/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.pl /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Left Termination of the query pattern min(g,a) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) CutEliminatorProof [SOUND, 0 ms] (2) Prolog (3) UndefinedPredicateHandlerProof [SOUND, 0 ms] (4) Prolog (5) PrologToPiTRSProof [SOUND, 13 ms] (6) PiTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) PiDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) PiDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) PiDP (13) PiDPToQDPProof [SOUND, 17 ms] (14) QDP (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: Clauses: min(.(I, Is), M) :- min(Is, I, M). min([], Min, Min). min(.(I, Is), Temp, Min) :- ','(min_1(I, Temp, Temp1), min(Is, Temp1, Min)). min_1(I, J, I) :- ','(>=(J, I), !). min_1(I, J, J) :- <(J, I). Query: min(g,a) ---------------------------------------- (1) CutEliminatorProof (SOUND) Eliminated all cuts by simply ignoring them[PROLOG]. ---------------------------------------- (2) Obligation: Clauses: min(.(I, Is), M) :- min(Is, I, M). min([], Min, Min). min(.(I, Is), Temp, Min) :- ','(min_1(I, Temp, Temp1), min(Is, Temp1, Min)). min_1(I, J, I) :- >=(J, I). min_1(I, J, J) :- <(J, I). Query: min(g,a) ---------------------------------------- (3) UndefinedPredicateHandlerProof (SOUND) Added facts for all undefined predicates [PROLOG]. ---------------------------------------- (4) Obligation: Clauses: min(.(I, Is), M) :- min(Is, I, M). min([], Min, Min). min(.(I, Is), Temp, Min) :- ','(min_1(I, Temp, Temp1), min(Is, Temp1, Min)). min_1(I, J, I) :- >=(J, I). min_1(I, J, J) :- <(J, I). >=(X0, X1). <(X0, X1). Query: min(g,a) ---------------------------------------- (5) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: min_in_2: (b,f) min_in_3: (b,b,f) min_1_in_3: (b,b,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: min_in_ga(.(I, Is), M) -> U1_ga(I, Is, M, min_in_gga(Is, I, M)) min_in_gga([], Min, Min) -> min_out_gga([], Min, Min) min_in_gga(.(I, Is), Temp, Min) -> U2_gga(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) min_1_in_gga(I, J, I) -> U4_gga(I, J, >=_in_gg(J, I)) >=_in_gg(X0, X1) -> >=_out_gg(X0, X1) U4_gga(I, J, >=_out_gg(J, I)) -> min_1_out_gga(I, J, I) min_1_in_gga(I, J, J) -> U5_gga(I, J, <_in_gg(J, I)) <_in_gg(X0, X1) -> <_out_gg(X0, X1) U5_gga(I, J, <_out_gg(J, I)) -> min_1_out_gga(I, J, J) U2_gga(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> U3_gga(I, Is, Temp, Min, min_in_gga(Is, Temp1, Min)) U3_gga(I, Is, Temp, Min, min_out_gga(Is, Temp1, Min)) -> min_out_gga(.(I, Is), Temp, Min) U1_ga(I, Is, M, min_out_gga(Is, I, M)) -> min_out_ga(.(I, Is), M) The argument filtering Pi contains the following mapping: min_in_ga(x1, x2) = min_in_ga(x1) .(x1, x2) = .(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x4) min_in_gga(x1, x2, x3) = min_in_gga(x1, x2) [] = [] min_out_gga(x1, x2, x3) = min_out_gga(x3) U2_gga(x1, x2, x3, x4, x5) = U2_gga(x2, x5) min_1_in_gga(x1, x2, x3) = min_1_in_gga(x1, x2) U4_gga(x1, x2, x3) = U4_gga(x1, x3) >=_in_gg(x1, x2) = >=_in_gg(x1, x2) >=_out_gg(x1, x2) = >=_out_gg min_1_out_gga(x1, x2, x3) = min_1_out_gga(x3) U5_gga(x1, x2, x3) = U5_gga(x2, x3) <_in_gg(x1, x2) = <_in_gg(x1, x2) <_out_gg(x1, x2) = <_out_gg U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) min_out_ga(x1, x2) = min_out_ga(x2) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (6) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: min_in_ga(.(I, Is), M) -> U1_ga(I, Is, M, min_in_gga(Is, I, M)) min_in_gga([], Min, Min) -> min_out_gga([], Min, Min) min_in_gga(.(I, Is), Temp, Min) -> U2_gga(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) min_1_in_gga(I, J, I) -> U4_gga(I, J, >=_in_gg(J, I)) >=_in_gg(X0, X1) -> >=_out_gg(X0, X1) U4_gga(I, J, >=_out_gg(J, I)) -> min_1_out_gga(I, J, I) min_1_in_gga(I, J, J) -> U5_gga(I, J, <_in_gg(J, I)) <_in_gg(X0, X1) -> <_out_gg(X0, X1) U5_gga(I, J, <_out_gg(J, I)) -> min_1_out_gga(I, J, J) U2_gga(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> U3_gga(I, Is, Temp, Min, min_in_gga(Is, Temp1, Min)) U3_gga(I, Is, Temp, Min, min_out_gga(Is, Temp1, Min)) -> min_out_gga(.(I, Is), Temp, Min) U1_ga(I, Is, M, min_out_gga(Is, I, M)) -> min_out_ga(.(I, Is), M) The argument filtering Pi contains the following mapping: min_in_ga(x1, x2) = min_in_ga(x1) .(x1, x2) = .(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x4) min_in_gga(x1, x2, x3) = min_in_gga(x1, x2) [] = [] min_out_gga(x1, x2, x3) = min_out_gga(x3) U2_gga(x1, x2, x3, x4, x5) = U2_gga(x2, x5) min_1_in_gga(x1, x2, x3) = min_1_in_gga(x1, x2) U4_gga(x1, x2, x3) = U4_gga(x1, x3) >=_in_gg(x1, x2) = >=_in_gg(x1, x2) >=_out_gg(x1, x2) = >=_out_gg min_1_out_gga(x1, x2, x3) = min_1_out_gga(x3) U5_gga(x1, x2, x3) = U5_gga(x2, x3) <_in_gg(x1, x2) = <_in_gg(x1, x2) <_out_gg(x1, x2) = <_out_gg U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) min_out_ga(x1, x2) = min_out_ga(x2) ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: MIN_IN_GA(.(I, Is), M) -> U1_GA(I, Is, M, min_in_gga(Is, I, M)) MIN_IN_GA(.(I, Is), M) -> MIN_IN_GGA(Is, I, M) MIN_IN_GGA(.(I, Is), Temp, Min) -> U2_GGA(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) MIN_IN_GGA(.(I, Is), Temp, Min) -> MIN_1_IN_GGA(I, Temp, Temp1) MIN_1_IN_GGA(I, J, I) -> U4_GGA(I, J, >=_in_gg(J, I)) MIN_1_IN_GGA(I, J, I) -> >=_IN_GG(J, I) MIN_1_IN_GGA(I, J, J) -> U5_GGA(I, J, <_in_gg(J, I)) MIN_1_IN_GGA(I, J, J) -> <_IN_GG(J, I) U2_GGA(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> U3_GGA(I, Is, Temp, Min, min_in_gga(Is, Temp1, Min)) U2_GGA(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> MIN_IN_GGA(Is, Temp1, Min) The TRS R consists of the following rules: min_in_ga(.(I, Is), M) -> U1_ga(I, Is, M, min_in_gga(Is, I, M)) min_in_gga([], Min, Min) -> min_out_gga([], Min, Min) min_in_gga(.(I, Is), Temp, Min) -> U2_gga(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) min_1_in_gga(I, J, I) -> U4_gga(I, J, >=_in_gg(J, I)) >=_in_gg(X0, X1) -> >=_out_gg(X0, X1) U4_gga(I, J, >=_out_gg(J, I)) -> min_1_out_gga(I, J, I) min_1_in_gga(I, J, J) -> U5_gga(I, J, <_in_gg(J, I)) <_in_gg(X0, X1) -> <_out_gg(X0, X1) U5_gga(I, J, <_out_gg(J, I)) -> min_1_out_gga(I, J, J) U2_gga(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> U3_gga(I, Is, Temp, Min, min_in_gga(Is, Temp1, Min)) U3_gga(I, Is, Temp, Min, min_out_gga(Is, Temp1, Min)) -> min_out_gga(.(I, Is), Temp, Min) U1_ga(I, Is, M, min_out_gga(Is, I, M)) -> min_out_ga(.(I, Is), M) The argument filtering Pi contains the following mapping: min_in_ga(x1, x2) = min_in_ga(x1) .(x1, x2) = .(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x4) min_in_gga(x1, x2, x3) = min_in_gga(x1, x2) [] = [] min_out_gga(x1, x2, x3) = min_out_gga(x3) U2_gga(x1, x2, x3, x4, x5) = U2_gga(x2, x5) min_1_in_gga(x1, x2, x3) = min_1_in_gga(x1, x2) U4_gga(x1, x2, x3) = U4_gga(x1, x3) >=_in_gg(x1, x2) = >=_in_gg(x1, x2) >=_out_gg(x1, x2) = >=_out_gg min_1_out_gga(x1, x2, x3) = min_1_out_gga(x3) U5_gga(x1, x2, x3) = U5_gga(x2, x3) <_in_gg(x1, x2) = <_in_gg(x1, x2) <_out_gg(x1, x2) = <_out_gg U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) min_out_ga(x1, x2) = min_out_ga(x2) MIN_IN_GA(x1, x2) = MIN_IN_GA(x1) U1_GA(x1, x2, x3, x4) = U1_GA(x4) MIN_IN_GGA(x1, x2, x3) = MIN_IN_GGA(x1, x2) U2_GGA(x1, x2, x3, x4, x5) = U2_GGA(x2, x5) MIN_1_IN_GGA(x1, x2, x3) = MIN_1_IN_GGA(x1, x2) U4_GGA(x1, x2, x3) = U4_GGA(x1, x3) >=_IN_GG(x1, x2) = >=_IN_GG(x1, x2) U5_GGA(x1, x2, x3) = U5_GGA(x2, x3) <_IN_GG(x1, x2) = <_IN_GG(x1, x2) U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: MIN_IN_GA(.(I, Is), M) -> U1_GA(I, Is, M, min_in_gga(Is, I, M)) MIN_IN_GA(.(I, Is), M) -> MIN_IN_GGA(Is, I, M) MIN_IN_GGA(.(I, Is), Temp, Min) -> U2_GGA(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) MIN_IN_GGA(.(I, Is), Temp, Min) -> MIN_1_IN_GGA(I, Temp, Temp1) MIN_1_IN_GGA(I, J, I) -> U4_GGA(I, J, >=_in_gg(J, I)) MIN_1_IN_GGA(I, J, I) -> >=_IN_GG(J, I) MIN_1_IN_GGA(I, J, J) -> U5_GGA(I, J, <_in_gg(J, I)) MIN_1_IN_GGA(I, J, J) -> <_IN_GG(J, I) U2_GGA(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> U3_GGA(I, Is, Temp, Min, min_in_gga(Is, Temp1, Min)) U2_GGA(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> MIN_IN_GGA(Is, Temp1, Min) The TRS R consists of the following rules: min_in_ga(.(I, Is), M) -> U1_ga(I, Is, M, min_in_gga(Is, I, M)) min_in_gga([], Min, Min) -> min_out_gga([], Min, Min) min_in_gga(.(I, Is), Temp, Min) -> U2_gga(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) min_1_in_gga(I, J, I) -> U4_gga(I, J, >=_in_gg(J, I)) >=_in_gg(X0, X1) -> >=_out_gg(X0, X1) U4_gga(I, J, >=_out_gg(J, I)) -> min_1_out_gga(I, J, I) min_1_in_gga(I, J, J) -> U5_gga(I, J, <_in_gg(J, I)) <_in_gg(X0, X1) -> <_out_gg(X0, X1) U5_gga(I, J, <_out_gg(J, I)) -> min_1_out_gga(I, J, J) U2_gga(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> U3_gga(I, Is, Temp, Min, min_in_gga(Is, Temp1, Min)) U3_gga(I, Is, Temp, Min, min_out_gga(Is, Temp1, Min)) -> min_out_gga(.(I, Is), Temp, Min) U1_ga(I, Is, M, min_out_gga(Is, I, M)) -> min_out_ga(.(I, Is), M) The argument filtering Pi contains the following mapping: min_in_ga(x1, x2) = min_in_ga(x1) .(x1, x2) = .(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x4) min_in_gga(x1, x2, x3) = min_in_gga(x1, x2) [] = [] min_out_gga(x1, x2, x3) = min_out_gga(x3) U2_gga(x1, x2, x3, x4, x5) = U2_gga(x2, x5) min_1_in_gga(x1, x2, x3) = min_1_in_gga(x1, x2) U4_gga(x1, x2, x3) = U4_gga(x1, x3) >=_in_gg(x1, x2) = >=_in_gg(x1, x2) >=_out_gg(x1, x2) = >=_out_gg min_1_out_gga(x1, x2, x3) = min_1_out_gga(x3) U5_gga(x1, x2, x3) = U5_gga(x2, x3) <_in_gg(x1, x2) = <_in_gg(x1, x2) <_out_gg(x1, x2) = <_out_gg U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) min_out_ga(x1, x2) = min_out_ga(x2) MIN_IN_GA(x1, x2) = MIN_IN_GA(x1) U1_GA(x1, x2, x3, x4) = U1_GA(x4) MIN_IN_GGA(x1, x2, x3) = MIN_IN_GGA(x1, x2) U2_GGA(x1, x2, x3, x4, x5) = U2_GGA(x2, x5) MIN_1_IN_GGA(x1, x2, x3) = MIN_1_IN_GGA(x1, x2) U4_GGA(x1, x2, x3) = U4_GGA(x1, x3) >=_IN_GG(x1, x2) = >=_IN_GG(x1, x2) U5_GGA(x1, x2, x3) = U5_GGA(x2, x3) <_IN_GG(x1, x2) = <_IN_GG(x1, x2) U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 8 less nodes. ---------------------------------------- (10) Obligation: Pi DP problem: The TRS P consists of the following rules: U2_GGA(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> MIN_IN_GGA(Is, Temp1, Min) MIN_IN_GGA(.(I, Is), Temp, Min) -> U2_GGA(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) The TRS R consists of the following rules: min_in_ga(.(I, Is), M) -> U1_ga(I, Is, M, min_in_gga(Is, I, M)) min_in_gga([], Min, Min) -> min_out_gga([], Min, Min) min_in_gga(.(I, Is), Temp, Min) -> U2_gga(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) min_1_in_gga(I, J, I) -> U4_gga(I, J, >=_in_gg(J, I)) >=_in_gg(X0, X1) -> >=_out_gg(X0, X1) U4_gga(I, J, >=_out_gg(J, I)) -> min_1_out_gga(I, J, I) min_1_in_gga(I, J, J) -> U5_gga(I, J, <_in_gg(J, I)) <_in_gg(X0, X1) -> <_out_gg(X0, X1) U5_gga(I, J, <_out_gg(J, I)) -> min_1_out_gga(I, J, J) U2_gga(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> U3_gga(I, Is, Temp, Min, min_in_gga(Is, Temp1, Min)) U3_gga(I, Is, Temp, Min, min_out_gga(Is, Temp1, Min)) -> min_out_gga(.(I, Is), Temp, Min) U1_ga(I, Is, M, min_out_gga(Is, I, M)) -> min_out_ga(.(I, Is), M) The argument filtering Pi contains the following mapping: min_in_ga(x1, x2) = min_in_ga(x1) .(x1, x2) = .(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x4) min_in_gga(x1, x2, x3) = min_in_gga(x1, x2) [] = [] min_out_gga(x1, x2, x3) = min_out_gga(x3) U2_gga(x1, x2, x3, x4, x5) = U2_gga(x2, x5) min_1_in_gga(x1, x2, x3) = min_1_in_gga(x1, x2) U4_gga(x1, x2, x3) = U4_gga(x1, x3) >=_in_gg(x1, x2) = >=_in_gg(x1, x2) >=_out_gg(x1, x2) = >=_out_gg min_1_out_gga(x1, x2, x3) = min_1_out_gga(x3) U5_gga(x1, x2, x3) = U5_gga(x2, x3) <_in_gg(x1, x2) = <_in_gg(x1, x2) <_out_gg(x1, x2) = <_out_gg U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) min_out_ga(x1, x2) = min_out_ga(x2) MIN_IN_GGA(x1, x2, x3) = MIN_IN_GGA(x1, x2) U2_GGA(x1, x2, x3, x4, x5) = U2_GGA(x2, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (12) Obligation: Pi DP problem: The TRS P consists of the following rules: U2_GGA(I, Is, Temp, Min, min_1_out_gga(I, Temp, Temp1)) -> MIN_IN_GGA(Is, Temp1, Min) MIN_IN_GGA(.(I, Is), Temp, Min) -> U2_GGA(I, Is, Temp, Min, min_1_in_gga(I, Temp, Temp1)) The TRS R consists of the following rules: min_1_in_gga(I, J, I) -> U4_gga(I, J, >=_in_gg(J, I)) min_1_in_gga(I, J, J) -> U5_gga(I, J, <_in_gg(J, I)) U4_gga(I, J, >=_out_gg(J, I)) -> min_1_out_gga(I, J, I) U5_gga(I, J, <_out_gg(J, I)) -> min_1_out_gga(I, J, J) >=_in_gg(X0, X1) -> >=_out_gg(X0, X1) <_in_gg(X0, X1) -> <_out_gg(X0, X1) The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) min_1_in_gga(x1, x2, x3) = min_1_in_gga(x1, x2) U4_gga(x1, x2, x3) = U4_gga(x1, x3) >=_in_gg(x1, x2) = >=_in_gg(x1, x2) >=_out_gg(x1, x2) = >=_out_gg min_1_out_gga(x1, x2, x3) = min_1_out_gga(x3) U5_gga(x1, x2, x3) = U5_gga(x2, x3) <_in_gg(x1, x2) = <_in_gg(x1, x2) <_out_gg(x1, x2) = <_out_gg MIN_IN_GGA(x1, x2, x3) = MIN_IN_GGA(x1, x2) U2_GGA(x1, x2, x3, x4, x5) = U2_GGA(x2, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (13) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: U2_GGA(Is, min_1_out_gga(Temp1)) -> MIN_IN_GGA(Is, Temp1) MIN_IN_GGA(.(I, Is), Temp) -> U2_GGA(Is, min_1_in_gga(I, Temp)) The TRS R consists of the following rules: min_1_in_gga(I, J) -> U4_gga(I, >=_in_gg(J, I)) min_1_in_gga(I, J) -> U5_gga(J, <_in_gg(J, I)) U4_gga(I, >=_out_gg) -> min_1_out_gga(I) U5_gga(J, <_out_gg) -> min_1_out_gga(J) >=_in_gg(X0, X1) -> >=_out_gg <_in_gg(X0, X1) -> <_out_gg The set Q consists of the following terms: min_1_in_gga(x0, x1) U4_gga(x0, x1) U5_gga(x0, x1) >=_in_gg(x0, x1) <_in_gg(x0, x1) We have to consider all (P,Q,R)-chains. ---------------------------------------- (15) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MIN_IN_GGA(.(I, Is), Temp) -> U2_GGA(Is, min_1_in_gga(I, Temp)) The graph contains the following edges 1 > 1 *U2_GGA(Is, min_1_out_gga(Temp1)) -> MIN_IN_GGA(Is, Temp1) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (16) YES