which * was a totally abstract class rather than an interface. * *

The Map interface provides three collection views, which * allow a map's contents to be viewed as a set of keys, collection of values, * or set of key-value mappings. The order of a map is defined as * the order in which the iterators on the map's collection views return their * elements. Some map implementations, like the TreeMap class, make * specific guarantees as to their order; others, like the HashMap * class, do not. * *

Note: great care must be exercised if mutable objects are used as map * keys. The behavior of a map is not specified if the value of an object is * changed in a manner that affects equals comparisons while the * object is a key in the map. A special case of this prohibition is that it * is not permissible for a map to contain itself as a key. While it is * permissible for a map to contain itself as a value, extreme caution is * advised: the equals and hashCode methods are no longer * well defined on such a map. * *

All general-purpose map implementation classes should provide two * "standard" constructors: a void (no arguments) constructor which creates an * empty map, and a constructor with a single argument of type Map, * which creates a new map with the same key-value mappings as its argument. * In effect, the latter constructor allows the user to copy any map, * producing an equivalent map of the desired class. There is no way to * enforce this recommendation (as interfaces cannot contain constructors) but * all of the general-purpose map implementations in the JDK comply. * *

The "destructive" methods contained in this interface, that is, the * methods that modify the map on which they operate, are specified to throw * UnsupportedOperationException if this map does not support the * operation. If this is the case, these methods may, but are not required * to, throw an UnsupportedOperationException if the invocation would * have no effect on the map. For example, invoking the {@link #putAll(Map)} * method on an unmodifiable map may, but is not required to, throw the * exception if the map whose mappings are to be "superimposed" is empty. * *

Some map implementations have restrictions on the keys and values they * may contain. For example, some implementations prohibit null keys and * values, and some have restrictions on the types of their keys. Attempting * to insert an ineligible key or value throws an unchecked exception, * typically NullPointerException or ClassCastException. * Attempting to query the presence of an ineligible key or value may throw an * exception, or it may simply return false; some implementations will exhibit * the former behavior and some will exhibit the latter. More generally, * attempting an operation on an ineligible key or value whose completion * would not result in the insertion of an ineligible element into the map may * throw an exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *

This interface is a member of the * * Java Collections Framework. * *

Many methods in Collections Framework interfaces are defined * in terms of the {@link Object#equals(Object) equals} method. For * example, the specification for the {@link #containsKey(Object) * containsKey(Object key)} method says: "returns true if and * only if this map contains a mapping for a key k such that * (key==null ? k==null : key.equals(k))." This specification should * not be construed to imply that invoking Map.containsKey * with a non-null argument key will cause key.equals(k) to * be invoked for any key k. Implementations are free to * implement optimizations whereby the equals invocation is avoided, * for example, by first comparing the hash codes of the two keys. (The * {@link Object#hashCode()} specification guarantees that two objects with * unequal hash codes cannot be equal.) More generally, implementations of * the various Collections Framework interfaces are free to take advantage of * the specified behavior of underlying {@link Object} methods wherever the * implementor deems it appropriate. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Josh Bloch * @see HashMap * @see TreeMap * @see Hashtable * @see SortedMap * @see Collection * @see Set * @since 1.2 */ public interface Map { // Query Operations /** * Returns the number of key-value mappings in this map. If the * map contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of key-value mappings in this map */ int size(); /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ boolean isEmpty(); /** * Returns true if this map contains a mapping for the specified * key. More formally, returns true if and only if * this map contains a mapping for a key k such that * (key==null ? k==null : key.equals(k)). (There can be * at most one such mapping.) * * @param key key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified * key * @throws ClassCastException if the key is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified key is null and this map * does not permit null keys (optional) */ boolean containsKey(Object key); /** * Returns true if this map maps one or more keys to the * specified value. More formally, returns true if and only if * this map contains at least one mapping to a value v such that * (value==null ? v==null : value.equals(v)). This operation * will probably require time linear in the map size for most * implementations of the Map interface. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified value * @throws ClassCastException if the value is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified value is null and this * map does not permit null values (optional) */ boolean containsValue(Object value); /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

If this map permits null values, then a return value of * {@code null} does not necessarily indicate that the map * contains no mapping for the key; it's also possible that the map * explicitly maps the key to {@code null}. The {@link #containsKey * containsKey} operation may be used to distinguish these two cases. * * @param key the key whose associated value is to be returned * @return the value to which the specified key is mapped, or * {@code null} if this map contains no mapping for the key * @throws ClassCastException if the key is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified key is null and this map * does not permit null keys (optional) */ V get(Object key); // Modification Operations /** * Associates the specified value with the specified key in this map * (optional operation). If the map previously contained a mapping for * the key, the old value is replaced by the specified value. (A map * m is said to contain a mapping for a key k if and only * if {@link #containsKey(Object) m.containsKey(k)} would return * true.) * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key, * if the implementation supports null values.) * @throws UnsupportedOperationException if the put operation * is not supported by this map * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * @throws NullPointerException if the specified key or value is null * and this map does not permit null keys or values * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map */ V put(K key, V value); /** * Removes the mapping for a key from this map if it is present * (optional operation). More formally, if this map contains a mapping * from key k to value v such that * (key==null ? k==null : key.equals(k)), that mapping * is removed. (The map can contain at most one such mapping.) * *

Returns the value to which this map previously associated the key, * or null if the map contained no mapping for the key. * *

If this map permits null values, then a return value of * null does not necessarily indicate that the map * contained no mapping for the key; it's also possible that the map * explicitly mapped the key to null. * *

The map will not contain a mapping for the specified key once the * call returns. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with key, or * null if there was no mapping for key. * @throws UnsupportedOperationException if the remove operation * is not supported by this map * @throws ClassCastException if the key is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified key is null and this * map does not permit null keys (optional) */ V remove(Object key); // Bulk Operations /** * Copies all of the mappings from the specified map to this map * (optional operation). The effect of this call is equivalent to that * of calling {@link #put(Object,Object) put(k, v)} on this map once * for each mapping from key k to value v in the * specified map. The behavior of this operation is undefined if the * specified map is modified while the operation is in progress. * * @param m mappings to be stored in this map * @throws UnsupportedOperationException if the putAll operation * is not supported by this map * @throws ClassCastException if the class of a key or value in the * specified map prevents it from being stored in this map * @throws NullPointerException if the specified map is null, or if * this map does not permit null keys or values, and the * specified map contains null keys or values * @throws IllegalArgumentException if some property of a key or value in * the specified map prevents it from being stored in this map */ void putAll(Map m); /** * Removes all of the mappings from this map (optional operation). * The map will be empty after this call returns. * * @throws UnsupportedOperationException if the clear operation * is not supported by this map */ void clear(); // Views /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or addAll * operations. * * @return a set view of the keys contained in this map */ Set keySet(); /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own remove operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll and clear operations. It does not * support the add or addAll operations. * * @return a collection view of the values contained in this map */ Collection values(); /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation, or through the * setValue operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll and * clear operations. It does not support the * add or addAll operations. * * @return a set view of the mappings contained in this map */ Set> entrySet(); /** * A map entry (key-value pair). The Map.entrySet method returns * a collection-view of the map, whose elements are of this class. The * only way to obtain a reference to a map entry is from the * iterator of this collection-view. These Map.Entry objects are * valid only for the duration of the iteration; more formally, * the behavior of a map entry is undefined if the backing map has been * modified after the entry was returned by the iterator, except through * the setValue operation on the map entry. * * @see Map#entrySet() * @since 1.2 */ interface Entry { /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ K getKey(); /** * Returns the value corresponding to this entry. If the mapping * has been removed from the backing map (by the iterator's * remove operation), the results of this call are undefined. * * @return the value corresponding to this entry * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ V getValue(); /** * Replaces the value corresponding to this entry with the specified * value (optional operation). (Writes through to the map.) The * behavior of this call is undefined if the mapping has already been * removed from the map (by the iterator's remove operation). * * @param value new value to be stored in this entry * @return old value corresponding to the entry * @throws UnsupportedOperationException if the put operation * is not supported by the backing map * @throws ClassCastException if the class of the specified value * prevents it from being stored in the backing map * @throws NullPointerException if the backing map does not permit * null values, and the specified value is null * @throws IllegalArgumentException if some property of this value * prevents it from being stored in the backing map * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ V setValue(V value); /** * Compares the specified object with this entry for equality. * Returns true if the given object is also a map entry and * the two entries represent the same mapping. More formally, two * entries e1 and e2 represent the same mapping * if

         *     (e1.getKey()==null ?
         *      e2.getKey()==null : e1.getKey().equals(e2.getKey()))  &&
         *     (e1.getValue()==null ?
         *      e2.getValue()==null : e1.getValue().equals(e2.getValue()))
         * 
* This ensures that the equals method works properly across * different implementations of the Map.Entry interface. * * @param o object to be compared for equality with this map entry * @return true if the specified object is equal to this map * entry */ boolean equals(Object o); /** * Returns the hash code value for this map entry. The hash code * of a map entry e is defined to be:
         *     (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *     (e.getValue()==null ? 0 : e.getValue().hashCode())
         * 
* This ensures that e1.equals(e2) implies that * e1.hashCode()==e2.hashCode() for any two Entries * e1 and e2, as required by the general * contract of Object.hashCode. * * @return the hash code value for this map entry * @see Object#hashCode() * @see Object#equals(Object) * @see #equals(Object) */ int hashCode(); } // Comparison and hashing /** * Compares the specified object with this map for equality. Returns * true if the given object is also a map and the two maps * represent the same mappings. More formally, two maps m1 and * m2 represent the same mappings if * m1.entrySet().equals(m2.entrySet()). This ensures that the * equals method works properly across different implementations * of the Map interface. * * @param o object to be compared for equality with this map * @return true if the specified object is equal to this map */ boolean equals(Object o); /** * Returns the hash code value for this map. The hash code of a map is * defined to be the sum of the hash codes of each entry in the map's * entrySet() view. This ensures that m1.equals(m2) * implies that m1.hashCode()==m2.hashCode() for any two maps * m1 and m2, as required by the general contract of * {@link Object#hashCode}. * * @return the hash code value for this map * @see Map.Entry#hashCode() * @see Object#equals(Object) * @see #equals(Object) */ int hashCode(); } /* * Copyright 1994-1998 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Thrown by the nextElement method of an * Enumeration to indicate that there are no more * elements in the enumeration. * * @author unascribed * @see java.util.Enumeration * @see java.util.Enumeration#nextElement() * @since JDK1.0 */ public class NoSuchElementException extends RuntimeException { /** * Constructs a NoSuchElementException with null * as its error message string. */ public NoSuchElementException() { super(); } /** * Constructs a NoSuchElementException, saving a reference * to the error message string s for later retrieval by the * getMessage method. * * @param s the detail message. */ public NoSuchElementException(String s) { super(s); } } package javaUtilEx; public class Random { static String[] args; static int index = 0; public static int random() { String string = args[index]; index++; return string.length(); } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * A collection that contains no duplicate elements. More formally, sets * contain no pair of elements e1 and e2 such that * e1.equals(e2), and at most one null element. As implied by * its name, this interface models the mathematical set abstraction. * *

The Set interface places additional stipulations, beyond those * inherited from the Collection interface, on the contracts of all * constructors and on the contracts of the add, equals and * hashCode methods. Declarations for other inherited methods are * also included here for convenience. (The specifications accompanying these * declarations have been tailored to the Set interface, but they do * not contain any additional stipulations.) * *

The additional stipulation on constructors is, not surprisingly, * that all constructors must create a set that contains no duplicate elements * (as defined above). * *

Note: Great care must be exercised if mutable objects are used as set * elements. The behavior of a set is not specified if the value of an object * is changed in a manner that affects equals comparisons while the * object is an element in the set. A special case of this prohibition is * that it is not permissible for a set to contain itself as an element. * *

Some set implementations have restrictions on the elements that * they may contain. For example, some implementations prohibit null elements, * and some have restrictions on the types of their elements. Attempting to * add an ineligible element throws an unchecked exception, typically * NullPointerException or ClassCastException. Attempting * to query the presence of an ineligible element may throw an exception, * or it may simply return false; some implementations will exhibit the former * behavior and some will exhibit the latter. More generally, attempting an * operation on an ineligible element whose completion would not result in * the insertion of an ineligible element into the set may throw an * exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *

This interface is a member of the * * Java Collections Framework. * * @param the type of elements maintained by this set * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see List * @see SortedSet * @see HashSet * @see TreeSet * @see AbstractSet * @see Collections#singleton(java.lang.Object) * @see Collections#EMPTY_SET * @since 1.2 */ public interface Set extends Collection { // Query Operations /** * Returns the number of elements in this set (its cardinality). If this * set contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of elements in this set (its cardinality) */ int size(); /** * Returns true if this set contains no elements. * * @return true if this set contains no elements */ boolean isEmpty(); /** * Returns true if this set contains the specified element. * More formally, returns true if and only if this set * contains an element e such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this set is to be tested * @return true if this set contains the specified element * @throws ClassCastException if the type of the specified element * is incompatible with this set (optional) * @throws NullPointerException if the specified element is null and this * set does not permit null elements (optional) */ boolean contains(Object o); /** * Returns an iterator over the elements in this set. The elements are * returned in no particular order (unless this set is an instance of some * class that provides a guarantee). * * @return an iterator over the elements in this set */ Iterator iterator(); /** * Returns an array containing all of the elements in this set. * If this set makes any guarantees as to what order its elements * are returned by its iterator, this method must return the * elements in the same order. * *

The returned array will be "safe" in that no references to it * are maintained by this set. (In other words, this method must * allocate a new array even if this set is backed by an array). * The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all the elements in this set */ Object[] toArray(); /** * Returns an array containing all of the elements in this set; the * runtime type of the returned array is that of the specified array. * If the set fits in the specified array, it is returned therein. * Otherwise, a new array is allocated with the runtime type of the * specified array and the size of this set. * *

If this set fits in the specified array with room to spare * (i.e., the array has more elements than this set), the element in * the array immediately following the end of the set is set to * null. (This is useful in determining the length of this * set only if the caller knows that this set does not contain * any null elements.) * *

If this set makes any guarantees as to what order its elements * are returned by its iterator, this method must return the elements * in the same order. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose x is a set known to contain only strings. * The following code can be used to dump the set into a newly allocated * array of String: * *

     *     String[] y = x.toArray(new String[0]);
* * Note that toArray(new Object[0]) is identical in function to * toArray(). * * @param a the array into which the elements of this set are to be * stored, if it is big enough; otherwise, a new array of the same * runtime type is allocated for this purpose. * @return an array containing all the elements in this set * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in this * set * @throws NullPointerException if the specified array is null */ T[] toArray(T[] a); // Modification Operations /** * Adds the specified element to this set if it is not already present * (optional operation). More formally, adds the specified element * e to this set if the set contains no element e2 * such that * (e==null ? e2==null : e.equals(e2)). * If this set already contains the element, the call leaves the set * unchanged and returns false. In combination with the * restriction on constructors, this ensures that sets never contain * duplicate elements. * *

The stipulation above does not imply that sets must accept all * elements; sets may refuse to add any particular element, including * null, and throw an exception, as described in the * specification for {@link Collection#add Collection.add}. * Individual set implementations should clearly document any * restrictions on the elements that they may contain. * * @param e element to be added to this set * @return true if this set did not already contain the specified * element * @throws UnsupportedOperationException if the add operation * is not supported by this set * @throws ClassCastException if the class of the specified element * prevents it from being added to this set * @throws NullPointerException if the specified element is null and this * set does not permit null elements * @throws IllegalArgumentException if some property of the specified element * prevents it from being added to this set */ boolean add(E e); /** * Removes the specified element from this set if it is present * (optional operation). More formally, removes an element e * such that * (o==null ? e==null : o.equals(e)), if * this set contains such an element. Returns true if this set * contained the element (or equivalently, if this set changed as a * result of the call). (This set will not contain the element once the * call returns.) * * @param o object to be removed from this set, if present * @return true if this set contained the specified element * @throws ClassCastException if the type of the specified element * is incompatible with this set (optional) * @throws NullPointerException if the specified element is null and this * set does not permit null elements (optional) * @throws UnsupportedOperationException if the remove operation * is not supported by this set */ boolean remove(Object o); // Bulk Operations /** * Returns true if this set contains all of the elements of the * specified collection. If the specified collection is also a set, this * method returns true if it is a subset of this set. * * @param c collection to be checked for containment in this set * @return true if this set contains all of the elements of the * specified collection * @throws ClassCastException if the types of one or more elements * in the specified collection are incompatible with this * set (optional) * @throws NullPointerException if the specified collection contains one * or more null elements and this set does not permit null * elements (optional), or if the specified collection is null * @see #contains(Object) */ boolean containsAll(Collection c); /** * Adds all of the elements in the specified collection to this set if * they're not already present (optional operation). If the specified * collection is also a set, the addAll operation effectively * modifies this set so that its value is the union of the two * sets. The behavior of this operation is undefined if the specified * collection is modified while the operation is in progress. * * @param c collection containing elements to be added to this set * @return true if this set changed as a result of the call * * @throws UnsupportedOperationException if the addAll operation * is not supported by this set * @throws ClassCastException if the class of an element of the * specified collection prevents it from being added to this set * @throws NullPointerException if the specified collection contains one * or more null elements and this set does not permit null * elements, or if the specified collection is null * @throws IllegalArgumentException if some property of an element of the * specified collection prevents it from being added to this set * @see #add(Object) */ boolean addAll(Collection c); /** * Retains only the elements in this set that are contained in the * specified collection (optional operation). In other words, removes * from this set all of its elements that are not contained in the * specified collection. If the specified collection is also a set, this * operation effectively modifies this set so that its value is the * intersection of the two sets. * * @param c collection containing elements to be retained in this set * @return true if this set changed as a result of the call * @throws UnsupportedOperationException if the retainAll operation * is not supported by this set * @throws ClassCastException if the class of an element of this set * is incompatible with the specified collection (optional) * @throws NullPointerException if this set contains a null element and the * specified collection does not permit null elements (optional), * or if the specified collection is null * @see #remove(Object) */ boolean retainAll(Collection c); /** * Removes from this set all of its elements that are contained in the * specified collection (optional operation). If the specified * collection is also a set, this operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * * @param c collection containing elements to be removed from this set * @return true if this set changed as a result of the call * @throws UnsupportedOperationException if the removeAll operation * is not supported by this set * @throws ClassCastException if the class of an element of this set * is incompatible with the specified collection (optional) * @throws NullPointerException if this set contains a null element and the * specified collection does not permit null elements (optional), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean removeAll(Collection c); /** * Removes all of the elements from this set (optional operation). * The set will be empty after this call returns. * * @throws UnsupportedOperationException if the clear method * is not supported by this set */ void clear(); // Comparison and hashing /** * Compares the specified object with this set for equality. Returns * true if the specified object is also a set, the two sets * have the same size, and every member of the specified set is * contained in this set (or equivalently, every member of this set is * contained in the specified set). This definition ensures that the * equals method works properly across different implementations of the * set interface. * * @param o object to be compared for equality with this set * @return true if the specified object is equal to this set */ boolean equals(Object o); /** * Returns the hash code value for this set. The hash code of a set is * defined to be the sum of the hash codes of the elements in the set, * where the hash code of a null element is defined to be zero. * This ensures that s1.equals(s2) implies that * s1.hashCode()==s2.hashCode() for any two sets s1 * and s2, as required by the general contract of * {@link Object#hashCode}. * * @return the hash code value for this set * @see Object#equals(Object) * @see Set#equals(Object) */ int hashCode(); } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Thrown to indicate that the requested operation is not supported.

* * This class is a member of the * * Java Collections Framework. * * @author Josh Bloch * @since 1.2 */ public class UnsupportedOperationException extends RuntimeException { /** * Constructs an UnsupportedOperationException with no detail message. */ public UnsupportedOperationException() { } /** * Constructs an UnsupportedOperationException with the specified * detail message. * * @param message the detail message */ public UnsupportedOperationException(String message) { super(message); } /** * Constructs a new exception with the specified detail message and * cause. * *

Note that the detail message associated with cause is * not automatically incorporated in this exception's detail * message. * * @param message the detail message (which is saved for later retrieval * by the {@link Throwable#getMessage()} method). * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value * is permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public UnsupportedOperationException(String message, Throwable cause) { super(message, cause); } /** * Constructs a new exception with the specified cause and a detail * message of (cause==null ? null : cause.toString()) (which * typically contains the class and detail message of cause). * This constructor is useful for exceptions that are little more than * wrappers for other throwables (for example, {@link * java.security.PrivilegedActionException}). * * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value is * permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public UnsupportedOperationException(Throwable cause) { super(cause); } static final long serialVersionUID = -1242599979055084673L; } ---------------------------------------- (1) BareJBCToJBCProof (EQUIVALENT) initialized classpath ---------------------------------------- (2) Obligation: need to prove termination of the following program: /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * This class provides a skeletal implementation of the Collection * interface, to minimize the effort required to implement this interface.

* * To implement an unmodifiable collection, the programmer needs only to * extend this class and provide implementations for the iterator and * size methods. (The iterator returned by the iterator * method must implement hasNext and next.)

* * To implement a modifiable collection, the programmer must additionally * override this class's add method (which otherwise throws an * UnsupportedOperationException), and the iterator returned by the * iterator method must additionally implement its remove * method.

* * The programmer should generally provide a void (no argument) and * Collection constructor, as per the recommendation in the * Collection interface specification.

* * The documentation for each non-abstract method in this class describes its * implementation in detail. Each of these methods may be overridden if * the collection being implemented admits a more efficient implementation.

* * This class is a member of the * * Java Collections Framework. * * @author Josh Bloch * @author Neal Gafter * @see Collection * @since 1.2 */ public abstract class AbstractCollection implements Collection { /** * Sole constructor. (For invocation by subclass constructors, typically * implicit.) */ protected AbstractCollection() { } // Query Operations /** * Returns an iterator over the elements contained in this collection. * * @return an iterator over the elements contained in this collection */ public abstract Iterator iterator(); public abstract int size(); /** * {@inheritDoc} * *

This implementation returns size() == 0. */ public boolean isEmpty() { return size() == 0; } /** * {@inheritDoc} * *

This implementation iterates over the elements in the collection, * checking each element in turn for equality with the specified element. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean contains(Object o) { Iterator e = iterator(); if (o==null) { while (e.hasNext()) if (e.next()==null) return true; } else { while (e.hasNext()) if (o.equals(e.next())) return true; } return false; } // Modification Operations /** * {@inheritDoc} * *

This implementation always throws an * UnsupportedOperationException. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @throws IllegalStateException {@inheritDoc} */ public boolean add(E e) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * *

This implementation iterates over the collection looking for the * specified element. If it finds the element, it removes the element * from the collection using the iterator's remove method. * *

Note that this implementation throws an * UnsupportedOperationException if the iterator returned by this * collection's iterator method does not implement the remove * method and this collection contains the specified object. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean remove(Object o) { Iterator e = iterator(); if (o==null) { while (e.hasNext()) { if (e.next()==null) { e.remove(); return true; } } } else { while (e.hasNext()) { if (o.equals(e.next())) { e.remove(); return true; } } } return false; } // Bulk Operations /** * {@inheritDoc} * *

This implementation iterates over the specified collection, * checking each element returned by the iterator in turn to see * if it's contained in this collection. If all elements are so * contained true is returned, otherwise false. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @see #contains(Object) */ public boolean containsAll(Collection c) { Iterator e = c.iterator(); while (e.hasNext()) if (!contains(e.next())) return false; return true; } /** * {@inheritDoc} * *

This implementation iterates over the specified collection, and adds * each object returned by the iterator to this collection, in turn. * *

Note that this implementation will throw an * UnsupportedOperationException unless add is * overridden (assuming the specified collection is non-empty). * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @throws IllegalStateException {@inheritDoc} * * @see #add(Object) */ public boolean addAll(Collection c) { boolean modified = false; Iterator e = c.iterator(); while (e.hasNext()) { if (add(e.next())) modified = true; } return modified; } /** * {@inheritDoc} * *

This implementation iterates over this collection, checking each * element returned by the iterator in turn to see if it's contained * in the specified collection. If it's so contained, it's removed from * this collection with the iterator's remove method. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by the * iterator method does not implement the remove method * and this collection contains one or more elements in common with the * specified collection. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * * @see #remove(Object) * @see #contains(Object) */ public boolean removeAll(Collection c) { boolean modified = false; Iterator e = iterator(); while (e.hasNext()) { if (c.contains(e.next())) { e.remove(); modified = true; } } return modified; } /** * {@inheritDoc} * *

This implementation iterates over this collection, checking each * element returned by the iterator in turn to see if it's contained * in the specified collection. If it's not so contained, it's removed * from this collection with the iterator's remove method. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by the * iterator method does not implement the remove method * and this collection contains one or more elements not present in the * specified collection. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * * @see #remove(Object) * @see #contains(Object) */ public boolean retainAll(Collection c) { boolean modified = false; Iterator e = iterator(); while (e.hasNext()) { if (!c.contains(e.next())) { e.remove(); modified = true; } } return modified; } /** * {@inheritDoc} * *

This implementation iterates over this collection, removing each * element using the Iterator.remove operation. Most * implementations will probably choose to override this method for * efficiency. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by this * collection's iterator method does not implement the * remove method and this collection is non-empty. * * @throws UnsupportedOperationException {@inheritDoc} */ public void clear() { Iterator e = iterator(); while (e.hasNext()) { e.next(); e.remove(); } } // String conversion /** * Returns a string representation of this collection. The string * representation consists of a list of the collection's elements in the * order they are returned by its iterator, enclosed in square brackets * ("[]"). Adjacent elements are separated by the characters * ", " (comma and space). Elements are converted to strings as * by {@link String#valueOf(Object)}. * * @return a string representation of this collection */ public String toString() { Iterator i = iterator(); if (! i.hasNext()) return "[]"; String sb = ""; sb = sb + "["; for (;;) { E e = i.next(); sb = sb + (e == this ? "(this Collection)" : e); if (! i.hasNext()) { sb = sb + "]"; return sb; } sb = sb + ", "; } } } /* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; import javaUtilEx.Map.Entry; /** * This class provides a skeletal implementation of the Map * interface, to minimize the effort required to implement this interface. * *

To implement an unmodifiable map, the programmer needs only to extend this * class and provide an implementation for the entrySet method, which * returns a set-view of the map's mappings. Typically, the returned set * will, in turn, be implemented atop AbstractSet. This set should * not support the add or remove methods, and its iterator * should not support the remove method. * *

To implement a modifiable map, the programmer must additionally override * this class's put method (which otherwise throws an * UnsupportedOperationException), and the iterator returned by * entrySet().iterator() must additionally implement its * remove method. * *

The programmer should generally provide a void (no argument) and map * constructor, as per the recommendation in the Map interface * specification. * *

The documentation for each non-abstract method in this class describes its * implementation in detail. Each of these methods may be overridden if the * map being implemented admits a more efficient implementation. * *

This class is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Josh Bloch * @author Neal Gafter * @see Map * @see Collection * @since 1.2 */ public abstract class AbstractMap implements Map { /** * Sole constructor. (For invocation by subclass constructors, typically * implicit.) */ protected AbstractMap() { } // Query Operations /** * {@inheritDoc} * *

This implementation returns entrySet().size(). */ public int size() { return entrySet().size(); } /** * {@inheritDoc} * *

This implementation returns size() == 0. */ public boolean isEmpty() { return size() == 0; } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching * for an entry with the specified value. If such an entry is found, * true is returned. If the iteration terminates without * finding such an entry, false is returned. Note that this * implementation requires linear time in the size of the map. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean containsValue(Object value) { Iterator> i = entrySet().iterator(); if (value==null) { while (i.hasNext()) { Entry e = i.next(); if (e.getValue()==null) return true; } } else { while (i.hasNext()) { Entry e = i.next(); if (value.equals(e.getValue())) return true; } } return false; } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching * for an entry with the specified key. If such an entry is found, * true is returned. If the iteration terminates without * finding such an entry, false is returned. Note that this * implementation requires linear time in the size of the map; many * implementations will override this method. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean containsKey(Object key) { Iterator> i = entrySet().iterator(); if (key==null) { while (i.hasNext()) { Entry e = i.next(); if (e.getKey()==null) return true; } } else { while (i.hasNext()) { Entry e = i.next(); if (key.equals(e.getKey())) return true; } } return false; } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching * for an entry with the specified key. If such an entry is found, * the entry's value is returned. If the iteration terminates without * finding such an entry, null is returned. Note that this * implementation requires linear time in the size of the map; many * implementations will override this method. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public V get(Object key) { Iterator> i = entrySet().iterator(); if (key==null) { while (i.hasNext()) { Entry e = i.next(); if (e.getKey()==null) return e.getValue(); } } else { while (i.hasNext()) { Entry e = i.next(); if (key.equals(e.getKey())) return e.getValue(); } } return null; } // Modification Operations /** * {@inheritDoc} * *

This implementation always throws an * UnsupportedOperationException. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public V put(K key, V value) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * *

This implementation iterates over entrySet() searching for an * entry with the specified key. If such an entry is found, its value is * obtained with its getValue operation, the entry is removed * from the collection (and the backing map) with the iterator's * remove operation, and the saved value is returned. If the * iteration terminates without finding such an entry, null is * returned. Note that this implementation requires linear time in the * size of the map; many implementations will override this method. * *

Note that this implementation throws an * UnsupportedOperationException if the entrySet * iterator does not support the remove method and this map * contains a mapping for the specified key. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public V remove(Object key) { Iterator> i = entrySet().iterator(); Entry correctEntry = null; if (key==null) { while (correctEntry==null && i.hasNext()) { Entry e = i.next(); if (e.getKey()==null) correctEntry = e; } } else { while (correctEntry==null && i.hasNext()) { Entry e = i.next(); if (key.equals(e.getKey())) correctEntry = e; } } V oldValue = null; if (correctEntry !=null) { oldValue = correctEntry.getValue(); i.remove(); } return oldValue; } // Bulk Operations /** * {@inheritDoc} * *

This implementation iterates over the specified map's * entrySet() collection, and calls this map's put * operation once for each entry returned by the iteration. * *

Note that this implementation throws an * UnsupportedOperationException if this map does not support * the put operation and the specified map is nonempty. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public void putAll(Map m) { Iterator it = m.entrySet().iterator(); while (it.hasNext()) { Map.Entry e = (Map.Entry) it.next(); put((K) e.getKey(), (V) e.getValue()); } } /** * {@inheritDoc} * *

This implementation calls entrySet().clear(). * *

Note that this implementation throws an * UnsupportedOperationException if the entrySet * does not support the clear operation. * * @throws UnsupportedOperationException {@inheritDoc} */ public void clear() { entrySet().clear(); } // Views /** * Each of these fields are initialized to contain an instance of the * appropriate view the first time this view is requested. The views are * stateless, so there's no reason to create more than one of each. */ transient volatile Set keySet = null; transient volatile Collection values = null; /** * {@inheritDoc} * *

This implementation returns a set that subclasses {@link AbstractSet}. * The subclass's iterator method returns a "wrapper object" over this * map's entrySet() iterator. The size method * delegates to this map's size method and the * contains method delegates to this map's * containsKey method. * *

The set is created the first time this method is called, * and returned in response to all subsequent calls. No synchronization * is performed, so there is a slight chance that multiple calls to this * method will not all return the same set. */ public Set keySet() { if (keySet == null) { keySet = new AbstractSet() { public Iterator iterator() { return new Iterator() { private Iterator> i = entrySet().iterator(); public boolean hasNext() { return i.hasNext(); } public K next() { return i.next().getKey(); } public void remove() { i.remove(); } }; } public int size() { return AbstractMap.this.size(); } public boolean isEmpty() { return AbstractMap.this.isEmpty(); } public void clear() { AbstractMap.this.clear(); } public boolean contains(Object k) { return AbstractMap.this.containsKey(k); } public Object[] toArray() { Object[] res = new Object[AbstractMap.this.size()]; Iterator> it = entrySet().iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next().getKey(); return res; } public T[] toArray(T[] a) { a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), AbstractMap.this.size()); Object[] res = a; Iterator> it = entrySet().iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next().getKey(); return a; } }; } return keySet; } /** * {@inheritDoc} * *

This implementation returns a collection that subclasses {@link * AbstractCollection}. The subclass's iterator method returns a * "wrapper object" over this map's entrySet() iterator. * The size method delegates to this map's size * method and the contains method delegates to this map's * containsValue method. * *

The collection is created the first time this method is called, and * returned in response to all subsequent calls. No synchronization is * performed, so there is a slight chance that multiple calls to this * method will not all return the same collection. */ public Collection values() { if (values == null) { values = new AbstractCollection() { public Iterator iterator() { return new Iterator() { private Iterator> i = entrySet().iterator(); public boolean hasNext() { return i.hasNext(); } public V next() { return i.next().getValue(); } public void remove() { i.remove(); } }; } public int size() { return AbstractMap.this.size(); } public boolean isEmpty() { return AbstractMap.this.isEmpty(); } public void clear() { AbstractMap.this.clear(); } public boolean contains(Object v) { return AbstractMap.this.containsValue(v); } }; } return values; } public abstract Set> entrySet(); // Comparison and hashing /** * Compares the specified object with this map for equality. Returns * true if the given object is also a map and the two maps * represent the same mappings. More formally, two maps m1 and * m2 represent the same mappings if * m1.entrySet().equals(m2.entrySet()). This ensures that the * equals method works properly across different implementations * of the Map interface. * *

This implementation first checks if the specified object is this map; * if so it returns true. Then, it checks if the specified * object is a map whose size is identical to the size of this map; if * not, it returns false. If so, it iterates over this map's * entrySet collection, and checks that the specified map * contains each mapping that this map contains. If the specified map * fails to contain such a mapping, false is returned. If the * iteration completes, true is returned. * * @param o object to be compared for equality with this map * @return true if the specified object is equal to this map */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Map)) return false; Map m = (Map) o; if (m.size() != size()) return false; try { Iterator> i = entrySet().iterator(); while (i.hasNext()) { Entry e = i.next(); K key = e.getKey(); V value = e.getValue(); if (value == null) { if (!(m.get(key)==null && m.containsKey(key))) return false; } else { if (!value.equals(m.get(key))) return false; } } } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } return true; } /** * Returns the hash code value for this map. The hash code of a map is * defined to be the sum of the hash codes of each entry in the map's * entrySet() view. This ensures that m1.equals(m2) * implies that m1.hashCode()==m2.hashCode() for any two maps * m1 and m2, as required by the general contract of * {@link Object#hashCode}. * *

This implementation iterates over entrySet(), calling * {@link Map.Entry#hashCode hashCode()} on each element (entry) in the * set, and adding up the results. * * @return the hash code value for this map * @see Map.Entry#hashCode() * @see Object#equals(Object) * @see Set#equals(Object) */ public int hashCode() { int h = 0; Iterator> i = entrySet().iterator(); while (i.hasNext()) h += i.next().hashCode(); return h; } /** * Returns a string representation of this map. The string representation * consists of a list of key-value mappings in the order returned by the * map's entrySet view's iterator, enclosed in braces * ("{}"). Adjacent mappings are separated by the characters * ", " (comma and space). Each key-value mapping is rendered as * the key followed by an equals sign ("=") followed by the * associated value. Keys and values are converted to strings as by * {@link String#valueOf(Object)}. * * @return a string representation of this map */ public String toString() { Iterator> i = entrySet().iterator(); if (! i.hasNext()) return "{}"; StringBuilder sb = new StringBuilder(); sb.append('{'); for (;;) { Entry e = i.next(); K key = e.getKey(); V value = e.getValue(); sb.append(key == this ? "(this Map)" : key); sb.append('='); sb.append(value == this ? "(this Map)" : value); if (! i.hasNext()) return sb.append('}').toString(); sb.append(", "); } } /** * Returns a shallow copy of this AbstractMap instance: the keys * and values themselves are not cloned. * * @return a shallow copy of this map */ protected Object clone() throws CloneNotSupportedException { AbstractMap result = (AbstractMap)super.clone(); result.keySet = null; result.values = null; return result; } /** * Utility method for SimpleEntry and SimpleImmutableEntry. * Test for equality, checking for nulls. */ private static boolean eq(Object o1, Object o2) { return o1 == null ? o2 == null : o1.equals(o2); } // Implementation Note: SimpleEntry and SimpleImmutableEntry // are distinct unrelated classes, even though they share // some code. Since you can't add or subtract final-ness // of a field in a subclass, they can't share representations, // and the amount of duplicated code is too small to warrant // exposing a common abstract class. /** * An Entry maintaining a key and a value. The value may be * changed using the setValue method. This class * facilitates the process of building custom map * implementations. For example, it may be convenient to return * arrays of SimpleEntry instances in method * Map.entrySet().toArray. * * @since 1.6 */ public static class SimpleEntry implements Entry, java.io.Serializable { private static final long serialVersionUID = -8499721149061103585L; private final K key; private V value; /** * Creates an entry representing a mapping from the specified * key to the specified value. * * @param key the key represented by this entry * @param value the value represented by this entry */ public SimpleEntry(K key, V value) { this.key = key; this.value = value; } /** * Creates an entry representing the same mapping as the * specified entry. * * @param entry the entry to copy */ public SimpleEntry(Entry entry) { this.key = entry.getKey(); this.value = entry.getValue(); } /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry */ public K getKey() { return key; } /** * Returns the value corresponding to this entry. * * @return the value corresponding to this entry */ public V getValue() { return value; } /** * Replaces the value corresponding to this entry with the specified * value. * * @param value new value to be stored in this entry * @return the old value corresponding to the entry */ public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } /** * Compares the specified object with this entry for equality. * Returns {@code true} if the given object is also a map entry and * the two entries represent the same mapping. More formally, two * entries {@code e1} and {@code e2} represent the same mapping * if

         *   (e1.getKey()==null ?
         *    e2.getKey()==null :
         *    e1.getKey().equals(e2.getKey()))
         *   &&
         *   (e1.getValue()==null ?
         *    e2.getValue()==null :
         *    e1.getValue().equals(e2.getValue()))
* This ensures that the {@code equals} method works properly across * different implementations of the {@code Map.Entry} interface. * * @param o object to be compared for equality with this map entry * @return {@code true} if the specified object is equal to this map * entry * @see #hashCode */ public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return eq(key, e.getKey()) && eq(value, e.getValue()); } /** * Returns the hash code value for this map entry. The hash code * of a map entry {@code e} is defined to be:
         *   (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *   (e.getValue()==null ? 0 : e.getValue().hashCode())
* This ensures that {@code e1.equals(e2)} implies that * {@code e1.hashCode()==e2.hashCode()} for any two Entries * {@code e1} and {@code e2}, as required by the general * contract of {@link Object#hashCode}. * * @return the hash code value for this map entry * @see #equals */ public int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } /** * Returns a String representation of this map entry. This * implementation returns the string representation of this * entry's key followed by the equals character ("=") * followed by the string representation of this entry's value. * * @return a String representation of this map entry */ public String toString() { return key + "=" + value; } } /** * An Entry maintaining an immutable key and value. This class * does not support method setValue. This class may be * convenient in methods that return thread-safe snapshots of * key-value mappings. * * @since 1.6 */ public static class SimpleImmutableEntry implements Entry, java.io.Serializable { private static final long serialVersionUID = 7138329143949025153L; private final K key; private final V value; /** * Creates an entry representing a mapping from the specified * key to the specified value. * * @param key the key represented by this entry * @param value the value represented by this entry */ public SimpleImmutableEntry(K key, V value) { this.key = key; this.value = value; } /** * Creates an entry representing the same mapping as the * specified entry. * * @param entry the entry to copy */ public SimpleImmutableEntry(Entry entry) { this.key = entry.getKey(); this.value = entry.getValue(); } /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry */ public K getKey() { return key; } /** * Returns the value corresponding to this entry. * * @return the value corresponding to this entry */ public V getValue() { return value; } /** * Replaces the value corresponding to this entry with the specified * value (optional operation). This implementation simply throws * UnsupportedOperationException, as this class implements * an immutable map entry. * * @param value new value to be stored in this entry * @return (Does not return) * @throws UnsupportedOperationException always */ public V setValue(V value) { throw new UnsupportedOperationException(); } /** * Compares the specified object with this entry for equality. * Returns {@code true} if the given object is also a map entry and * the two entries represent the same mapping. More formally, two * entries {@code e1} and {@code e2} represent the same mapping * if
         *   (e1.getKey()==null ?
         *    e2.getKey()==null :
         *    e1.getKey().equals(e2.getKey()))
         *   &&
         *   (e1.getValue()==null ?
         *    e2.getValue()==null :
         *    e1.getValue().equals(e2.getValue()))
* This ensures that the {@code equals} method works properly across * different implementations of the {@code Map.Entry} interface. * * @param o object to be compared for equality with this map entry * @return {@code true} if the specified object is equal to this map * entry * @see #hashCode */ public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return eq(key, e.getKey()) && eq(value, e.getValue()); } /** * Returns the hash code value for this map entry. The hash code * of a map entry {@code e} is defined to be:
         *   (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *   (e.getValue()==null ? 0 : e.getValue().hashCode())
* This ensures that {@code e1.equals(e2)} implies that * {@code e1.hashCode()==e2.hashCode()} for any two Entries * {@code e1} and {@code e2}, as required by the general * contract of {@link Object#hashCode}. * * @return the hash code value for this map entry * @see #equals */ public int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } /** * Returns a String representation of this map entry. This * implementation returns the string representation of this * entry's key followed by the equals character ("=") * followed by the string representation of this entry's value. * * @return a String representation of this map entry */ public String toString() { return key + "=" + value; } } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * This class provides a skeletal implementation of the Set * interface to minimize the effort required to implement this * interface.

* * The process of implementing a set by extending this class is identical * to that of implementing a Collection by extending AbstractCollection, * except that all of the methods and constructors in subclasses of this * class must obey the additional constraints imposed by the Set * interface (for instance, the add method must not permit addition of * multiple instances of an object to a set).

* * Note that this class does not override any of the implementations from * the AbstractCollection class. It merely adds implementations * for equals and hashCode.

* * This class is a member of the * * Java Collections Framework. * * @param the type of elements maintained by this set * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see AbstractCollection * @see Set * @since 1.2 */ public abstract class AbstractSet extends AbstractCollection implements Set { /** * Sole constructor. (For invocation by subclass constructors, typically * implicit.) */ protected AbstractSet() { } // Comparison and hashing /** * Compares the specified object with this set for equality. Returns * true if the given object is also a set, the two sets have * the same size, and every member of the given set is contained in * this set. This ensures that the equals method works * properly across different implementations of the Set * interface.

* * This implementation first checks if the specified object is this * set; if so it returns true. Then, it checks if the * specified object is a set whose size is identical to the size of * this set; if not, it returns false. If so, it returns * containsAll((Collection) o). * * @param o object to be compared for equality with this set * @return true if the specified object is equal to this set */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Set)) return false; Collection c = (Collection) o; if (c.size() != size()) return false; try { return containsAll(c); } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } } /** * Returns the hash code value for this set. The hash code of a set is * defined to be the sum of the hash codes of the elements in the set, * where the hash code of a null element is defined to be zero. * This ensures that s1.equals(s2) implies that * s1.hashCode()==s2.hashCode() for any two sets s1 * and s2, as required by the general contract of * {@link Object#hashCode}. * *

This implementation iterates over the set, calling the * hashCode method on each element in the set, and adding up * the results. * * @return the hash code value for this set * @see Object#equals(Object) * @see Set#equals(Object) */ public int hashCode() { int h = 0; Iterator i = iterator(); while (i.hasNext()) { E obj = i.next(); if (obj != null) h += obj.hashCode(); } return h; } /** * Removes from this set all of its elements that are contained in the * specified collection (optional operation). If the specified * collection is also a set, this operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * *

This implementation determines which is the smaller of this set * and the specified collection, by invoking the size * method on each. If this set has fewer elements, then the * implementation iterates over this set, checking each element * returned by the iterator in turn to see if it is contained in * the specified collection. If it is so contained, it is removed * from this set with the iterator's remove method. If * the specified collection has fewer elements, then the * implementation iterates over the specified collection, removing * from this set each element returned by the iterator, using this * set's remove method. * *

Note that this implementation will throw an * UnsupportedOperationException if the iterator returned by the * iterator method does not implement the remove method. * * @param c collection containing elements to be removed from this set * @return true if this set changed as a result of the call * @throws UnsupportedOperationException if the removeAll operation * is not supported by this set * @throws ClassCastException if the class of an element of this set * is incompatible with the specified collection (optional) * @throws NullPointerException if this set contains a null element and the * specified collection does not permit null elements (optional), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ public boolean removeAll(Collection c) { boolean modified = false; if (size() > c.size()) { for (Iterator i = c.iterator(); i.hasNext(); ) modified |= remove(i.next()); } else { for (Iterator i = iterator(); i.hasNext(); ) { if (c.contains(i.next())) { i.remove(); modified = true; } } } return modified; } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * The root interface in the collection hierarchy. A collection * represents a group of objects, known as its elements. Some * collections allow duplicate elements and others do not. Some are ordered * and others unordered. The JDK does not provide any direct * implementations of this interface: it provides implementations of more * specific subinterfaces like Set and List. This interface * is typically used to pass collections around and manipulate them where * maximum generality is desired. * *

Bags or multisets (unordered collections that may contain * duplicate elements) should implement this interface directly. * *

All general-purpose Collection implementation classes (which * typically implement Collection indirectly through one of its * subinterfaces) should provide two "standard" constructors: a void (no * arguments) constructor, which creates an empty collection, and a * constructor with a single argument of type Collection, which * creates a new collection with the same elements as its argument. In * effect, the latter constructor allows the user to copy any collection, * producing an equivalent collection of the desired implementation type. * There is no way to enforce this convention (as interfaces cannot contain * constructors) but all of the general-purpose Collection * implementations in the Java platform libraries comply. * *

The "destructive" methods contained in this interface, that is, the * methods that modify the collection on which they operate, are specified to * throw UnsupportedOperationException if this collection does not * support the operation. If this is the case, these methods may, but are not * required to, throw an UnsupportedOperationException if the * invocation would have no effect on the collection. For example, invoking * the {@link #addAll(Collection)} method on an unmodifiable collection may, * but is not required to, throw the exception if the collection to be added * is empty. * *

Some collection implementations have restrictions on the elements that * they may contain. For example, some implementations prohibit null elements, * and some have restrictions on the types of their elements. Attempting to * add an ineligible element throws an unchecked exception, typically * NullPointerException or ClassCastException. Attempting * to query the presence of an ineligible element may throw an exception, * or it may simply return false; some implementations will exhibit the former * behavior and some will exhibit the latter. More generally, attempting an * operation on an ineligible element whose completion would not result in * the insertion of an ineligible element into the collection may throw an * exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *

It is up to each collection to determine its own synchronization * policy. In the absence of a stronger guarantee by the * implementation, undefined behavior may result from the invocation * of any method on a collection that is being mutated by another * thread; this includes direct invocations, passing the collection to * a method that might perform invocations, and using an existing * iterator to examine the collection. * *

Many methods in Collections Framework interfaces are defined in * terms of the {@link Object#equals(Object) equals} method. For example, * the specification for the {@link #contains(Object) contains(Object o)} * method says: "returns true if and only if this collection * contains at least one element e such that * (o==null ? e==null : o.equals(e))." This specification should * not be construed to imply that invoking Collection.contains * with a non-null argument o will cause o.equals(e) to be * invoked for any element e. Implementations are free to implement * optimizations whereby the equals invocation is avoided, for * example, by first comparing the hash codes of the two elements. (The * {@link Object#hashCode()} specification guarantees that two objects with * unequal hash codes cannot be equal.) More generally, implementations of * the various Collections Framework interfaces are free to take advantage of * the specified behavior of underlying {@link Object} methods wherever the * implementor deems it appropriate. * *

This interface is a member of the * * Java Collections Framework. * * @author Josh Bloch * @author Neal Gafter * @see Set * @see List * @see Map * @see SortedSet * @see SortedMap * @see HashSet * @see TreeSet * @see ArrayList * @see LinkedList * @see Vector * @see Collections * @see Arrays * @see AbstractCollection * @since 1.2 */ public interface Collection { // Query Operations /** * Returns the number of elements in this collection. If this collection * contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of elements in this collection */ int size(); /** * Returns true if this collection contains no elements. * * @return true if this collection contains no elements */ boolean isEmpty(); /** * Returns true if this collection contains the specified element. * More formally, returns true if and only if this collection * contains at least one element e such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this collection is to be tested * @return true if this collection contains the specified * element * @throws ClassCastException if the type of the specified element * is incompatible with this collection (optional) * @throws NullPointerException if the specified element is null and this * collection does not permit null elements (optional) */ boolean contains(Object o); /** * Returns an iterator over the elements in this collection. There are no * guarantees concerning the order in which the elements are returned * (unless this collection is an instance of some class that provides a * guarantee). * * @return an Iterator over the elements in this collection */ Iterator iterator(); // Modification Operations /** * Ensures that this collection contains the specified element (optional * operation). Returns true if this collection changed as a * result of the call. (Returns false if this collection does * not permit duplicates and already contains the specified element.)

* * Collections that support this operation may place limitations on what * elements may be added to this collection. In particular, some * collections will refuse to add null elements, and others will * impose restrictions on the type of elements that may be added. * Collection classes should clearly specify in their documentation any * restrictions on what elements may be added.

* * If a collection refuses to add a particular element for any reason * other than that it already contains the element, it must throw * an exception (rather than returning false). This preserves * the invariant that a collection always contains the specified element * after this call returns. * * @param e element whose presence in this collection is to be ensured * @return true if this collection changed as a result of the * call * @throws UnsupportedOperationException if the add operation * is not supported by this collection * @throws ClassCastException if the class of the specified element * prevents it from being added to this collection * @throws NullPointerException if the specified element is null and this * collection does not permit null elements * @throws IllegalArgumentException if some property of the element * prevents it from being added to this collection * @throws IllegalStateException if the element cannot be added at this * time due to insertion restrictions */ boolean add(E e); /** * Removes a single instance of the specified element from this * collection, if it is present (optional operation). More formally, * removes an element e such that * (o==null ? e==null : o.equals(e)), if * this collection contains one or more such elements. Returns * true if this collection contained the specified element (or * equivalently, if this collection changed as a result of the call). * * @param o element to be removed from this collection, if present * @return true if an element was removed as a result of this call * @throws ClassCastException if the type of the specified element * is incompatible with this collection (optional) * @throws NullPointerException if the specified element is null and this * collection does not permit null elements (optional) * @throws UnsupportedOperationException if the remove operation * is not supported by this collection */ boolean remove(Object o); // Bulk Operations /** * Returns true if this collection contains all of the elements * in the specified collection. * * @param c collection to be checked for containment in this collection * @return true if this collection contains all of the elements * in the specified collection * @throws ClassCastException if the types of one or more elements * in the specified collection are incompatible with this * collection (optional) * @throws NullPointerException if the specified collection contains one * or more null elements and this collection does not permit null * elements (optional), or if the specified collection is null * @see #contains(Object) */ boolean containsAll(Collection c); /** * Adds all of the elements in the specified collection to this collection * (optional operation). The behavior of this operation is undefined if * the specified collection is modified while the operation is in progress. * (This implies that the behavior of this call is undefined if the * specified collection is this collection, and this collection is * nonempty.) * * @param c collection containing elements to be added to this collection * @return true if this collection changed as a result of the call * @throws UnsupportedOperationException if the addAll operation * is not supported by this collection * @throws ClassCastException if the class of an element of the specified * collection prevents it from being added to this collection * @throws NullPointerException if the specified collection contains a * null element and this collection does not permit null elements, * or if the specified collection is null * @throws IllegalArgumentException if some property of an element of the * specified collection prevents it from being added to this * collection * @throws IllegalStateException if not all the elements can be added at * this time due to insertion restrictions * @see #add(Object) */ boolean addAll(Collection c); /** * Removes all of this collection's elements that are also contained in the * specified collection (optional operation). After this call returns, * this collection will contain no elements in common with the specified * collection. * * @param c collection containing elements to be removed from this collection * @return true if this collection changed as a result of the * call * @throws UnsupportedOperationException if the removeAll method * is not supported by this collection * @throws ClassCastException if the types of one or more elements * in this collection are incompatible with the specified * collection (optional) * @throws NullPointerException if this collection contains one or more * null elements and the specified collection does not support * null elements (optional), or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean removeAll(Collection c); /** * Retains only the elements in this collection that are contained in the * specified collection (optional operation). In other words, removes from * this collection all of its elements that are not contained in the * specified collection. * * @param c collection containing elements to be retained in this collection * @return true if this collection changed as a result of the call * @throws UnsupportedOperationException if the retainAll operation * is not supported by this collection * @throws ClassCastException if the types of one or more elements * in this collection are incompatible with the specified * collection (optional) * @throws NullPointerException if this collection contains one or more * null elements and the specified collection does not permit null * elements (optional), or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean retainAll(Collection c); /** * Removes all of the elements from this collection (optional operation). * The collection will be empty after this method returns. * * @throws UnsupportedOperationException if the clear operation * is not supported by this collection */ void clear(); // Comparison and hashing /** * Compares the specified object with this collection for equality.

* * While the Collection interface adds no stipulations to the * general contract for the Object.equals, programmers who * implement the Collection interface "directly" (in other words, * create a class that is a Collection but is not a Set * or a List) must exercise care if they choose to override the * Object.equals. It is not necessary to do so, and the simplest * course of action is to rely on Object's implementation, but * the implementor may wish to implement a "value comparison" in place of * the default "reference comparison." (The List and * Set interfaces mandate such value comparisons.)

* * The general contract for the Object.equals method states that * equals must be symmetric (in other words, a.equals(b) if and * only if b.equals(a)). The contracts for List.equals * and Set.equals state that lists are only equal to other lists, * and sets to other sets. Thus, a custom equals method for a * collection class that implements neither the List nor * Set interface must return false when this collection * is compared to any list or set. (By the same logic, it is not possible * to write a class that correctly implements both the Set and * List interfaces.) * * @param o object to be compared for equality with this collection * @return true if the specified object is equal to this * collection * * @see Object#equals(Object) * @see Set#equals(Object) * @see List#equals(Object) */ boolean equals(Object o); /** * Returns the hash code value for this collection. While the * Collection interface adds no stipulations to the general * contract for the Object.hashCode method, programmers should * take note that any class that overrides the Object.equals * method must also override the Object.hashCode method in order * to satisfy the general contract for the Object.hashCodemethod. * In particular, c1.equals(c2) implies that * c1.hashCode()==c2.hashCode(). * * @return the hash code value for this collection * * @see Object#hashCode() * @see Object#equals(Object) */ int hashCode(); } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * This exception may be thrown by methods that have detected concurrent * modification of an object when such modification is not permissible. *

* For example, it is not generally permissible for one thread to modify a Collection * while another thread is iterating over it. In general, the results of the * iteration are undefined under these circumstances. Some Iterator * implementations (including those of all the general purpose collection implementations * provided by the JRE) may choose to throw this exception if this behavior is * detected. Iterators that do this are known as fail-fast iterators, * as they fail quickly and cleanly, rather that risking arbitrary, * non-deterministic behavior at an undetermined time in the future. *

* Note that this exception does not always indicate that an object has * been concurrently modified by a different thread. If a single * thread issues a sequence of method invocations that violates the * contract of an object, the object may throw this exception. For * example, if a thread modifies a collection directly while it is * iterating over the collection with a fail-fast iterator, the iterator * will throw this exception. * *

Note that fail-fast behavior cannot be guaranteed as it is, generally * speaking, impossible to make any hard guarantees in the presence of * unsynchronized concurrent modification. Fail-fast operations * throw ConcurrentModificationException on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: ConcurrentModificationException * should be used only to detect bugs. * * @author Josh Bloch * @see Collection * @see Iterator * @see ListIterator * @see Vector * @see LinkedList * @see HashSet * @see Hashtable * @see TreeMap * @see AbstractList * @since 1.2 */ public class ConcurrentModificationException extends RuntimeException { /** * Constructs a ConcurrentModificationException with no * detail message. */ public ConcurrentModificationException() { } /** * Constructs a ConcurrentModificationException with the * specified detail message. * * @param message the detail message pertaining to this exception. */ public ConcurrentModificationException(String message) { super(message); } } /* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Hash table based implementation of the Map interface. This * implementation provides all of the optional map operations, and permits * null values and the null key. (The HashMap * class is roughly equivalent to Hashtable, except that it is * unsynchronized and permits nulls.) This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * *

This implementation provides constant-time performance for the basic * operations (get and put), assuming the hash function * disperses the elements properly among the buckets. Iteration over * collection views requires time proportional to the "capacity" of the * HashMap instance (the number of buckets) plus its size (the number * of key-value mappings). Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * *

An instance of HashMap has two parameters that affect its * performance: initial capacity and load factor. The * capacity is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created. The * load factor is a measure of how full the hash table is allowed to * get before its capacity is automatically increased. When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the hash table is rehashed (that is, internal data * structures are rebuilt) so that the hash table has approximately twice the * number of buckets. * *

As a general rule, the default load factor (.75) offers a good tradeoff * between time and space costs. Higher values decrease the space overhead * but increase the lookup cost (reflected in most of the operations of the * HashMap class, including get and put). The * expected number of entries in the map and its load factor should be taken * into account when setting its initial capacity, so as to minimize the * number of rehash operations. If the initial capacity is greater * than the maximum number of entries divided by the load factor, no * rehash operations will ever occur. * *

If many mappings are to be stored in a HashMap instance, * creating it with a sufficiently large capacity will allow the mappings to * be stored more efficiently than letting it perform automatic rehashing as * needed to grow the table. * *

Note that this implementation is not synchronized. * If multiple threads access a hash map concurrently, and at least one of * the threads modifies the map structurally, it must be * synchronized externally. (A structural modification is any operation * that adds or deletes one or more mappings; merely changing the value * associated with a key that an instance already contains is not a * structural modification.) This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:

 *   Map m = Collections.synchronizedMap(new HashMap(...));
* *

The iterators returned by all of this class's "collection view methods" * are fail-fast: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * remove method, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw ConcurrentModificationException on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Doug Lea * @author Josh Bloch * @author Arthur van Hoff * @author Neal Gafter * @see Object#hashCode() * @see Collection * @see Map * @see TreeMap * @see Hashtable * @since 1.2 */ public class HashMap extends AbstractMap implements Map, Cloneable { /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry[] table; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The next size value at which to resize (capacity * load factor). * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient volatile int modCount; /** * Constructs an empty HashMap with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init(); } /** * Constructs an empty HashMap with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty HashMap with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } /** * Constructs a new HashMap with the same mappings as the * specified Map. The HashMap is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified Map. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public HashMap(Map m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); putAllForCreate(m); } // internal utilities /** * Initialization hook for subclasses. This method is called * in all constructors and pseudo-constructors (clone, readObject) * after HashMap has been initialized but before any entries have * been inserted. (In the absence of this method, readObject would * require explicit knowledge of subclasses.) */ void init() { } /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because HashMap uses power-of-two length hash tables, that * otherwise encounter collisions for hashCodes that do not differ * in lower bits. Note: Null keys always map to hash 0, thus index 0. */ static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } /** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */ public int size() { return size; } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { if (key == null) return getForNullKey(); int hash = hash(key.hashCode()); for (Entry e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; } /** * Offloaded version of get() to look up null keys. Null keys map * to index 0. This null case is split out into separate methods * for the sake of performance in the two most commonly used * operations (get and put), but incorporated with conditionals in * others. */ private V getForNullKey() { for (Entry e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } /** * Returns true if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { return getEntry(key) != null; } /** * Returns the entry associated with the specified key in the * HashMap. Returns null if the HashMap contains no mapping * for the key. */ final Entry getEntry(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); for (Entry e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; } /** * Offloaded version of put for null keys */ private V putForNullKey(V value) { for (Entry e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } /** * This method is used instead of put by constructors and * pseudoconstructors (clone, readObject). It does not resize the table, * check for comodification, etc. It calls createEntry rather than * addEntry. */ private void putForCreate(K key, V value) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); /** * Look for preexisting entry for key. This will never happen for * clone or deserialize. It will only happen for construction if the * input Map is a sorted map whose ordering is inconsistent w/ equals. */ for (Entry e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } createEntry(hash, key, value, i); } private void putAllForCreate(Map m) { for (Iterator> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry e = i.next(); putForCreate(e.getKey(), e.getValue()); } } /** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor); } /** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry e = src[j]; if (e != null) { src[j] = null; do { Entry next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param m mappings to be stored in this map * @throws NullPointerException if the specified map is null */ public void putAll(Map m) { int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; /* * Expand the map if the map if the number of mappings to be added * is greater than or equal to threshold. This is conservative; the * obvious condition is (m.size() + size) >= threshold, but this * condition could result in a map with twice the appropriate capacity, * if the keys to be added overlap with the keys already in this map. * By using the conservative calculation, we subject ourself * to at most one extra resize. */ if (numKeysToBeAdded > threshold) { int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) resize(newCapacity); } for (Iterator> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry e = i.next(); put(e.getKey(), e.getValue()); } } /** * Removes the mapping for the specified key from this map if present. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V remove(Object key) { Entry e = removeEntryForKey(key); return (e == null ? null : e.value); } /** * Removes and returns the entry associated with the specified key * in the HashMap. Returns null if the HashMap contains no mapping * for this key. */ final Entry removeEntryForKey(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry prev = table[i]; Entry e = prev; while (e != null) { Entry next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Special version of remove for EntrySet. */ final Entry removeMapping(Object o) { if (!(o instanceof Map.Entry)) return null; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry prev = table[i]; Entry e = prev; while (e != null) { Entry next = e.next; if (e.hash == hash && e.equals(entry)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ public void clear() { modCount++; Entry[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } /** * Returns true if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified value */ public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } /** * Special-case code for containsValue with null argument */ private boolean containsNullValue() { Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } /** * Returns a shallow copy of this HashMap instance: the keys and * values themselves are not cloned. * * @return a shallow copy of this map */ public Object clone() { HashMap result = null; try { result = (HashMap)super.clone(); } catch (CloneNotSupportedException e) { // assert false; } result.table = new Entry[table.length]; result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); result.putAllForCreate(this); return result; } static class Entry implements Map.Entry { final K key; V value; Entry next; final int hash; /** * Creates new entry. */ Entry(int h, K k, V v, Entry n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap m) { } } /** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { Entry e = table[bucketIndex]; table[bucketIndex] = new Entry(hash, key, value, e); if (size++ >= threshold) resize(2 * table.length); } /** * Like addEntry except that this version is used when creating entries * as part of Map construction or "pseudo-construction" (cloning, * deserialization). This version needn't worry about resizing the table. * * Subclass overrides this to alter the behavior of HashMap(Map), * clone, and readObject. */ void createEntry(int hash, K key, V value, int bucketIndex) { Entry e = table[bucketIndex]; table[bucketIndex] = new Entry(hash, key, value, e); size++; } private abstract class HashIterator implements Iterator { Entry next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private final class ValueIterator extends HashIterator { public V next() { return nextEntry().value; } } private final class KeyIterator extends HashIterator { public K next() { return nextEntry().getKey(); } } private final class EntryIterator extends HashIterator> { public Map.Entry next() { return nextEntry(); } } // Subclass overrides these to alter behavior of views' iterator() method Iterator newKeyIterator() { return new KeyIterator(); } Iterator newValueIterator() { return new ValueIterator(); } Iterator> newEntryIterator() { return new EntryIterator(); } // Views private transient Set> entrySet = null; /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or addAll * operations. */ public Set keySet() { Set ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet { public Iterator iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return HashMap.this.removeEntryForKey(o) != null; } public void clear() { HashMap.this.clear(); } public Object[] toArray() { Object[] res = new Object[size]; Iterator it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return res; } public T[] toArray(T[] a) { a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); Object[] res = a; Iterator it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return a; } } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own remove operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll and clear operations. It does not * support the add or addAll operations. */ public Collection values() { Collection vs = values; return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection { public Iterator iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { HashMap.this.clear(); } } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation, or through the * setValue operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll and * clear operations. It does not support the * add or addAll operations. * * @return a set view of the mappings contained in this map */ public Set> entrySet() { return entrySet0(); } private Set> entrySet0() { Set> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet> { public Iterator> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; Entry candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { HashMap.this.clear(); } public Object[] toArray() { Object[] res = new Object[size]; Iterator> it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return res; } public T[] toArray(T[] a) { a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); Object[] res = a; Iterator> it = iterator(); int i = 0; while (it.hasNext()) res[i++] = it.next(); return a; } } private static final long serialVersionUID = 362498820763181265L; } /* * Copyright 1994-2003 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Thrown to indicate that a method has been passed an illegal or * inappropriate argument. * * @author unascribed * @see java.lang.Thread#setPriority(int) * @since JDK1.0 */ public class IllegalArgumentException extends RuntimeException { /** * Constructs an IllegalArgumentException with no * detail message. */ public IllegalArgumentException() { super(); } /** * Constructs an IllegalArgumentException with the * specified detail message. * * @param s the detail message. */ public IllegalArgumentException(String s) { super(s); } /** * Constructs a new exception with the specified detail message and * cause. * *

Note that the detail message associated with cause is * not automatically incorporated in this exception's detail * message. * * @param message the detail message (which is saved for later retrieval * by the {@link Throwable#getMessage()} method). * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value * is permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalArgumentException(String message, Throwable cause) { super(message, cause); } /** * Constructs a new exception with the specified cause and a detail * message of (cause==null ? null : cause.toString()) (which * typically contains the class and detail message of cause). * This constructor is useful for exceptions that are little more than * wrappers for other throwables (for example, {@link * java.security.PrivilegedActionException}). * * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value is * permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalArgumentException(Throwable cause) { super(cause); } private static final long serialVersionUID = -5365630128856068164L; } /* * Copyright 1996-2003 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Signals that a method has been invoked at an illegal or * inappropriate time. In other words, the Java environment or * Java application is not in an appropriate state for the requested * operation. * * @author Jonni Kanerva * @since JDK1.1 */ public class IllegalStateException extends RuntimeException { /** * Constructs an IllegalStateException with no detail message. * A detail message is a String that describes this particular exception. */ public IllegalStateException() { super(); } /** * Constructs an IllegalStateException with the specified detail * message. A detail message is a String that describes this particular * exception. * * @param s the String that contains a detailed message */ public IllegalStateException(String s) { super(s); } /** * Constructs a new exception with the specified detail message and * cause. * *

Note that the detail message associated with cause is * not automatically incorporated in this exception's detail * message. * * @param message the detail message (which is saved for later retrieval * by the {@link Throwable#getMessage()} method). * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value * is permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalStateException(String message, Throwable cause) { super(message, cause); } /** * Constructs a new exception with the specified cause and a detail * message of (cause==null ? null : cause.toString()) (which * typically contains the class and detail message of cause). * This constructor is useful for exceptions that are little more than * wrappers for other throwables (for example, {@link * java.security.PrivilegedActionException}). * * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value is * permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public IllegalStateException(Throwable cause) { super(cause); } static final long serialVersionUID = -1848914673093119416L; } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * An iterator over a collection. {@code Iterator} takes the place of * {@link Enumeration} in the Java Collections Framework. Iterators * differ from enumerations in two ways: * *

    *
  • Iterators allow the caller to remove elements from the * underlying collection during the iteration with well-defined * semantics. *
  • Method names have been improved. *
* *

This interface is a member of the * * Java Collections Framework. * * @author Josh Bloch * @see Collection * @see ListIterator * @see Iterable * @since 1.2 */ public interface Iterator { /** * Returns {@code true} if the iteration has more elements. * (In other words, returns {@code true} if {@link #next} would * return an element rather than throwing an exception.) * * @return {@code true} if the iteration has more elements */ boolean hasNext(); /** * Returns the next element in the iteration. * * @return the next element in the iteration * @throws NoSuchElementException if the iteration has no more elements */ E next(); /** * Removes from the underlying collection the last element returned * by this iterator (optional operation). This method can be called * only once per call to {@link #next}. The behavior of an iterator * is unspecified if the underlying collection is modified while the * iteration is in progress in any way other than by calling this * method. * * @throws UnsupportedOperationException if the {@code remove} * operation is not supported by this iterator * * @throws IllegalStateException if the {@code next} method has not * yet been called, or the {@code remove} method has already * been called after the last call to the {@code next} * method */ void remove(); } package javaUtilEx; public class juHashMapCreateIsEmpty { public static void main(String[] args) { Random.args = args; HashMap m = createMap(Random.random()); m.isEmpty(); } public static HashMap createMap(int n) { HashMap m = new HashMap(); while (n > 0) { Content key = new Content(Random.random()); Content val = new Content(Random.random()); m.put(key, val); n--; } return m; } } final class Content { int val; public Content(int v) { this.val = v; } public int hashCode() { return val^31; } public boolean equals(Object o) { if (o instanceof Content) { return this.val == ((Content) o).val; } return false; } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * An object that maps keys to values. A map cannot contain duplicate keys; * each key can map to at most one value. * *

This interface takes the place of the Dictionary class, which * was a totally abstract class rather than an interface. * *

The Map interface provides three collection views, which * allow a map's contents to be viewed as a set of keys, collection of values, * or set of key-value mappings. The order of a map is defined as * the order in which the iterators on the map's collection views return their * elements. Some map implementations, like the TreeMap class, make * specific guarantees as to their order; others, like the HashMap * class, do not. * *

Note: great care must be exercised if mutable objects are used as map * keys. The behavior of a map is not specified if the value of an object is * changed in a manner that affects equals comparisons while the * object is a key in the map. A special case of this prohibition is that it * is not permissible for a map to contain itself as a key. While it is * permissible for a map to contain itself as a value, extreme caution is * advised: the equals and hashCode methods are no longer * well defined on such a map. * *

All general-purpose map implementation classes should provide two * "standard" constructors: a void (no arguments) constructor which creates an * empty map, and a constructor with a single argument of type Map, * which creates a new map with the same key-value mappings as its argument. * In effect, the latter constructor allows the user to copy any map, * producing an equivalent map of the desired class. There is no way to * enforce this recommendation (as interfaces cannot contain constructors) but * all of the general-purpose map implementations in the JDK comply. * *

The "destructive" methods contained in this interface, that is, the * methods that modify the map on which they operate, are specified to throw * UnsupportedOperationException if this map does not support the * operation. If this is the case, these methods may, but are not required * to, throw an UnsupportedOperationException if the invocation would * have no effect on the map. For example, invoking the {@link #putAll(Map)} * method on an unmodifiable map may, but is not required to, throw the * exception if the map whose mappings are to be "superimposed" is empty. * *

Some map implementations have restrictions on the keys and values they * may contain. For example, some implementations prohibit null keys and * values, and some have restrictions on the types of their keys. Attempting * to insert an ineligible key or value throws an unchecked exception, * typically NullPointerException or ClassCastException. * Attempting to query the presence of an ineligible key or value may throw an * exception, or it may simply return false; some implementations will exhibit * the former behavior and some will exhibit the latter. More generally, * attempting an operation on an ineligible key or value whose completion * would not result in the insertion of an ineligible element into the map may * throw an exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *

This interface is a member of the * * Java Collections Framework. * *

Many methods in Collections Framework interfaces are defined * in terms of the {@link Object#equals(Object) equals} method. For * example, the specification for the {@link #containsKey(Object) * containsKey(Object key)} method says: "returns true if and * only if this map contains a mapping for a key k such that * (key==null ? k==null : key.equals(k))." This specification should * not be construed to imply that invoking Map.containsKey * with a non-null argument key will cause key.equals(k) to * be invoked for any key k. Implementations are free to * implement optimizations whereby the equals invocation is avoided, * for example, by first comparing the hash codes of the two keys. (The * {@link Object#hashCode()} specification guarantees that two objects with * unequal hash codes cannot be equal.) More generally, implementations of * the various Collections Framework interfaces are free to take advantage of * the specified behavior of underlying {@link Object} methods wherever the * implementor deems it appropriate. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Josh Bloch * @see HashMap * @see TreeMap * @see Hashtable * @see SortedMap * @see Collection * @see Set * @since 1.2 */ public interface Map { // Query Operations /** * Returns the number of key-value mappings in this map. If the * map contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of key-value mappings in this map */ int size(); /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ boolean isEmpty(); /** * Returns true if this map contains a mapping for the specified * key. More formally, returns true if and only if * this map contains a mapping for a key k such that * (key==null ? k==null : key.equals(k)). (There can be * at most one such mapping.) * * @param key key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified * key * @throws ClassCastException if the key is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified key is null and this map * does not permit null keys (optional) */ boolean containsKey(Object key); /** * Returns true if this map maps one or more keys to the * specified value. More formally, returns true if and only if * this map contains at least one mapping to a value v such that * (value==null ? v==null : value.equals(v)). This operation * will probably require time linear in the map size for most * implementations of the Map interface. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified value * @throws ClassCastException if the value is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified value is null and this * map does not permit null values (optional) */ boolean containsValue(Object value); /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

If this map permits null values, then a return value of * {@code null} does not necessarily indicate that the map * contains no mapping for the key; it's also possible that the map * explicitly maps the key to {@code null}. The {@link #containsKey * containsKey} operation may be used to distinguish these two cases. * * @param key the key whose associated value is to be returned * @return the value to which the specified key is mapped, or * {@code null} if this map contains no mapping for the key * @throws ClassCastException if the key is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified key is null and this map * does not permit null keys (optional) */ V get(Object key); // Modification Operations /** * Associates the specified value with the specified key in this map * (optional operation). If the map previously contained a mapping for * the key, the old value is replaced by the specified value. (A map * m is said to contain a mapping for a key k if and only * if {@link #containsKey(Object) m.containsKey(k)} would return * true.) * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key, * if the implementation supports null values.) * @throws UnsupportedOperationException if the put operation * is not supported by this map * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * @throws NullPointerException if the specified key or value is null * and this map does not permit null keys or values * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map */ V put(K key, V value); /** * Removes the mapping for a key from this map if it is present * (optional operation). More formally, if this map contains a mapping * from key k to value v such that * (key==null ? k==null : key.equals(k)), that mapping * is removed. (The map can contain at most one such mapping.) * *

Returns the value to which this map previously associated the key, * or null if the map contained no mapping for the key. * *

If this map permits null values, then a return value of * null does not necessarily indicate that the map * contained no mapping for the key; it's also possible that the map * explicitly mapped the key to null. * *

The map will not contain a mapping for the specified key once the * call returns. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with key, or * null if there was no mapping for key. * @throws UnsupportedOperationException if the remove operation * is not supported by this map * @throws ClassCastException if the key is of an inappropriate type for * this map (optional) * @throws NullPointerException if the specified key is null and this * map does not permit null keys (optional) */ V remove(Object key); // Bulk Operations /** * Copies all of the mappings from the specified map to this map * (optional operation). The effect of this call is equivalent to that * of calling {@link #put(Object,Object) put(k, v)} on this map once * for each mapping from key k to value v in the * specified map. The behavior of this operation is undefined if the * specified map is modified while the operation is in progress. * * @param m mappings to be stored in this map * @throws UnsupportedOperationException if the putAll operation * is not supported by this map * @throws ClassCastException if the class of a key or value in the * specified map prevents it from being stored in this map * @throws NullPointerException if the specified map is null, or if * this map does not permit null keys or values, and the * specified map contains null keys or values * @throws IllegalArgumentException if some property of a key or value in * the specified map prevents it from being stored in this map */ void putAll(Map m); /** * Removes all of the mappings from this map (optional operation). * The map will be empty after this call returns. * * @throws UnsupportedOperationException if the clear operation * is not supported by this map */ void clear(); // Views /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or addAll * operations. * * @return a set view of the keys contained in this map */ Set keySet(); /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own remove operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll and clear operations. It does not * support the add or addAll operations. * * @return a collection view of the values contained in this map */ Collection values(); /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation, or through the * setValue operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll and * clear operations. It does not support the * add or addAll operations. * * @return a set view of the mappings contained in this map */ Set> entrySet(); /** * A map entry (key-value pair). The Map.entrySet method returns * a collection-view of the map, whose elements are of this class. The * only way to obtain a reference to a map entry is from the * iterator of this collection-view. These Map.Entry objects are * valid only for the duration of the iteration; more formally, * the behavior of a map entry is undefined if the backing map has been * modified after the entry was returned by the iterator, except through * the setValue operation on the map entry. * * @see Map#entrySet() * @since 1.2 */ interface Entry { /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ K getKey(); /** * Returns the value corresponding to this entry. If the mapping * has been removed from the backing map (by the iterator's * remove operation), the results of this call are undefined. * * @return the value corresponding to this entry * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ V getValue(); /** * Replaces the value corresponding to this entry with the specified * value (optional operation). (Writes through to the map.) The * behavior of this call is undefined if the mapping has already been * removed from the map (by the iterator's remove operation). * * @param value new value to be stored in this entry * @return old value corresponding to the entry * @throws UnsupportedOperationException if the put operation * is not supported by the backing map * @throws ClassCastException if the class of the specified value * prevents it from being stored in the backing map * @throws NullPointerException if the backing map does not permit * null values, and the specified value is null * @throws IllegalArgumentException if some property of this value * prevents it from being stored in the backing map * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ V setValue(V value); /** * Compares the specified object with this entry for equality. * Returns true if the given object is also a map entry and * the two entries represent the same mapping. More formally, two * entries e1 and e2 represent the same mapping * if

         *     (e1.getKey()==null ?
         *      e2.getKey()==null : e1.getKey().equals(e2.getKey()))  &&
         *     (e1.getValue()==null ?
         *      e2.getValue()==null : e1.getValue().equals(e2.getValue()))
         * 
* This ensures that the equals method works properly across * different implementations of the Map.Entry interface. * * @param o object to be compared for equality with this map entry * @return true if the specified object is equal to this map * entry */ boolean equals(Object o); /** * Returns the hash code value for this map entry. The hash code * of a map entry e is defined to be:
         *     (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *     (e.getValue()==null ? 0 : e.getValue().hashCode())
         * 
* This ensures that e1.equals(e2) implies that * e1.hashCode()==e2.hashCode() for any two Entries * e1 and e2, as required by the general * contract of Object.hashCode. * * @return the hash code value for this map entry * @see Object#hashCode() * @see Object#equals(Object) * @see #equals(Object) */ int hashCode(); } // Comparison and hashing /** * Compares the specified object with this map for equality. Returns * true if the given object is also a map and the two maps * represent the same mappings. More formally, two maps m1 and * m2 represent the same mappings if * m1.entrySet().equals(m2.entrySet()). This ensures that the * equals method works properly across different implementations * of the Map interface. * * @param o object to be compared for equality with this map * @return true if the specified object is equal to this map */ boolean equals(Object o); /** * Returns the hash code value for this map. The hash code of a map is * defined to be the sum of the hash codes of each entry in the map's * entrySet() view. This ensures that m1.equals(m2) * implies that m1.hashCode()==m2.hashCode() for any two maps * m1 and m2, as required by the general contract of * {@link Object#hashCode}. * * @return the hash code value for this map * @see Map.Entry#hashCode() * @see Object#equals(Object) * @see #equals(Object) */ int hashCode(); } /* * Copyright 1994-1998 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Thrown by the nextElement method of an * Enumeration to indicate that there are no more * elements in the enumeration. * * @author unascribed * @see java.util.Enumeration * @see java.util.Enumeration#nextElement() * @since JDK1.0 */ public class NoSuchElementException extends RuntimeException { /** * Constructs a NoSuchElementException with null * as its error message string. */ public NoSuchElementException() { super(); } /** * Constructs a NoSuchElementException, saving a reference * to the error message string s for later retrieval by the * getMessage method. * * @param s the detail message. */ public NoSuchElementException(String s) { super(s); } } package javaUtilEx; public class Random { static String[] args; static int index = 0; public static int random() { String string = args[index]; index++; return string.length(); } } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * A collection that contains no duplicate elements. More formally, sets * contain no pair of elements e1 and e2 such that * e1.equals(e2), and at most one null element. As implied by * its name, this interface models the mathematical set abstraction. * *

The Set interface places additional stipulations, beyond those * inherited from the Collection interface, on the contracts of all * constructors and on the contracts of the add, equals and * hashCode methods. Declarations for other inherited methods are * also included here for convenience. (The specifications accompanying these * declarations have been tailored to the Set interface, but they do * not contain any additional stipulations.) * *

The additional stipulation on constructors is, not surprisingly, * that all constructors must create a set that contains no duplicate elements * (as defined above). * *

Note: Great care must be exercised if mutable objects are used as set * elements. The behavior of a set is not specified if the value of an object * is changed in a manner that affects equals comparisons while the * object is an element in the set. A special case of this prohibition is * that it is not permissible for a set to contain itself as an element. * *

Some set implementations have restrictions on the elements that * they may contain. For example, some implementations prohibit null elements, * and some have restrictions on the types of their elements. Attempting to * add an ineligible element throws an unchecked exception, typically * NullPointerException or ClassCastException. Attempting * to query the presence of an ineligible element may throw an exception, * or it may simply return false; some implementations will exhibit the former * behavior and some will exhibit the latter. More generally, attempting an * operation on an ineligible element whose completion would not result in * the insertion of an ineligible element into the set may throw an * exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *

This interface is a member of the * * Java Collections Framework. * * @param the type of elements maintained by this set * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see List * @see SortedSet * @see HashSet * @see TreeSet * @see AbstractSet * @see Collections#singleton(java.lang.Object) * @see Collections#EMPTY_SET * @since 1.2 */ public interface Set extends Collection { // Query Operations /** * Returns the number of elements in this set (its cardinality). If this * set contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of elements in this set (its cardinality) */ int size(); /** * Returns true if this set contains no elements. * * @return true if this set contains no elements */ boolean isEmpty(); /** * Returns true if this set contains the specified element. * More formally, returns true if and only if this set * contains an element e such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this set is to be tested * @return true if this set contains the specified element * @throws ClassCastException if the type of the specified element * is incompatible with this set (optional) * @throws NullPointerException if the specified element is null and this * set does not permit null elements (optional) */ boolean contains(Object o); /** * Returns an iterator over the elements in this set. The elements are * returned in no particular order (unless this set is an instance of some * class that provides a guarantee). * * @return an iterator over the elements in this set */ Iterator iterator(); /** * Returns an array containing all of the elements in this set. * If this set makes any guarantees as to what order its elements * are returned by its iterator, this method must return the * elements in the same order. * *

The returned array will be "safe" in that no references to it * are maintained by this set. (In other words, this method must * allocate a new array even if this set is backed by an array). * The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all the elements in this set */ Object[] toArray(); /** * Returns an array containing all of the elements in this set; the * runtime type of the returned array is that of the specified array. * If the set fits in the specified array, it is returned therein. * Otherwise, a new array is allocated with the runtime type of the * specified array and the size of this set. * *

If this set fits in the specified array with room to spare * (i.e., the array has more elements than this set), the element in * the array immediately following the end of the set is set to * null. (This is useful in determining the length of this * set only if the caller knows that this set does not contain * any null elements.) * *

If this set makes any guarantees as to what order its elements * are returned by its iterator, this method must return the elements * in the same order. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose x is a set known to contain only strings. * The following code can be used to dump the set into a newly allocated * array of String: * *

     *     String[] y = x.toArray(new String[0]);
* * Note that toArray(new Object[0]) is identical in function to * toArray(). * * @param a the array into which the elements of this set are to be * stored, if it is big enough; otherwise, a new array of the same * runtime type is allocated for this purpose. * @return an array containing all the elements in this set * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in this * set * @throws NullPointerException if the specified array is null */ T[] toArray(T[] a); // Modification Operations /** * Adds the specified element to this set if it is not already present * (optional operation). More formally, adds the specified element * e to this set if the set contains no element e2 * such that * (e==null ? e2==null : e.equals(e2)). * If this set already contains the element, the call leaves the set * unchanged and returns false. In combination with the * restriction on constructors, this ensures that sets never contain * duplicate elements. * *

The stipulation above does not imply that sets must accept all * elements; sets may refuse to add any particular element, including * null, and throw an exception, as described in the * specification for {@link Collection#add Collection.add}. * Individual set implementations should clearly document any * restrictions on the elements that they may contain. * * @param e element to be added to this set * @return true if this set did not already contain the specified * element * @throws UnsupportedOperationException if the add operation * is not supported by this set * @throws ClassCastException if the class of the specified element * prevents it from being added to this set * @throws NullPointerException if the specified element is null and this * set does not permit null elements * @throws IllegalArgumentException if some property of the specified element * prevents it from being added to this set */ boolean add(E e); /** * Removes the specified element from this set if it is present * (optional operation). More formally, removes an element e * such that * (o==null ? e==null : o.equals(e)), if * this set contains such an element. Returns true if this set * contained the element (or equivalently, if this set changed as a * result of the call). (This set will not contain the element once the * call returns.) * * @param o object to be removed from this set, if present * @return true if this set contained the specified element * @throws ClassCastException if the type of the specified element * is incompatible with this set (optional) * @throws NullPointerException if the specified element is null and this * set does not permit null elements (optional) * @throws UnsupportedOperationException if the remove operation * is not supported by this set */ boolean remove(Object o); // Bulk Operations /** * Returns true if this set contains all of the elements of the * specified collection. If the specified collection is also a set, this * method returns true if it is a subset of this set. * * @param c collection to be checked for containment in this set * @return true if this set contains all of the elements of the * specified collection * @throws ClassCastException if the types of one or more elements * in the specified collection are incompatible with this * set (optional) * @throws NullPointerException if the specified collection contains one * or more null elements and this set does not permit null * elements (optional), or if the specified collection is null * @see #contains(Object) */ boolean containsAll(Collection c); /** * Adds all of the elements in the specified collection to this set if * they're not already present (optional operation). If the specified * collection is also a set, the addAll operation effectively * modifies this set so that its value is the union of the two * sets. The behavior of this operation is undefined if the specified * collection is modified while the operation is in progress. * * @param c collection containing elements to be added to this set * @return true if this set changed as a result of the call * * @throws UnsupportedOperationException if the addAll operation * is not supported by this set * @throws ClassCastException if the class of an element of the * specified collection prevents it from being added to this set * @throws NullPointerException if the specified collection contains one * or more null elements and this set does not permit null * elements, or if the specified collection is null * @throws IllegalArgumentException if some property of an element of the * specified collection prevents it from being added to this set * @see #add(Object) */ boolean addAll(Collection c); /** * Retains only the elements in this set that are contained in the * specified collection (optional operation). In other words, removes * from this set all of its elements that are not contained in the * specified collection. If the specified collection is also a set, this * operation effectively modifies this set so that its value is the * intersection of the two sets. * * @param c collection containing elements to be retained in this set * @return true if this set changed as a result of the call * @throws UnsupportedOperationException if the retainAll operation * is not supported by this set * @throws ClassCastException if the class of an element of this set * is incompatible with the specified collection (optional) * @throws NullPointerException if this set contains a null element and the * specified collection does not permit null elements (optional), * or if the specified collection is null * @see #remove(Object) */ boolean retainAll(Collection c); /** * Removes from this set all of its elements that are contained in the * specified collection (optional operation). If the specified * collection is also a set, this operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * * @param c collection containing elements to be removed from this set * @return true if this set changed as a result of the call * @throws UnsupportedOperationException if the removeAll operation * is not supported by this set * @throws ClassCastException if the class of an element of this set * is incompatible with the specified collection (optional) * @throws NullPointerException if this set contains a null element and the * specified collection does not permit null elements (optional), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean removeAll(Collection c); /** * Removes all of the elements from this set (optional operation). * The set will be empty after this call returns. * * @throws UnsupportedOperationException if the clear method * is not supported by this set */ void clear(); // Comparison and hashing /** * Compares the specified object with this set for equality. Returns * true if the specified object is also a set, the two sets * have the same size, and every member of the specified set is * contained in this set (or equivalently, every member of this set is * contained in the specified set). This definition ensures that the * equals method works properly across different implementations of the * set interface. * * @param o object to be compared for equality with this set * @return true if the specified object is equal to this set */ boolean equals(Object o); /** * Returns the hash code value for this set. The hash code of a set is * defined to be the sum of the hash codes of the elements in the set, * where the hash code of a null element is defined to be zero. * This ensures that s1.equals(s2) implies that * s1.hashCode()==s2.hashCode() for any two sets s1 * and s2, as required by the general contract of * {@link Object#hashCode}. * * @return the hash code value for this set * @see Object#equals(Object) * @see Set#equals(Object) */ int hashCode(); } /* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package javaUtilEx; /** * Thrown to indicate that the requested operation is not supported.

* * This class is a member of the * * Java Collections Framework. * * @author Josh Bloch * @since 1.2 */ public class UnsupportedOperationException extends RuntimeException { /** * Constructs an UnsupportedOperationException with no detail message. */ public UnsupportedOperationException() { } /** * Constructs an UnsupportedOperationException with the specified * detail message. * * @param message the detail message */ public UnsupportedOperationException(String message) { super(message); } /** * Constructs a new exception with the specified detail message and * cause. * *

Note that the detail message associated with cause is * not automatically incorporated in this exception's detail * message. * * @param message the detail message (which is saved for later retrieval * by the {@link Throwable#getMessage()} method). * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value * is permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public UnsupportedOperationException(String message, Throwable cause) { super(message, cause); } /** * Constructs a new exception with the specified cause and a detail * message of (cause==null ? null : cause.toString()) (which * typically contains the class and detail message of cause). * This constructor is useful for exceptions that are little more than * wrappers for other throwables (for example, {@link * java.security.PrivilegedActionException}). * * @param cause the cause (which is saved for later retrieval by the * {@link Throwable#getCause()} method). (A null value is * permitted, and indicates that the cause is nonexistent or * unknown.) * @since 1.5 */ public UnsupportedOperationException(Throwable cause) { super(cause); } static final long serialVersionUID = -1242599979055084673L; } ---------------------------------------- (3) JBCToGraph (EQUIVALENT) Constructed TerminationGraph. ---------------------------------------- (4) Obligation: Termination Graph based on JBC Program: javaUtilEx.juHashMapCreateIsEmpty.main([Ljava/lang/String;)V: Graph of 138 nodes with 0 SCCs. javaUtilEx.juHashMapCreateIsEmpty.createMap(I)LjavaUtilEx/HashMap;: Graph of 248 nodes with 1 SCC. javaUtilEx.HashMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;: Graph of 493 nodes with 2 SCCs. javaUtilEx.Content.hashCode()I: Graph of 6 nodes with 0 SCCs. javaUtilEx.Content.equals(Ljava/lang/Object;)Z: Graph of 31 nodes with 0 SCCs. ---------------------------------------- (5) TerminationGraphToSCCProof (SOUND) Splitted TerminationGraph to 3 SCCss. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: SCC of termination graph based on JBC Program. SCC contains nodes from the following methods: javaUtilEx.HashMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; SCC calls the following helper methods: Performed SCC analyses: *Used field analysis yielded the following read fields: *javaUtilEx.HashMap$Entry: [next, hash] *Marker field analysis yielded the following relations that could be markers: ---------------------------------------- (8) SCCToIRSProof (SOUND) Transformed FIGraph SCCs to intTRSs. Log: Generated rules. Obtained 58 IRulesP rules: f8895_0_transfer_Load(EOS(STATIC_8895), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897) -> f8896_0_transfer_ArrayLength(EOS(STATIC_8896), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897, java.lang.Object(ARRAY(i3896))) :|: TRUE f8896_0_transfer_ArrayLength(EOS(STATIC_8896), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897, java.lang.Object(ARRAY(i3896))) -> f8897_0_transfer_GE(EOS(STATIC_8897), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897, i3896) :|: i3896 >= 0 f8897_0_transfer_GE(EOS(STATIC_8897), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897, i3896) -> f8899_0_transfer_GE(EOS(STATIC_8899), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897, i3896) :|: i3897 < i3896 f8899_0_transfer_GE(EOS(STATIC_8899), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897, i3896) -> f8901_0_transfer_Load(EOS(STATIC_8901), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) :|: i3897 < i3896 f8901_0_transfer_Load(EOS(STATIC_8901), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) -> f8903_0_transfer_Load(EOS(STATIC_8903), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(ARRAY(i3896))) :|: TRUE f8903_0_transfer_Load(EOS(STATIC_8903), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(ARRAY(i3896))) -> f8905_0_transfer_ArrayAccess(EOS(STATIC_8905), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(ARRAY(i3896)), i3897) :|: TRUE f8905_0_transfer_ArrayAccess(EOS(STATIC_8905), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(ARRAY(i3896)), i3897) -> f8907_0_transfer_ArrayAccess(EOS(STATIC_8907), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(ARRAY(i3896)), i3897) :|: TRUE f8907_0_transfer_ArrayAccess(EOS(STATIC_8907), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(ARRAY(i3896)), i3897) -> f8910_0_transfer_Store(EOS(STATIC_8910), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4170) :|: i3897 < i3896 f8910_0_transfer_Store(EOS(STATIC_8910), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4170) -> f8913_0_transfer_Load(EOS(STATIC_8913), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4170) :|: TRUE f8913_0_transfer_Load(EOS(STATIC_8913), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4170) -> f8915_0_transfer_NULL(EOS(STATIC_8915), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4170, o4170) :|: TRUE f8915_0_transfer_NULL(EOS(STATIC_8915), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(o4172sub)) -> f8918_0_transfer_NULL(EOS(STATIC_8918), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(o4172sub)) :|: TRUE f8915_0_transfer_NULL(EOS(STATIC_8915), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, NULL, NULL) -> f8919_0_transfer_NULL(EOS(STATIC_8919), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, NULL, NULL) :|: TRUE f8918_0_transfer_NULL(EOS(STATIC_8918), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(o4172sub)) -> f8922_0_transfer_Load(EOS(STATIC_8922), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub)) :|: TRUE f8922_0_transfer_Load(EOS(STATIC_8922), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub)) -> f8925_0_transfer_Load(EOS(STATIC_8925), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896))) :|: TRUE f8925_0_transfer_Load(EOS(STATIC_8925), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896))) -> f8929_0_transfer_ConstantStackPush(EOS(STATIC_8929), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896)), i3897) :|: TRUE f8929_0_transfer_ConstantStackPush(EOS(STATIC_8929), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896)), i3897) -> f8933_0_transfer_ArrayAccess(EOS(STATIC_8933), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896)), i3897, NULL) :|: TRUE f8933_0_transfer_ArrayAccess(EOS(STATIC_8933), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896)), i3897, NULL) -> f8935_0_transfer_ArrayAccess(EOS(STATIC_8935), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896)), i3897, NULL) :|: TRUE f8935_0_transfer_ArrayAccess(EOS(STATIC_8935), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(ARRAY(i3896)), i3897, NULL) -> f8939_0_transfer_Load(EOS(STATIC_8939), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172put)) :|: i3897 < i3896 f8939_0_transfer_Load(EOS(STATIC_8939), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub)) -> f8943_0_transfer_FieldAccess(EOS(STATIC_8943), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4172sub), java.lang.Object(o4172sub)) :|: TRUE f8943_0_transfer_FieldAccess(EOS(STATIC_8943), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908))) -> f8945_0_transfer_FieldAccess(EOS(STATIC_8945), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908))) :|: TRUE f8945_0_transfer_FieldAccess(EOS(STATIC_8945), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908))) -> f8949_0_transfer_Store(EOS(STATIC_8949), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184) :|: TRUE f8949_0_transfer_Store(EOS(STATIC_8949), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184) -> f8952_0_transfer_Load(EOS(STATIC_8952), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184) :|: TRUE f8952_0_transfer_Load(EOS(STATIC_8952), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184) -> f8954_0_transfer_FieldAccess(EOS(STATIC_8954), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908))) :|: TRUE f8954_0_transfer_FieldAccess(EOS(STATIC_8954), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908))) -> f8957_0_transfer_Load(EOS(STATIC_8957), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908) :|: TRUE f8957_0_transfer_Load(EOS(STATIC_8957), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908) -> f8960_0_transfer_InvokeMethod(EOS(STATIC_8960), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738) :|: TRUE f8960_0_transfer_InvokeMethod(EOS(STATIC_8960), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738) -> f8962_0_indexFor_Load(EOS(STATIC_8962), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738) :|: TRUE f8962_0_indexFor_Load(EOS(STATIC_8962), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738) -> f8967_0_indexFor_Load(EOS(STATIC_8967), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3738, i3908) :|: TRUE f8967_0_indexFor_Load(EOS(STATIC_8967), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3738, i3908) -> f8969_0_indexFor_ConstantStackPush(EOS(STATIC_8969), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738) :|: TRUE f8969_0_indexFor_ConstantStackPush(EOS(STATIC_8969), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738) -> f8972_0_indexFor_IntArithmetic(EOS(STATIC_8972), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738, 1) :|: TRUE f8972_0_indexFor_IntArithmetic(EOS(STATIC_8972), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738, matching1) -> f8975_0_indexFor_IntArithmetic(EOS(STATIC_8975), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3738 - 1) :|: i3738 >= 0 && matching1 = 1 f8975_0_indexFor_IntArithmetic(EOS(STATIC_8975), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3908, i3925) -> f8977_0_indexFor_Return(EOS(STATIC_8977), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926) :|: TRUE f8977_0_indexFor_Return(EOS(STATIC_8977), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926) -> f8980_0_transfer_Store(EOS(STATIC_8980), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926) :|: TRUE f8980_0_transfer_Store(EOS(STATIC_8980), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926) -> f8983_0_transfer_Load(EOS(STATIC_8983), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926) :|: TRUE f8983_0_transfer_Load(EOS(STATIC_8983), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926) -> f8986_0_transfer_Load(EOS(STATIC_8986), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908))) :|: TRUE f8986_0_transfer_Load(EOS(STATIC_8986), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908))) -> f8989_0_transfer_Load(EOS(STATIC_8989), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(ARRAY(i3738))) :|: TRUE f8989_0_transfer_Load(EOS(STATIC_8989), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(ARRAY(i3738))) -> f8992_0_transfer_ArrayAccess(EOS(STATIC_8992), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(ARRAY(i3738)), i3926) :|: TRUE f8992_0_transfer_ArrayAccess(EOS(STATIC_8992), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(ARRAY(i3738)), i3926) -> f8995_0_transfer_ArrayAccess(EOS(STATIC_8995), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(ARRAY(i3738)), i3926) :|: TRUE f8995_0_transfer_ArrayAccess(EOS(STATIC_8995), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), java.lang.Object(ARRAY(i3738)), i3926) -> f8999_0_transfer_FieldAccess(EOS(STATIC_8999), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4204) :|: i3926 < i3738 f8999_0_transfer_FieldAccess(EOS(STATIC_8999), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4184, i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184, i3908)), o4204) -> f9003_0_transfer_Load(EOS(STATIC_9003), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908)), o4184, i3926) :|: TRUE f9003_0_transfer_Load(EOS(STATIC_9003), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908)), o4184, i3926) -> f9005_0_transfer_Load(EOS(STATIC_9005), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908)), o4184, i3926, java.lang.Object(ARRAY(i3738))) :|: TRUE f9005_0_transfer_Load(EOS(STATIC_9005), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908)), o4184, i3926, java.lang.Object(ARRAY(i3738))) -> f9009_0_transfer_Load(EOS(STATIC_9009), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908)), o4184, java.lang.Object(ARRAY(i3738)), i3926) :|: TRUE f9009_0_transfer_Load(EOS(STATIC_9009), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908)), o4184, java.lang.Object(ARRAY(i3738)), i3926) -> f9012_0_transfer_ArrayAccess(EOS(STATIC_9012), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184, java.lang.Object(ARRAY(i3738)), i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908))) :|: TRUE f9012_0_transfer_ArrayAccess(EOS(STATIC_9012), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184, java.lang.Object(ARRAY(i3738)), i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908))) -> f9014_0_transfer_ArrayAccess(EOS(STATIC_9014), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184, java.lang.Object(ARRAY(i3738)), i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908))) :|: TRUE f9014_0_transfer_ArrayAccess(EOS(STATIC_9014), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184, java.lang.Object(ARRAY(i3738)), i3926, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4204, i3908))) -> f9018_0_transfer_Load(EOS(STATIC_9018), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184) :|: i3926 < i3738 f9018_0_transfer_Load(EOS(STATIC_9018), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184) -> f9022_0_transfer_Store(EOS(STATIC_9022), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184) :|: TRUE f9022_0_transfer_Store(EOS(STATIC_9022), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184) -> f9023_0_transfer_Load(EOS(STATIC_9023), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184) :|: TRUE f9023_0_transfer_Load(EOS(STATIC_9023), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184) -> f9026_0_transfer_NONNULL(EOS(STATIC_9026), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, o4184, o4184) :|: TRUE f9026_0_transfer_NONNULL(EOS(STATIC_9026), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4227sub), java.lang.Object(o4227sub)) -> f9029_0_transfer_NONNULL(EOS(STATIC_9029), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4227sub), java.lang.Object(o4227sub)) :|: TRUE f9026_0_transfer_NONNULL(EOS(STATIC_9026), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, NULL, NULL) -> f9030_0_transfer_NONNULL(EOS(STATIC_9030), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, NULL, NULL) :|: TRUE f9029_0_transfer_NONNULL(EOS(STATIC_9029), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4227sub), java.lang.Object(o4227sub)) -> f9031_0_transfer_Load(EOS(STATIC_9031), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4227sub)) :|: TRUE f9031_0_transfer_Load(EOS(STATIC_9031), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4227sub)) -> f8939_0_transfer_Load(EOS(STATIC_8939), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, java.lang.Object(o4227sub)) :|: TRUE f9030_0_transfer_NONNULL(EOS(STATIC_9030), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, NULL, NULL) -> f9032_0_transfer_Inc(EOS(STATIC_9032), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) :|: TRUE f9032_0_transfer_Inc(EOS(STATIC_9032), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) -> f9035_0_transfer_JMP(EOS(STATIC_9035), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897 + 1) :|: TRUE f9035_0_transfer_JMP(EOS(STATIC_9035), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3944) -> f9038_0_transfer_Load(EOS(STATIC_9038), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3944) :|: TRUE f9038_0_transfer_Load(EOS(STATIC_9038), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3944) -> f8894_0_transfer_Load(EOS(STATIC_8894), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3944) :|: TRUE f8894_0_transfer_Load(EOS(STATIC_8894), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) -> f8895_0_transfer_Load(EOS(STATIC_8895), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, i3897) :|: TRUE f8919_0_transfer_NULL(EOS(STATIC_8919), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897, NULL, NULL) -> f8923_0_transfer_Inc(EOS(STATIC_8923), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) :|: TRUE f8923_0_transfer_Inc(EOS(STATIC_8923), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) -> f9032_0_transfer_Inc(EOS(STATIC_9032), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738, java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3738)), java.lang.Object(ARRAY(i3896)), i3738, i3897) :|: TRUE Combined rules. Obtained 4 IRulesP rules: f9026_0_transfer_NONNULL(EOS(STATIC_9026), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0, NULL, NULL) -> f8895_0_transfer_Load(EOS(STATIC_8895), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0 + 1, i3897:0 + 1) :|: TRUE f9026_0_transfer_NONNULL(EOS(STATIC_9026), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184:0, i3908:0)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, o4184:0, i3908:0))) -> f9026_0_transfer_NONNULL(EOS(STATIC_9026), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0, o4184:0, o4184:0) :|: i3738:0 > -1 && i3926:0 < i3738:0 f8895_0_transfer_Load(EOS(STATIC_8895), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0, i3897:0) -> f9026_0_transfer_NONNULL(EOS(STATIC_9026), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0, o4184:0, o4184:0) :|: i3896:0 > -1 && i3897:0 < i3896:0 && i3738:0 > -1 && i3926:0 < i3738:0 f8895_0_transfer_Load(EOS(STATIC_8895), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0, i3897:0) -> f8895_0_transfer_Load(EOS(STATIC_8895), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3738:0, java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3738:0, i3897:0 + 1, i3897:0 + 1) :|: i3896:0 > -1 && i3897:0 < i3896:0 Filtered constant ground arguments: f9026_0_transfer_NONNULL(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) -> f9026_0_transfer_NONNULL(x4, x5, x6, x7, x8, x9, x10, x11) f8895_0_transfer_Load(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) -> f8895_0_transfer_Load(x4, x5, x6, x7, x8, x9, x10) javaUtilEx.AbstractMap(x1) -> javaUtilEx.AbstractMap javaUtilEx.HashMap$Entry(x1, x2, x3) -> javaUtilEx.HashMap$Entry(x2, x3) javaUtilEx.HashMap(x1) -> javaUtilEx.HashMap Filtered duplicate arguments: f9026_0_transfer_NONNULL(x1, x2, x3, x4, x5, x6, x7, x8) -> f9026_0_transfer_NONNULL(x3, x4, x6, x8) f8895_0_transfer_Load(x1, x2, x3, x4, x5, x6, x7) -> f8895_0_transfer_Load(x3, x4, x7) Filtered unneeded arguments: javaUtilEx.HashMap$Entry(x1, x2) -> javaUtilEx.HashMap$Entry(x1) Finished conversion. Obtained 4 rules.P rules: f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, NULL, i3738:0, i3896:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0 + 1, i3738:0, i3896:0) :|: TRUE f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, java.lang.Object(javaUtilEx.HashMap$Entry(o4184:0)), i3738:0, i3896:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, o4184:0, i3738:0, i3896:0) :|: i3738:0 > -1 && i3926:0 < i3738:0 f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, i3738:0, i3896:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, o4184:0, i3738:0, i3896:0) :|: i3897:0 < i3896:0 && i3896:0 > -1 && i3926:0 < i3738:0 && i3738:0 > -1 f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, i3738:0, i3896:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0 + 1, i3738:0, i3896:0) :|: i3896:0 > -1 && i3897:0 < i3896:0 ---------------------------------------- (9) Obligation: Rules: f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, NULL, i3738:0, i3896:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0 + 1, i3738:0, i3896:0) :|: TRUE f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3)), x, x1) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, x3, x, x1) :|: x > -1 && x4 < x f8895_0_transfer_Load(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x5, x6) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x8, x5, x6) :|: x7 < x6 && x6 > -1 && x9 < x5 && x5 > -1 f8895_0_transfer_Load(java.lang.Object(ARRAY(x10)), java.lang.Object(ARRAY(x11)), x12, x10, x11) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(x10)), java.lang.Object(ARRAY(x11)), x12 + 1, x10, x11) :|: x11 > -1 && x12 < x11 ---------------------------------------- (10) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (11) Obligation: Rules: f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, NULL, i3738:0, i3896:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), arith, i3738:0, i3896:0) :|: TRUE && arith = i3897:0 + 1 f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3)), x, x1) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, x3, x, x1) :|: x > -1 && x4 < x f8895_0_transfer_Load(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x5, x6) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x8, x5, x6) :|: x7 < x6 && x6 > -1 && x9 < x5 && x5 > -1 f8895_0_transfer_Load(java.lang.Object(ARRAY(x13)), java.lang.Object(ARRAY(x14)), x15, x13, x14) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(x13)), java.lang.Object(ARRAY(x14)), x16, x13, x14) :|: x14 > -1 && x15 < x14 && x16 = x15 + 1 ---------------------------------------- (12) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, NULL, i3738:0, i3896:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), arith, i3738:0, i3896:0) :|: TRUE && arith = i3897:0 + 1 (2) f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3)), x, x1) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, x3, x, x1) :|: x > -1 && x4 < x (3) f8895_0_transfer_Load(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x5, x6) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x8, x5, x6) :|: x7 < x6 && x6 > -1 && x9 < x5 && x5 > -1 (4) f8895_0_transfer_Load(java.lang.Object(ARRAY(x13)), java.lang.Object(ARRAY(x14)), x15, x13, x14) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(x13)), java.lang.Object(ARRAY(x14)), x16, x13, x14) :|: x14 > -1 && x15 < x14 && x16 = x15 + 1 Arcs: (1) -> (3), (4) (2) -> (1), (2) (3) -> (1), (2) (4) -> (3), (4) This digraph is fully evaluated! ---------------------------------------- (13) Obligation: Termination digraph: Nodes: (1) f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), i3897:0, NULL, i3738:0, i3896:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0)), java.lang.Object(ARRAY(i3896:0)), arith, i3738:0, i3896:0) :|: TRUE && arith = i3897:0 + 1 (2) f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3)), x, x1) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x)), java.lang.Object(ARRAY(x1)), x2, x3, x, x1) :|: x > -1 && x4 < x (3) f8895_0_transfer_Load(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x5, x6) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x5)), java.lang.Object(ARRAY(x6)), x7, x8, x5, x6) :|: x7 < x6 && x6 > -1 && x9 < x5 && x5 > -1 (4) f8895_0_transfer_Load(java.lang.Object(ARRAY(x13)), java.lang.Object(ARRAY(x14)), x15, x13, x14) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(x13)), java.lang.Object(ARRAY(x14)), x16, x13, x14) :|: x14 > -1 && x15 < x14 && x16 = x15 + 1 Arcs: (1) -> (3), (4) (2) -> (1), (2) (3) -> (1), (2) (4) -> (3), (4) This digraph is fully evaluated! ---------------------------------------- (14) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (15) Obligation: Rules: f8895_0_transfer_Load(java.lang.Object(ARRAY(x13:0)), java.lang.Object(ARRAY(x14:0)), x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(x13:0)), java.lang.Object(ARRAY(x14:0)), x15:0 + 1, x13:0, x14:0) :|: x14:0 > -1 && x15:0 < x14:0 f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x:0, x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, x3:0, x:0, x1:0) :|: x:0 > -1 && x:0 > x4:0 f8895_0_transfer_Load(java.lang.Object(ARRAY(x5:0)), java.lang.Object(ARRAY(x6:0)), x7:0, x5:0, x6:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x5:0)), java.lang.Object(ARRAY(x6:0)), x7:0, x8:0, x5:0, x6:0) :|: x9:0 < x5:0 && x5:0 > -1 && x6:0 > -1 && x7:0 < x6:0 f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(i3738:0:0)), java.lang.Object(ARRAY(i3896:0:0)), i3897:0:0, NULL, i3738:0:0, i3896:0:0) -> f8895_0_transfer_Load(java.lang.Object(ARRAY(i3738:0:0)), java.lang.Object(ARRAY(i3896:0:0)), i3897:0:0 + 1, i3738:0:0, i3896:0:0) :|: TRUE ---------------------------------------- (16) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f8895_0_transfer_Load(VARIABLE, VARIABLE, INTEGER, VARIABLE, VARIABLE) java.lang.Object(VARIABLE) ARRAY(VARIABLE) f9026_0_transfer_NONNULL(VARIABLE, VARIABLE, VARIABLE, VARIABLE, VARIABLE, VARIABLE) javaUtilEx.HashMap$Entry(VARIABLE) NULL() Replaced non-predefined constructor symbols by 0.The following proof was generated: # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IntTRS could not be shown: - IntTRS - PolynomialOrderProcessor Rules: f8895_0_transfer_Load(c, c1, x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(c2, c3, c4, x13:0, x14:0) :|: c4 = x15:0 + 1 && (c3 = 0 && (c2 = 0 && (c1 = 0 && c = 0))) && (x14:0 > -1 && x15:0 < x14:0) f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) f8895_0_transfer_Load(c10, c11, x7:0, x5:0, x6:0) -> f9026_0_transfer_NONNULL(c12, c13, x7:0, x8:0, x5:0, x6:0) :|: c13 = 0 && (c12 = 0 && (c11 = 0 && c10 = 0)) && (x9:0 < x5:0 && x5:0 > -1 && x6:0 > -1 && x7:0 < x6:0) f9026_0_transfer_NONNULL(c14, c15, i3897:0:0, c16, i3738:0:0, i3896:0:0) -> f8895_0_transfer_Load(c17, c18, c19, i3738:0:0, i3896:0:0) :|: c19 = i3897:0:0 + 1 && (c18 = 0 && (c17 = 0 && (c16 = 0 && (c15 = 0 && c14 = 0)))) && TRUE Found the following polynomial interpretation: [f8895_0_transfer_Load(x, x1, x2, x3, x4)] = -1 + c*x + c1*x1 - x2 + 2*x3 + x4 [f9026_0_transfer_NONNULL(x5, x6, x7, x8, x9, x10)] = -1 + x10 + c5*x5 + c6*x6 - x7 + 2*x9 The following rules are decreasing: f8895_0_transfer_Load(c, c1, x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(c2, c3, c4, x13:0, x14:0) :|: c4 = x15:0 + 1 && (c3 = 0 && (c2 = 0 && (c1 = 0 && c = 0))) && (x14:0 > -1 && x15:0 < x14:0) f9026_0_transfer_NONNULL(c14, c15, i3897:0:0, c16, i3738:0:0, i3896:0:0) -> f8895_0_transfer_Load(c17, c18, c19, i3738:0:0, i3896:0:0) :|: c19 = i3897:0:0 + 1 && (c18 = 0 && (c17 = 0 && (c16 = 0 && (c15 = 0 && c14 = 0)))) && TRUE The following rules are bounded: f8895_0_transfer_Load(c10, c11, x7:0, x5:0, x6:0) -> f9026_0_transfer_NONNULL(c12, c13, x7:0, x8:0, x5:0, x6:0) :|: c13 = 0 && (c12 = 0 && (c11 = 0 && c10 = 0)) && (x9:0 < x5:0 && x5:0 > -1 && x6:0 > -1 && x7:0 < x6:0) - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - RankingReductionPairProof - IntTRS Rules: f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) f8895_0_transfer_Load(c10, c11, x7:0, x5:0, x6:0) -> f9026_0_transfer_NONNULL(c12, c13, x7:0, x8:0, x5:0, x6:0) :|: c13 = 0 && (c12 = 0 && (c11 = 0 && c10 = 0)) && (x9:0 < x5:0 && x5:0 > -1 && x6:0 > -1 && x7:0 < x6:0) Interpretation: [ f9026_0_transfer_NONNULL ] = 0 [ f8895_0_transfer_Load ] = 1 The following rules are decreasing: f8895_0_transfer_Load(c10, c11, x7:0, x5:0, x6:0) -> f9026_0_transfer_NONNULL(c12, c13, x7:0, x8:0, x5:0, x6:0) :|: c13 = 0 && (c12 = 0 && (c11 = 0 && c10 = 0)) && (x9:0 < x5:0 && x5:0 > -1 && x6:0 > -1 && x7:0 < x6:0) The following rules are bounded: f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) f8895_0_transfer_Load(c10, c11, x7:0, x5:0, x6:0) -> f9026_0_transfer_NONNULL(c12, c13, x7:0, x8:0, x5:0, x6:0) :|: c13 = 0 && (c12 = 0 && (c11 = 0 && c10 = 0)) && (x9:0 < x5:0 && x5:0 > -1 && x6:0 > -1 && x7:0 < x6:0) - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - RankingReductionPairProof - IntTRS - IntTRS Rules: f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - IntTRS - RankingReductionPairProof Rules: f8895_0_transfer_Load(c, c1, x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(c2, c3, c4, x13:0, x14:0) :|: c4 = x15:0 + 1 && (c3 = 0 && (c2 = 0 && (c1 = 0 && c = 0))) && (x14:0 > -1 && x15:0 < x14:0) f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) f9026_0_transfer_NONNULL(c14, c15, i3897:0:0, c16, i3738:0:0, i3896:0:0) -> f8895_0_transfer_Load(c17, c18, c19, i3738:0:0, i3896:0:0) :|: c19 = i3897:0:0 + 1 && (c18 = 0 && (c17 = 0 && (c16 = 0 && (c15 = 0 && c14 = 0)))) && TRUE Interpretation: [ f8895_0_transfer_Load ] = 0 [ f9026_0_transfer_NONNULL ] = 1 The following rules are decreasing: f9026_0_transfer_NONNULL(c14, c15, i3897:0:0, c16, i3738:0:0, i3896:0:0) -> f8895_0_transfer_Load(c17, c18, c19, i3738:0:0, i3896:0:0) :|: c19 = i3897:0:0 + 1 && (c18 = 0 && (c17 = 0 && (c16 = 0 && (c15 = 0 && c14 = 0)))) && TRUE The following rules are bounded: f8895_0_transfer_Load(c, c1, x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(c2, c3, c4, x13:0, x14:0) :|: c4 = x15:0 + 1 && (c3 = 0 && (c2 = 0 && (c1 = 0 && c = 0))) && (x14:0 > -1 && x15:0 < x14:0) f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) f9026_0_transfer_NONNULL(c14, c15, i3897:0:0, c16, i3738:0:0, i3896:0:0) -> f8895_0_transfer_Load(c17, c18, c19, i3738:0:0, i3896:0:0) :|: c19 = i3897:0:0 + 1 && (c18 = 0 && (c17 = 0 && (c16 = 0 && (c15 = 0 && c14 = 0)))) && TRUE - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - IntTRS - RankingReductionPairProof - IntTRS - RankingReductionPairProof Rules: f8895_0_transfer_Load(c, c1, x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(c2, c3, c4, x13:0, x14:0) :|: c4 = x15:0 + 1 && (c3 = 0 && (c2 = 0 && (c1 = 0 && c = 0))) && (x14:0 > -1 && x15:0 < x14:0) f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) Interpretation: [ f8895_0_transfer_Load ] = f8895_0_transfer_Load_5 + -1*f8895_0_transfer_Load_3 [ f9026_0_transfer_NONNULL ] = 0 The following rules are decreasing: f8895_0_transfer_Load(c, c1, x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(c2, c3, c4, x13:0, x14:0) :|: c4 = x15:0 + 1 && (c3 = 0 && (c2 = 0 && (c1 = 0 && c = 0))) && (x14:0 > -1 && x15:0 < x14:0) The following rules are bounded: f8895_0_transfer_Load(c, c1, x15:0, x13:0, x14:0) -> f8895_0_transfer_Load(c2, c3, c4, x13:0, x14:0) :|: c4 = x15:0 + 1 && (c3 = 0 && (c2 = 0 && (c1 = 0 && c = 0))) && (x14:0 > -1 && x15:0 < x14:0) f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - IntTRS - RankingReductionPairProof - IntTRS - RankingReductionPairProof - IntTRS Rules: f9026_0_transfer_NONNULL(c5, c6, x2:0, c7, x:0, x1:0) -> f9026_0_transfer_NONNULL(c8, c9, x2:0, x3:0, x:0, x1:0) :|: c9 = 0 && (c8 = 0 && (c7 = 0 && (c6 = 0 && c5 = 0))) && (x:0 > -1 && x:0 > x4:0) ---------------------------------------- (17) Obligation: Rules: f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x:0, x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, x3:0, x:0, x1:0) :|: x:0 > -1 && x:0 > x4:0 ---------------------------------------- (18) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x:0, x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, x3:0, x:0, x1:0) :|: x:0 > -1 && x:0 > x4:0 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (19) Obligation: Termination digraph: Nodes: (1) f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x:0, x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x2:0, x3:0, x:0, x1:0) :|: x:0 > -1 && x:0 > x4:0 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (20) IntTRSUnneededArgumentFilterProof (EQUIVALENT) Some arguments are removed because they cannot influence termination. We removed arguments according to the following replacements: f9026_0_transfer_NONNULL(x1, x2, x3, x4, x5, x6) -> f9026_0_transfer_NONNULL(x1, x2, x4, x5, x6) ---------------------------------------- (21) Obligation: Rules: f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x:0, x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x3:0, x:0, x1:0) :|: x:0 > -1 && x:0 > x4:0 ---------------------------------------- (22) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f9026_0_transfer_NONNULL(VARIABLE, VARIABLE, VARIABLE, INTEGER, VARIABLE) java.lang.Object(VARIABLE) ARRAY(VARIABLE) javaUtilEx.HashMap$Entry(VARIABLE) Removed predefined arithmetic. ---------------------------------------- (23) Obligation: Rules: f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x3:0, x1:0) ---------------------------------------- (24) IRSwTToQDPProof (SOUND) Removed the integers and created a QDP-Problem. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x3:0, x1:0) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), java.lang.Object(javaUtilEx.HashMap$Entry(x3:0)), x1:0) -> f9026_0_transfer_NONNULL(java.lang.Object(ARRAY(x:0)), java.lang.Object(ARRAY(x1:0)), x3:0, x1:0) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 2 > 4, 4 >= 4 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: SCC of termination graph based on JBC Program. SCC contains nodes from the following methods: javaUtilEx.HashMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; SCC calls the following helper methods: javaUtilEx.Content.equals(Ljava/lang/Object;)Z Performed SCC analyses: *Used field analysis yielded the following read fields: *javaUtilEx.HashMap$Entry: [hash, next, key] *Marker field analysis yielded the following relations that could be markers: ---------------------------------------- (29) SCCToIRSProof (SOUND) Transformed FIGraph SCCs to intTRSs. Log: Generated rules. Obtained 57 IRulesP rules: f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(o3701sub), java.lang.Object(o3701sub)) -> f8313_0_put_NULL(EOS(STATIC_8313), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(o3701sub), java.lang.Object(o3701sub)) :|: TRUE f8313_0_put_NULL(EOS(STATIC_8313), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(o3701sub), java.lang.Object(o3701sub)) -> f8316_0_put_Load(EOS(STATIC_8316), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(o3701sub)) :|: TRUE f8316_0_put_Load(EOS(STATIC_8316), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(o3701sub)) -> f8319_0_put_FieldAccess(EOS(STATIC_8319), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(o3701sub), java.lang.Object(o3701sub)) :|: TRUE f8319_0_put_FieldAccess(EOS(STATIC_8319), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703))) -> f8322_0_put_FieldAccess(EOS(STATIC_8322), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703))) :|: TRUE f8322_0_put_FieldAccess(EOS(STATIC_8322), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703))) -> f8325_0_put_Load(EOS(STATIC_8325), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), i3457) :|: TRUE f8325_0_put_Load(EOS(STATIC_8325), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), i3457) -> f8328_0_put_NE(EOS(STATIC_8328), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), i3457, i3452) :|: TRUE f8328_0_put_NE(EOS(STATIC_8328), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), i3457, i3452) -> f8331_0_put_NE(EOS(STATIC_8331), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), i3457, i3452) :|: !(i3457 = i3452) f8328_0_put_NE(EOS(STATIC_8328), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), i3452, i3452) -> f8332_0_put_NE(EOS(STATIC_8332), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), i3452, i3452) :|: i3457 = i3452 f8331_0_put_NE(EOS(STATIC_8331), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703)), i3457, i3452) -> f8335_0_put_Load(EOS(STATIC_8335), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703))) :|: !(i3457 = i3452) f8335_0_put_Load(EOS(STATIC_8335), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703))) -> f8339_0_put_FieldAccess(EOS(STATIC_8339), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703))) :|: TRUE f8339_0_put_FieldAccess(EOS(STATIC_8339), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457, o3705, o3703))) -> f8343_0_put_Store(EOS(STATIC_8343), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8343_0_put_Store(EOS(STATIC_8343), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) -> f8347_0_put_JMP(EOS(STATIC_8347), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8347_0_put_JMP(EOS(STATIC_8347), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) -> f8351_0_put_Load(EOS(STATIC_8351), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8351_0_put_Load(EOS(STATIC_8351), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) -> f8309_0_put_Load(EOS(STATIC_8309), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8309_0_put_Load(EOS(STATIC_8309), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3690) -> f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3690, o3690) :|: TRUE f8332_0_put_NE(EOS(STATIC_8332), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), i3452, i3452) -> f8336_0_put_Load(EOS(STATIC_8336), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703))) :|: TRUE f8336_0_put_Load(EOS(STATIC_8336), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703))) -> f8340_0_put_FieldAccess(EOS(STATIC_8340), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703))) :|: TRUE f8340_0_put_FieldAccess(EOS(STATIC_8340), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703))) -> f8344_0_put_Duplicate(EOS(STATIC_8344), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), o3703) :|: TRUE f8344_0_put_Duplicate(EOS(STATIC_8344), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), o3703) -> f8348_0_put_Store(EOS(STATIC_8348), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), o3703, o3703) :|: TRUE f8348_0_put_Store(EOS(STATIC_8348), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), o3703, o3703) -> f8352_0_put_Load(EOS(STATIC_8352), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), o3703, o3703) :|: TRUE f8352_0_put_Load(EOS(STATIC_8352), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), o3703, o3703) -> f8355_0_put_EQ(EOS(STATIC_8355), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, o3703)), o3703, o3703, java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8355_0_put_EQ(EOS(STATIC_8355), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(o3720sub), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.Content(EOC))) -> f8357_0_put_EQ(EOS(STATIC_8357), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(o3720sub), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8355_0_put_EQ(EOS(STATIC_8355), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), NULL, NULL, java.lang.Object(javaUtilEx.Content(EOC))) -> f8358_0_put_EQ(EOS(STATIC_8358), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), NULL, NULL, java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8357_0_put_EQ(EOS(STATIC_8357), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(o3720sub), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.Content(EOC))) -> f8361_0_put_Load(EOS(STATIC_8361), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(o3720sub)) :|: TRUE f8361_0_put_Load(EOS(STATIC_8361), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(o3720sub)) -> f8364_0_put_Load(EOS(STATIC_8364), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8364_0_put_Load(EOS(STATIC_8364), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.Content(EOC))) -> f8368_0_put_InvokeMethod(EOS(STATIC_8368), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub)) :|: TRUE f8368_0_put_InvokeMethod(EOS(STATIC_8368), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub)) -> f8371_0_equals_Load(EOS(STATIC_8371), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub)) :|: TRUE f8368_0_put_InvokeMethod(EOS(STATIC_8368), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub)) -> f8371_1_equals_Load(EOS(STATIC_8371), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub)) :|: TRUE f8371_0_equals_Load(EOS(STATIC_8371), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub)) -> f9242_0_equals_Load(EOS(STATIC_9242), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3720sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub)) :|: TRUE f8390_0_equals_Return(EOS(STATIC_8390), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub))), matching1) -> f8401_0_put_EQ(EOS(STATIC_8401), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub))), 0) :|: TRUE && matching1 = 0 f8401_0_put_EQ(EOS(STATIC_8401), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub))), matching1) -> f8405_0_put_Load(EOS(STATIC_8405), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub)))) :|: TRUE && matching1 = 0 f8405_0_put_Load(EOS(STATIC_8405), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub)))) -> f8411_0_put_FieldAccess(EOS(STATIC_8411), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub)))) :|: TRUE f8411_0_put_FieldAccess(EOS(STATIC_8411), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub)))) -> f8417_0_put_Store(EOS(STATIC_8417), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8417_0_put_Store(EOS(STATIC_8417), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) -> f8343_0_put_Store(EOS(STATIC_8343), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8391_0_equals_Return(EOS(STATIC_8391), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), matching1) -> f8393_0_equals_Return(EOS(STATIC_8393), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), 0) :|: TRUE && matching1 = 0 f8393_0_equals_Return(EOS(STATIC_8393), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC)))), i3608) -> f8402_0_put_EQ(EOS(STATIC_8402), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC)))), i3608) :|: TRUE f8402_0_put_EQ(EOS(STATIC_8402), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC)))), matching1) -> f8407_0_put_EQ(EOS(STATIC_8407), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC)))), 0) :|: TRUE && matching1 = 0 f8407_0_put_EQ(EOS(STATIC_8407), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC)))), matching1) -> f8413_0_put_Load(EOS(STATIC_8413), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC))))) :|: TRUE && matching1 = 0 f8413_0_put_Load(EOS(STATIC_8413), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC))))) -> f8419_0_put_FieldAccess(EOS(STATIC_8419), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC))))) :|: TRUE f8419_0_put_FieldAccess(EOS(STATIC_8419), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3849, java.lang.Object(javaUtilEx.Content(EOC))))) -> f8423_0_put_Store(EOS(STATIC_8423), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3849) :|: TRUE f8423_0_put_Store(EOS(STATIC_8423), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3849) -> f8343_0_put_Store(EOS(STATIC_8343), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3849) :|: TRUE f8392_0_equals_Return(EOS(STATIC_8392), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), matching1) -> f8393_0_equals_Return(EOS(STATIC_8393), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), 1) :|: TRUE && matching1 = 1 f8358_0_put_EQ(EOS(STATIC_8358), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), NULL, NULL, java.lang.Object(javaUtilEx.Content(EOC))) -> f8362_0_put_Load(EOS(STATIC_8362), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), NULL) :|: TRUE f8362_0_put_Load(EOS(STATIC_8362), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), NULL) -> f8365_0_put_Load(EOS(STATIC_8365), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), NULL, java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8365_0_put_Load(EOS(STATIC_8365), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), NULL, java.lang.Object(javaUtilEx.Content(EOC))) -> f8369_0_put_InvokeMethod(EOS(STATIC_8369), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), java.lang.Object(javaUtilEx.Content(EOC)), NULL) :|: TRUE f8369_0_put_InvokeMethod(EOS(STATIC_8369), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), java.lang.Object(javaUtilEx.Content(EOC)), NULL) -> f8372_0_equals_Load(EOS(STATIC_8372), java.lang.Object(javaUtilEx.Content(EOC)), NULL, java.lang.Object(javaUtilEx.Content(EOC)), NULL) :|: TRUE f8369_0_put_InvokeMethod(EOS(STATIC_8369), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), java.lang.Object(javaUtilEx.Content(EOC)), NULL) -> f8372_1_equals_Load(EOS(STATIC_8372), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), java.lang.Object(javaUtilEx.Content(EOC)), NULL) :|: TRUE f8372_0_equals_Load(EOS(STATIC_8372), java.lang.Object(javaUtilEx.Content(EOC)), NULL, java.lang.Object(javaUtilEx.Content(EOC)), NULL) -> f9298_0_equals_Load(EOS(STATIC_9298), java.lang.Object(javaUtilEx.Content(EOC)), NULL, java.lang.Object(javaUtilEx.Content(EOC)), NULL) :|: TRUE f8395_0_equals_Return(EOS(STATIC_8395), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), matching1) -> f8403_0_put_EQ(EOS(STATIC_8403), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), 0) :|: TRUE && matching1 = 0 f8403_0_put_EQ(EOS(STATIC_8403), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), matching1) -> f8408_0_put_Load(EOS(STATIC_8408), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL))) :|: TRUE && matching1 = 0 f8408_0_put_Load(EOS(STATIC_8408), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL))) -> f8414_0_put_FieldAccess(EOS(STATIC_8414), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL))) :|: TRUE f8414_0_put_FieldAccess(EOS(STATIC_8414), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL))) -> f8420_0_put_Store(EOS(STATIC_8420), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8420_0_put_Store(EOS(STATIC_8420), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) -> f8343_0_put_Store(EOS(STATIC_8343), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, o3705) :|: TRUE f8371_1_equals_Load(EOS(STATIC_8371), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3784sub)) -> f8390_0_equals_Return(EOS(STATIC_8390), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(o3784sub))), 0) :|: TRUE f8371_1_equals_Load(EOS(STATIC_8371), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8391_0_equals_Return(EOS(STATIC_8391), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), 0) :|: TRUE f8371_1_equals_Load(EOS(STATIC_8371), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8392_0_equals_Return(EOS(STATIC_8392), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, java.lang.Object(javaUtilEx.Content(EOC)))), 1) :|: TRUE f8372_1_equals_Load(EOS(STATIC_8372), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), java.lang.Object(javaUtilEx.Content(EOC)), NULL) -> f8395_0_equals_Return(EOS(STATIC_8395), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452, o3705, NULL)), 0) :|: TRUE Combined rules. Obtained 7 IRulesP rules: f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, NULL)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, o3705:0, o3705:0) :|: TRUE f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, java.lang.Object(javaUtilEx.Content(EOC)))), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, java.lang.Object(javaUtilEx.Content(EOC))))) -> f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, o3705:0, o3705:0) :|: TRUE f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457:0, o3705:0, o3703:0)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457:0, o3705:0, o3703:0))) -> f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, o3705:0, o3705:0) :|: i3457:0 < i3452:0 f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457:0, o3705:0, o3703:0)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3457:0, o3705:0, o3703:0))) -> f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, o3705:0, o3705:0) :|: i3457:0 > i3452:0 f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, java.lang.Object(o3720sub:0))), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, java.lang.Object(o3720sub:0)))) -> f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, o3705:0, o3705:0) :|: TRUE Removed following non-SCC rules: f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, NULL)), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, NULL))) -> f9298_0_equals_Load(EOS(STATIC_9298), java.lang.Object(javaUtilEx.Content(EOC)), NULL, java.lang.Object(javaUtilEx.Content(EOC)), NULL) :|: TRUE f8311_0_put_NULL(EOS(STATIC_8311), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, java.lang.Object(o3720sub:0))), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, java.lang.Object(o3720sub:0)))) -> f9242_0_equals_Load(EOS(STATIC_9242), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub:0), java.lang.Object(javaUtilEx.HashMap$Entry(EOC, i3452:0, o3705:0, java.lang.Object(o3720sub:0))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3720sub:0)) :|: TRUE Filtered constant ground arguments: f8311_0_put_NULL(x1, x2, x3, x4, x5, x6, x7) -> f8311_0_put_NULL(x5, x6, x7) EOS(x1) -> EOS javaUtilEx.AbstractMap(x1) -> javaUtilEx.AbstractMap javaUtilEx.Content(x1) -> javaUtilEx.Content javaUtilEx.HashMap$Entry(x1, x2, x3, x4) -> javaUtilEx.HashMap$Entry(x2, x3, x4) javaUtilEx.HashMap(x1) -> javaUtilEx.HashMap Filtered duplicate arguments: f8311_0_put_NULL(x1, x2, x3) -> f8311_0_put_NULL(x1, x3) Finished conversion. Obtained 5 rules.P rules: f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: TRUE f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: TRUE f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3457:0, o3705:0, o3703:0))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: i3457:0 < i3452:0 f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3457:0, o3705:0, o3703:0))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: i3457:0 > i3452:0 f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, java.lang.Object(o3720sub:0)))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: TRUE ---------------------------------------- (30) Obligation: Rules: f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: TRUE f8311_0_put_NULL(x, java.lang.Object(javaUtilEx.HashMap$Entry(x, x1, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(x, x1) :|: TRUE f8311_0_put_NULL(x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3, x4, x5))) -> f8311_0_put_NULL(x2, x4) :|: x3 < x2 f8311_0_put_NULL(x6, java.lang.Object(javaUtilEx.HashMap$Entry(x7, x8, x9))) -> f8311_0_put_NULL(x6, x8) :|: x7 > x6 f8311_0_put_NULL(x10, java.lang.Object(javaUtilEx.HashMap$Entry(x10, x11, java.lang.Object(x12)))) -> f8311_0_put_NULL(x10, x11) :|: TRUE ---------------------------------------- (31) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (32) Obligation: Rules: f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: TRUE f8311_0_put_NULL(x, java.lang.Object(javaUtilEx.HashMap$Entry(x, x1, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(x, x1) :|: TRUE f8311_0_put_NULL(x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3, x4, x5))) -> f8311_0_put_NULL(x2, x4) :|: x3 < x2 f8311_0_put_NULL(x6, java.lang.Object(javaUtilEx.HashMap$Entry(x7, x8, x9))) -> f8311_0_put_NULL(x6, x8) :|: x7 > x6 f8311_0_put_NULL(x10, java.lang.Object(javaUtilEx.HashMap$Entry(x10, x11, java.lang.Object(x12)))) -> f8311_0_put_NULL(x10, x11) :|: TRUE ---------------------------------------- (33) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: TRUE (2) f8311_0_put_NULL(x, java.lang.Object(javaUtilEx.HashMap$Entry(x, x1, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(x, x1) :|: TRUE (3) f8311_0_put_NULL(x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3, x4, x5))) -> f8311_0_put_NULL(x2, x4) :|: x3 < x2 (4) f8311_0_put_NULL(x6, java.lang.Object(javaUtilEx.HashMap$Entry(x7, x8, x9))) -> f8311_0_put_NULL(x6, x8) :|: x7 > x6 (5) f8311_0_put_NULL(x10, java.lang.Object(javaUtilEx.HashMap$Entry(x10, x11, java.lang.Object(x12)))) -> f8311_0_put_NULL(x10, x11) :|: TRUE Arcs: (1) -> (1), (2), (3), (4), (5) (2) -> (1), (2), (3), (4), (5) (3) -> (1), (2), (3), (4), (5) (4) -> (1), (2), (3), (4), (5) (5) -> (1), (2), (3), (4), (5) This digraph is fully evaluated! ---------------------------------------- (34) Obligation: Termination digraph: Nodes: (1) f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) :|: TRUE (2) f8311_0_put_NULL(x, java.lang.Object(javaUtilEx.HashMap$Entry(x, x1, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(x, x1) :|: TRUE (3) f8311_0_put_NULL(x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3, x4, x5))) -> f8311_0_put_NULL(x2, x4) :|: x3 < x2 (4) f8311_0_put_NULL(x6, java.lang.Object(javaUtilEx.HashMap$Entry(x7, x8, x9))) -> f8311_0_put_NULL(x6, x8) :|: x7 > x6 (5) f8311_0_put_NULL(x10, java.lang.Object(javaUtilEx.HashMap$Entry(x10, x11, java.lang.Object(x12)))) -> f8311_0_put_NULL(x10, x11) :|: TRUE Arcs: (1) -> (1), (2), (3), (4), (5) (2) -> (1), (2), (3), (4), (5) (3) -> (1), (2), (3), (4), (5) (4) -> (1), (2), (3), (4), (5) (5) -> (1), (2), (3), (4), (5) This digraph is fully evaluated! ---------------------------------------- (35) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f8311_0_put_NULL(VARIABLE, VARIABLE) java.lang.Object(VARIABLE) javaUtilEx.HashMap$Entry(VARIABLE, VARIABLE, VARIABLE) NULL() javaUtilEx.Content() Removed predefined arithmetic. ---------------------------------------- (36) Obligation: Rules: f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) f8311_0_put_NULL(x, java.lang.Object(javaUtilEx.HashMap$Entry(x, x1, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(x, x1) f8311_0_put_NULL(x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3, x4, x5))) -> f8311_0_put_NULL(x2, x4) f8311_0_put_NULL(x10, java.lang.Object(javaUtilEx.HashMap$Entry(x10, x11, java.lang.Object(x12)))) -> f8311_0_put_NULL(x10, x11) ---------------------------------------- (37) IRSwTToQDPProof (SOUND) Removed the integers and created a QDP-Problem. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) f8311_0_put_NULL(x, java.lang.Object(javaUtilEx.HashMap$Entry(x, x1, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(x, x1) f8311_0_put_NULL(x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3, x4, x5))) -> f8311_0_put_NULL(x2, x4) f8311_0_put_NULL(x10, java.lang.Object(javaUtilEx.HashMap$Entry(x10, x11, java.lang.Object(x12)))) -> f8311_0_put_NULL(x10, x11) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (39) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *f8311_0_put_NULL(i3452:0, java.lang.Object(javaUtilEx.HashMap$Entry(i3452:0, o3705:0, NULL))) -> f8311_0_put_NULL(i3452:0, o3705:0) The graph contains the following edges 1 >= 1, 2 > 1, 2 > 2 *f8311_0_put_NULL(x, java.lang.Object(javaUtilEx.HashMap$Entry(x, x1, java.lang.Object(javaUtilEx.Content)))) -> f8311_0_put_NULL(x, x1) The graph contains the following edges 1 >= 1, 2 > 1, 2 > 2 *f8311_0_put_NULL(x2, java.lang.Object(javaUtilEx.HashMap$Entry(x3, x4, x5))) -> f8311_0_put_NULL(x2, x4) The graph contains the following edges 1 >= 1, 2 > 2 *f8311_0_put_NULL(x10, java.lang.Object(javaUtilEx.HashMap$Entry(x10, x11, java.lang.Object(x12)))) -> f8311_0_put_NULL(x10, x11) The graph contains the following edges 1 >= 1, 2 > 1, 2 > 2 ---------------------------------------- (40) YES ---------------------------------------- (41) Obligation: SCC of termination graph based on JBC Program. SCC contains nodes from the following methods: javaUtilEx.juHashMapCreateIsEmpty.createMap(I)LjavaUtilEx/HashMap; SCC calls the following helper methods: javaUtilEx.HashMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;, javaUtilEx.Content.hashCode()I, javaUtilEx.Content.equals(Ljava/lang/Object;)Z Performed SCC analyses: *Used field analysis yielded the following read fields: *java.lang.String: [count] *Marker field analysis yielded the following relations that could be markers: ---------------------------------------- (42) SCCToIRSProof (SOUND) Transformed FIGraph SCCs to intTRSs. Log: Generated rules. Obtained 81 IRulesP rules: f7900_0_createMap_LE(EOS(STATIC_7900(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3214) -> f7904_0_createMap_LE(EOS(STATIC_7904(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3214) :|: TRUE f7904_0_createMap_LE(EOS(STATIC_7904(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3214) -> f7909_0_createMap_New(EOS(STATIC_7909(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: i3214 > 0 f7909_0_createMap_New(EOS(STATIC_7909(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f7914_0_createMap_Duplicate(EOS(STATIC_7914(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f7914_0_createMap_Duplicate(EOS(STATIC_7914(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) -> f7918_0_createMap_InvokeMethod(EOS(STATIC_7918(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f7918_0_createMap_InvokeMethod(EOS(STATIC_7918(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f7922_0_random_FieldAccess(EOS(STATIC_7922(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f7922_0_random_FieldAccess(EOS(STATIC_7922(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f7932_0_random_FieldAccess(EOS(STATIC_7932(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3487sub)) :|: TRUE f7932_0_random_FieldAccess(EOS(STATIC_7932(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3487sub)) -> f7937_0_random_ArrayAccess(EOS(STATIC_7937(java.lang.Object(o3487sub), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3487sub), i3195) :|: TRUE f7937_0_random_ArrayAccess(EOS(STATIC_7937(java.lang.Object(ARRAY(i3242)), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3195) -> f7942_0_random_ArrayAccess(EOS(STATIC_7942(java.lang.Object(ARRAY(i3242)), i3195)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3195) :|: i3242 >= 0 f7942_0_random_ArrayAccess(EOS(STATIC_7942(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3244) -> f7948_0_random_ArrayAccess(EOS(STATIC_7948(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3244) :|: TRUE f7948_0_random_ArrayAccess(EOS(STATIC_7948(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3244) -> f7954_0_random_ArrayAccess(EOS(STATIC_7954(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3244) :|: TRUE f7954_0_random_ArrayAccess(EOS(STATIC_7954(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3244) -> f7960_0_random_Store(EOS(STATIC_7960(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518) :|: i3244 < i3242 f7960_0_random_Store(EOS(STATIC_7960(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518) -> f7966_0_random_FieldAccess(EOS(STATIC_7966(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518) :|: TRUE f7966_0_random_FieldAccess(EOS(STATIC_7966(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518) -> f7973_0_random_ConstantStackPush(EOS(STATIC_7973(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518, i3244) :|: TRUE f7973_0_random_ConstantStackPush(EOS(STATIC_7973(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518, i3244) -> f7980_0_random_IntArithmetic(EOS(STATIC_7980(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518, i3244, 1) :|: TRUE f7980_0_random_IntArithmetic(EOS(STATIC_7980(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518, i3244, matching1) -> f7987_0_random_FieldAccess(EOS(STATIC_7987(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518, i3244 + 1) :|: i3244 >= 0 && matching1 = 1 f7987_0_random_FieldAccess(EOS(STATIC_7987(java.lang.Object(ARRAY(i3242)), i3244)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518, i3248) -> f7995_0_random_Load(EOS(STATIC_7995(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518) :|: TRUE f7995_0_random_Load(EOS(STATIC_7995(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518) -> f8003_0_random_InvokeMethod(EOS(STATIC_8003(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3518) :|: TRUE f8003_0_random_InvokeMethod(EOS(STATIC_8003(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3528sub)) -> f8009_0_random_InvokeMethod(EOS(STATIC_8009(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3528sub)) :|: TRUE f8009_0_random_InvokeMethod(EOS(STATIC_8009(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3534sub)) -> f8015_0_random_InvokeMethod(EOS(STATIC_8015(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3534sub)) :|: TRUE f8015_0_random_InvokeMethod(EOS(STATIC_8015(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3534sub)) -> f8021_0_length_Load(EOS(STATIC_8021(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3534sub)) :|: TRUE f8021_0_length_Load(EOS(STATIC_8021(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3534sub)) -> f8032_0_length_FieldAccess(EOS(STATIC_8032(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3534sub)) :|: TRUE f8032_0_length_FieldAccess(EOS(STATIC_8032(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(java.lang.String(EOC, i3253))) -> f8038_0_length_FieldAccess(EOS(STATIC_8038(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(java.lang.String(EOC, i3253))) :|: i3253 >= 0 f8038_0_length_FieldAccess(EOS(STATIC_8038(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(java.lang.String(EOC, i3253))) -> f8042_0_length_Return(EOS(STATIC_8042(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) :|: TRUE f8042_0_length_Return(EOS(STATIC_8042(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) -> f8047_0_random_Return(EOS(STATIC_8047(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) :|: TRUE f8047_0_random_Return(EOS(STATIC_8047(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) -> f8053_0_createMap_InvokeMethod(EOS(STATIC_8053(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) :|: TRUE f8053_0_createMap_InvokeMethod(EOS(STATIC_8053(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) -> f8057_0__init__Load(EOS(STATIC_8057(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) :|: TRUE f8057_0__init__Load(EOS(STATIC_8057(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) -> f8068_0__init__InvokeMethod(EOS(STATIC_8068(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253, java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8068_0__init__InvokeMethod(EOS(STATIC_8068(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253, java.lang.Object(javaUtilEx.Content(EOC))) -> f8072_0__init__Load(EOS(STATIC_8072(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) :|: TRUE f8072_0__init__Load(EOS(STATIC_8072(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) -> f8078_0__init__Load(EOS(STATIC_8078(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3253, java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8078_0__init__Load(EOS(STATIC_8078(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), i3253, java.lang.Object(javaUtilEx.Content(EOC))) -> f8084_0__init__FieldAccess(EOS(STATIC_8084(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) :|: TRUE f8084_0__init__FieldAccess(EOS(STATIC_8084(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3253) -> f8090_0__init__Return(EOS(STATIC_8090(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8090_0__init__Return(EOS(STATIC_8090(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) -> f8096_0_createMap_Store(EOS(STATIC_8096(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8096_0_createMap_Store(EOS(STATIC_8096(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) -> f8102_0_createMap_New(EOS(STATIC_8102(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8102_0_createMap_New(EOS(STATIC_8102(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) -> f8108_0_createMap_Duplicate(EOS(STATIC_8108(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8108_0_createMap_Duplicate(EOS(STATIC_8108(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8114_0_createMap_InvokeMethod(EOS(STATIC_8114(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8114_0_createMap_InvokeMethod(EOS(STATIC_8114(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8120_0_random_FieldAccess(EOS(STATIC_8120(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8120_0_random_FieldAccess(EOS(STATIC_8120(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8129_0_random_FieldAccess(EOS(STATIC_8129(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242))) :|: TRUE f8129_0_random_FieldAccess(EOS(STATIC_8129(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242))) -> f8133_0_random_ArrayAccess(EOS(STATIC_8133(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3248) :|: TRUE f8133_0_random_ArrayAccess(EOS(STATIC_8133(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3248) -> f8137_0_random_ArrayAccess(EOS(STATIC_8137(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3248) :|: TRUE f8137_0_random_ArrayAccess(EOS(STATIC_8137(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(ARRAY(i3242)), i3248) -> f8141_0_random_Store(EOS(STATIC_8141(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615) :|: i3248 < i3242 f8141_0_random_Store(EOS(STATIC_8141(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615) -> f8145_0_random_FieldAccess(EOS(STATIC_8145(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615) :|: TRUE f8145_0_random_FieldAccess(EOS(STATIC_8145(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615) -> f8146_0_random_ConstantStackPush(EOS(STATIC_8146(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615, i3248) :|: TRUE f8146_0_random_ConstantStackPush(EOS(STATIC_8146(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615, i3248) -> f8149_0_random_IntArithmetic(EOS(STATIC_8149(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615, i3248, 1) :|: TRUE f8149_0_random_IntArithmetic(EOS(STATIC_8149(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615, i3248, matching1) -> f8151_0_random_FieldAccess(EOS(STATIC_8151(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615, i3248 + 1) :|: i3248 > 0 && matching1 = 1 f8151_0_random_FieldAccess(EOS(STATIC_8151(java.lang.Object(ARRAY(i3242)), i3248)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615, i3336) -> f8152_0_random_Load(EOS(STATIC_8152(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615) :|: TRUE f8152_0_random_Load(EOS(STATIC_8152(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615) -> f8154_0_random_InvokeMethod(EOS(STATIC_8154(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), o3615) :|: TRUE f8154_0_random_InvokeMethod(EOS(STATIC_8154(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3628sub)) -> f8156_0_random_InvokeMethod(EOS(STATIC_8156(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3628sub)) :|: TRUE f8156_0_random_InvokeMethod(EOS(STATIC_8156(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3629sub)) -> f8158_0_random_InvokeMethod(EOS(STATIC_8158(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3629sub)) :|: TRUE f8158_0_random_InvokeMethod(EOS(STATIC_8158(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3629sub)) -> f8161_0_length_Load(EOS(STATIC_8161(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3629sub)) :|: TRUE f8161_0_length_Load(EOS(STATIC_8161(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3629sub)) -> f8164_0_length_FieldAccess(EOS(STATIC_8164(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(o3629sub)) :|: TRUE f8164_0_length_FieldAccess(EOS(STATIC_8164(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(java.lang.String(EOC, i3349))) -> f8167_0_length_FieldAccess(EOS(STATIC_8167(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(java.lang.String(EOC, i3349))) :|: i3349 >= 0 f8167_0_length_FieldAccess(EOS(STATIC_8167(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(java.lang.String(EOC, i3349))) -> f8169_0_length_Return(EOS(STATIC_8169(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) :|: TRUE f8169_0_length_Return(EOS(STATIC_8169(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) -> f8171_0_random_Return(EOS(STATIC_8171(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) :|: TRUE f8171_0_random_Return(EOS(STATIC_8171(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) -> f8174_0_createMap_InvokeMethod(EOS(STATIC_8174(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) :|: TRUE f8174_0_createMap_InvokeMethod(EOS(STATIC_8174(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) -> f8176_0__init__Load(EOS(STATIC_8176(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) :|: TRUE f8176_0__init__Load(EOS(STATIC_8176(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) -> f8181_0__init__InvokeMethod(EOS(STATIC_8181(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349, java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8181_0__init__InvokeMethod(EOS(STATIC_8181(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349, java.lang.Object(javaUtilEx.Content(EOC))) -> f8183_0__init__Load(EOS(STATIC_8183(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) :|: TRUE f8183_0__init__Load(EOS(STATIC_8183(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) -> f8186_0__init__Load(EOS(STATIC_8186(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349, java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8186_0__init__Load(EOS(STATIC_8186(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349, java.lang.Object(javaUtilEx.Content(EOC))) -> f8189_0__init__FieldAccess(EOS(STATIC_8189(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) :|: TRUE f8189_0__init__FieldAccess(EOS(STATIC_8189(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), i3349) -> f8192_0__init__Return(EOS(STATIC_8192(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8192_0__init__Return(EOS(STATIC_8192(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8195_0_createMap_Store(EOS(STATIC_8195(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8195_0_createMap_Store(EOS(STATIC_8195(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8198_0_createMap_Load(EOS(STATIC_8198(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8198_0_createMap_Load(EOS(STATIC_8198(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8201_0_createMap_Load(EOS(STATIC_8201(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8201_0_createMap_Load(EOS(STATIC_8201(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f8204_0_createMap_Load(EOS(STATIC_8204(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8204_0_createMap_Load(EOS(STATIC_8204(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC))) -> f8207_0_createMap_InvokeMethod(EOS(STATIC_8207(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8207_0_createMap_InvokeMethod(EOS(STATIC_8207(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8210_0_put_Load(EOS(STATIC_8210(java.lang.Object(ARRAY(i3242)), i3336)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: i3215 >= 1 && i3214 >= 1 && i3336 > 1 && i3215 >= i3214 f8207_0_createMap_InvokeMethod(EOS(STATIC_8207(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8210_1_put_Load(EOS(STATIC_8210(java.lang.Object(ARRAY(i3242)), i3336)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: i3215 >= 1 && i3214 >= 1 && i3336 > 1 && i3215 >= i3214 f8210_0_put_Load(EOS(STATIC_8210(java.lang.Object(ARRAY(i3242)), i3336)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f9512_0_put_Load(EOS(STATIC_9512(java.lang.Object(ARRAY(i3242)), i3336)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: TRUE f8457_0_put_Return(EOS(STATIC_8457(java.lang.Object(ARRAY(i3680)), i3682)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f8460_0_createMap_StackPop(EOS(STATIC_8460(java.lang.Object(ARRAY(i3680)), i3682)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8460_0_createMap_StackPop(EOS(STATIC_8460(java.lang.Object(ARRAY(i3680)), i3682)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f8463_0_createMap_Inc(EOS(STATIC_8463(java.lang.Object(ARRAY(i3680)), i3682)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8463_0_createMap_Inc(EOS(STATIC_8463(java.lang.Object(ARRAY(i3680)), i3682)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f8466_0_createMap_JMP(EOS(STATIC_8466(java.lang.Object(ARRAY(i3680)), i3682)), i3214 + -1, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8466_0_createMap_JMP(EOS(STATIC_8466(java.lang.Object(ARRAY(i3680)), i3682)), i3683, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f8469_0_createMap_Load(EOS(STATIC_8469(java.lang.Object(ARRAY(i3680)), i3682)), i3683, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8469_0_createMap_Load(EOS(STATIC_8469(java.lang.Object(ARRAY(i3680)), i3682)), i3683, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f7897_0_createMap_Load(EOS(STATIC_7897(java.lang.Object(ARRAY(i3680)), i3682)), i3683, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f7897_0_createMap_Load(EOS(STATIC_7897(java.lang.Object(o3487sub), i3195)), i3197, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f7900_0_createMap_LE(EOS(STATIC_7900(java.lang.Object(o3487sub), i3195)), i3197, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3197) :|: TRUE f8513_0_put_Return(EOS(STATIC_8513(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), NULL) -> f8516_0_createMap_StackPop(EOS(STATIC_8516(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), NULL) :|: TRUE f8516_0_createMap_StackPop(EOS(STATIC_8516(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), NULL) -> f8519_0_createMap_Inc(EOS(STATIC_8519(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8519_0_createMap_Inc(EOS(STATIC_8519(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) -> f8463_0_createMap_Inc(EOS(STATIC_8463(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8953_0_put_Return(EOS(STATIC_8953(java.lang.Object(ARRAY(i3916)), i3918)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), NULL) -> f8513_0_put_Return(EOS(STATIC_8513(java.lang.Object(ARRAY(i3916)), i3918)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), NULL) :|: TRUE f8210_1_put_Load(EOS(STATIC_8210(java.lang.Object(ARRAY(i3680)), i3682)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8457_0_put_Return(EOS(STATIC_8457(java.lang.Object(ARRAY(i3680)), i3682)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC)))) :|: TRUE f8210_1_put_Load(EOS(STATIC_8210(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8513_0_put_Return(EOS(STATIC_8513(java.lang.Object(ARRAY(i3715)), i3717)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), NULL) :|: TRUE f8210_1_put_Load(EOS(STATIC_8210(java.lang.Object(ARRAY(i3916)), i3918)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) -> f8953_0_put_Return(EOS(STATIC_8953(java.lang.Object(ARRAY(i3916)), i3918)), i3214, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), NULL) :|: TRUE Combined rules. Obtained 2 IRulesP rules: f7900_0_createMap_LE(EOS(STATIC_7900(java.lang.Object(ARRAY(i3242:0)), i3195:0)), i3214:0, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3214:0) -> f7900_0_createMap_LE(EOS(STATIC_7900(java.lang.Object(ARRAY(i3242:0)), i3195:0 + 2)), i3214:0 - 1, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3214:0 - 1) :|: i3242:0 > i3195:0 + 1 && i3214:0 > 0 && i3242:0 > -1 && i3195:0 > -1 && i3253:0 > -1 && i3349:0 > -1 && i3215:0 > 0 && i3215:0 >= i3214:0 Removed following non-SCC rules: f7900_0_createMap_LE(EOS(STATIC_7900(java.lang.Object(ARRAY(i3242:0)), i3195:0)), i3214:0, java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), i3214:0) -> f9512_0_put_Load(EOS(STATIC_9512(java.lang.Object(ARRAY(i3242:0)), i3195:0 + 2)), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.AbstractMap(javaUtilEx.HashMap(EOC))), java.lang.Object(javaUtilEx.Content(EOC)), java.lang.Object(javaUtilEx.Content(EOC))) :|: i3242:0 > i3195:0 + 1 && i3214:0 > 0 && i3242:0 > -1 && i3195:0 > -1 && i3253:0 > -1 && i3349:0 > -1 && i3215:0 > 0 && i3215:0 >= i3214:0 Filtered constant ground arguments: f7900_0_createMap_LE(x1, x2, x3, x4) -> f7900_0_createMap_LE(x1, x2, x4) javaUtilEx.AbstractMap(x1) -> javaUtilEx.AbstractMap javaUtilEx.HashMap(x1) -> javaUtilEx.HashMap Filtered duplicate arguments: f7900_0_createMap_LE(x1, x2, x3) -> f7900_0_createMap_LE(x1, x3) Finished conversion. Obtained 1 rules.P rules: f7900_0_createMap_LE(i3214:0, i3242:0, i3195:0) -> f7900_0_createMap_LE(i3214:0 - 1, i3242:0, i3195:0 + 2) :|: i3214:0 > 0 && i3242:0 > i3195:0 + 1 && i3242:0 > -1 && i3195:0 > -1 && i3253:0 > -1 && i3349:0 > -1 && i3215:0 >= i3214:0 && i3215:0 > 0 ---------------------------------------- (43) Obligation: Rules: f7900_0_createMap_LE(i3214:0, i3242:0, i3195:0) -> f7900_0_createMap_LE(i3214:0 - 1, i3242:0, i3195:0 + 2) :|: i3214:0 > 0 && i3242:0 > i3195:0 + 1 && i3242:0 > -1 && i3195:0 > -1 && i3253:0 > -1 && i3349:0 > -1 && i3215:0 >= i3214:0 && i3215:0 > 0 ---------------------------------------- (44) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (45) Obligation: Rules: f7900_0_createMap_LE(i3214:0, i3242:0, i3195:0) -> f7900_0_createMap_LE(arith, i3242:0, arith1) :|: i3214:0 > 0 && i3242:0 > i3195:0 + 1 && i3242:0 > -1 && i3195:0 > -1 && i3253:0 > -1 && i3349:0 > -1 && i3215:0 >= i3214:0 && i3215:0 > 0 && arith = i3214:0 - 1 && arith1 = i3195:0 + 2 ---------------------------------------- (46) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f7900_0_createMap_LE(i3214:0, i3242:0, i3195:0) -> f7900_0_createMap_LE(arith, i3242:0, arith1) :|: i3214:0 > 0 && i3242:0 > i3195:0 + 1 && i3242:0 > -1 && i3195:0 > -1 && i3253:0 > -1 && i3349:0 > -1 && i3215:0 >= i3214:0 && i3215:0 > 0 && arith = i3214:0 - 1 && arith1 = i3195:0 + 2 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (47) Obligation: Termination digraph: Nodes: (1) f7900_0_createMap_LE(i3214:0, i3242:0, i3195:0) -> f7900_0_createMap_LE(arith, i3242:0, arith1) :|: i3214:0 > 0 && i3242:0 > i3195:0 + 1 && i3242:0 > -1 && i3195:0 > -1 && i3253:0 > -1 && i3349:0 > -1 && i3215:0 >= i3214:0 && i3215:0 > 0 && arith = i3214:0 - 1 && arith1 = i3195:0 + 2 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (48) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (49) Obligation: Rules: f7900_0_createMap_LE(i3214:0:0, i3242:0:0, i3195:0:0) -> f7900_0_createMap_LE(i3214:0:0 - 1, i3242:0:0, i3195:0:0 + 2) :|: i3215:0:0 >= i3214:0:0 && i3215:0:0 > 0 && i3349:0:0 > -1 && i3253:0:0 > -1 && i3195:0:0 > -1 && i3242:0:0 > -1 && i3242:0:0 > i3195:0:0 + 1 && i3214:0:0 > 0 ---------------------------------------- (50) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f7900_0_createMap_LE(INTEGER, INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (51) Obligation: Rules: f7900_0_createMap_LE(i3214:0:0, i3242:0:0, i3195:0:0) -> f7900_0_createMap_LE(c, i3242:0:0, c1) :|: c1 = i3195:0:0 + 2 && c = i3214:0:0 - 1 && (i3215:0:0 >= i3214:0:0 && i3215:0:0 > 0 && i3349:0:0 > -1 && i3253:0:0 > -1 && i3195:0:0 > -1 && i3242:0:0 > -1 && i3242:0:0 > i3195:0:0 + 1 && i3214:0:0 > 0) ---------------------------------------- (52) RankingReductionPairProof (EQUIVALENT) Interpretation: [ f7900_0_createMap_LE ] = f7900_0_createMap_LE_1 The following rules are decreasing: f7900_0_createMap_LE(i3214:0:0, i3242:0:0, i3195:0:0) -> f7900_0_createMap_LE(c, i3242:0:0, c1) :|: c1 = i3195:0:0 + 2 && c = i3214:0:0 - 1 && (i3215:0:0 >= i3214:0:0 && i3215:0:0 > 0 && i3349:0:0 > -1 && i3253:0:0 > -1 && i3195:0:0 > -1 && i3242:0:0 > -1 && i3242:0:0 > i3195:0:0 + 1 && i3214:0:0 > 0) The following rules are bounded: f7900_0_createMap_LE(i3214:0:0, i3242:0:0, i3195:0:0) -> f7900_0_createMap_LE(c, i3242:0:0, c1) :|: c1 = i3195:0:0 + 2 && c = i3214:0:0 - 1 && (i3215:0:0 >= i3214:0:0 && i3215:0:0 > 0 && i3349:0:0 > -1 && i3253:0:0 > -1 && i3195:0:0 > -1 && i3242:0:0 > -1 && i3242:0:0 > i3195:0:0 + 1 && i3214:0:0 > 0) ---------------------------------------- (53) YES