/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.pl /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Left Termination of the query pattern e(g,a) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 28 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) PiDPToQDPProof [SOUND, 13 ms] (8) QDP (9) UsableRulesReductionPairsProof [EQUIVALENT, 56 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) TRUE ---------------------------------------- (0) Obligation: Clauses: e(L, T) :- t(L, T). e(L, T) :- ','(t(L, .(plus, C)), e(C, T)). t(L, T) :- n(L, T). t(L, T) :- ','(n(L, .(star, C)), t(C, T)). n(.(L, T), T) :- z(L). n(.(lbrace, A), B) :- e(A, .(rbrace, B)). z(a). z(b). z(c). Query: e(g,a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: e_in_2: (b,f) t_in_2: (b,f) n_in_2: (b,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: e_in_ga(L, T) -> U1_ga(L, T, t_in_ga(L, T)) t_in_ga(L, T) -> U4_ga(L, T, n_in_ga(L, T)) n_in_ga(.(L, T), T) -> U7_ga(L, T, z_in_g(L)) z_in_g(a) -> z_out_g(a) z_in_g(b) -> z_out_g(b) z_in_g(c) -> z_out_g(c) U7_ga(L, T, z_out_g(L)) -> n_out_ga(.(L, T), T) n_in_ga(.(lbrace, A), B) -> U8_ga(A, B, e_in_ga(A, .(rbrace, B))) e_in_ga(L, T) -> U2_ga(L, T, t_in_ga(L, .(plus, C))) t_in_ga(L, T) -> U5_ga(L, T, n_in_ga(L, .(star, C))) U5_ga(L, T, n_out_ga(L, .(star, C))) -> U6_ga(L, T, t_in_ga(C, T)) U6_ga(L, T, t_out_ga(C, T)) -> t_out_ga(L, T) U2_ga(L, T, t_out_ga(L, .(plus, C))) -> U3_ga(L, T, e_in_ga(C, T)) U3_ga(L, T, e_out_ga(C, T)) -> e_out_ga(L, T) U8_ga(A, B, e_out_ga(A, .(rbrace, B))) -> n_out_ga(.(lbrace, A), B) U4_ga(L, T, n_out_ga(L, T)) -> t_out_ga(L, T) U1_ga(L, T, t_out_ga(L, T)) -> e_out_ga(L, T) The argument filtering Pi contains the following mapping: e_in_ga(x1, x2) = e_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) t_in_ga(x1, x2) = t_in_ga(x1) U4_ga(x1, x2, x3) = U4_ga(x3) n_in_ga(x1, x2) = n_in_ga(x1) .(x1, x2) = .(x1, x2) U7_ga(x1, x2, x3) = U7_ga(x2, x3) z_in_g(x1) = z_in_g(x1) a = a z_out_g(x1) = z_out_g b = b c = c n_out_ga(x1, x2) = n_out_ga(x2) lbrace = lbrace U8_ga(x1, x2, x3) = U8_ga(x3) U2_ga(x1, x2, x3) = U2_ga(x3) U5_ga(x1, x2, x3) = U5_ga(x3) star = star U6_ga(x1, x2, x3) = U6_ga(x3) t_out_ga(x1, x2) = t_out_ga(x2) plus = plus U3_ga(x1, x2, x3) = U3_ga(x3) e_out_ga(x1, x2) = e_out_ga(x2) rbrace = rbrace Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: e_in_ga(L, T) -> U1_ga(L, T, t_in_ga(L, T)) t_in_ga(L, T) -> U4_ga(L, T, n_in_ga(L, T)) n_in_ga(.(L, T), T) -> U7_ga(L, T, z_in_g(L)) z_in_g(a) -> z_out_g(a) z_in_g(b) -> z_out_g(b) z_in_g(c) -> z_out_g(c) U7_ga(L, T, z_out_g(L)) -> n_out_ga(.(L, T), T) n_in_ga(.(lbrace, A), B) -> U8_ga(A, B, e_in_ga(A, .(rbrace, B))) e_in_ga(L, T) -> U2_ga(L, T, t_in_ga(L, .(plus, C))) t_in_ga(L, T) -> U5_ga(L, T, n_in_ga(L, .(star, C))) U5_ga(L, T, n_out_ga(L, .(star, C))) -> U6_ga(L, T, t_in_ga(C, T)) U6_ga(L, T, t_out_ga(C, T)) -> t_out_ga(L, T) U2_ga(L, T, t_out_ga(L, .(plus, C))) -> U3_ga(L, T, e_in_ga(C, T)) U3_ga(L, T, e_out_ga(C, T)) -> e_out_ga(L, T) U8_ga(A, B, e_out_ga(A, .(rbrace, B))) -> n_out_ga(.(lbrace, A), B) U4_ga(L, T, n_out_ga(L, T)) -> t_out_ga(L, T) U1_ga(L, T, t_out_ga(L, T)) -> e_out_ga(L, T) The argument filtering Pi contains the following mapping: e_in_ga(x1, x2) = e_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) t_in_ga(x1, x2) = t_in_ga(x1) U4_ga(x1, x2, x3) = U4_ga(x3) n_in_ga(x1, x2) = n_in_ga(x1) .(x1, x2) = .(x1, x2) U7_ga(x1, x2, x3) = U7_ga(x2, x3) z_in_g(x1) = z_in_g(x1) a = a z_out_g(x1) = z_out_g b = b c = c n_out_ga(x1, x2) = n_out_ga(x2) lbrace = lbrace U8_ga(x1, x2, x3) = U8_ga(x3) U2_ga(x1, x2, x3) = U2_ga(x3) U5_ga(x1, x2, x3) = U5_ga(x3) star = star U6_ga(x1, x2, x3) = U6_ga(x3) t_out_ga(x1, x2) = t_out_ga(x2) plus = plus U3_ga(x1, x2, x3) = U3_ga(x3) e_out_ga(x1, x2) = e_out_ga(x2) rbrace = rbrace ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: E_IN_GA(L, T) -> U1_GA(L, T, t_in_ga(L, T)) E_IN_GA(L, T) -> T_IN_GA(L, T) T_IN_GA(L, T) -> U4_GA(L, T, n_in_ga(L, T)) T_IN_GA(L, T) -> N_IN_GA(L, T) N_IN_GA(.(L, T), T) -> U7_GA(L, T, z_in_g(L)) N_IN_GA(.(L, T), T) -> Z_IN_G(L) N_IN_GA(.(lbrace, A), B) -> U8_GA(A, B, e_in_ga(A, .(rbrace, B))) N_IN_GA(.(lbrace, A), B) -> E_IN_GA(A, .(rbrace, B)) E_IN_GA(L, T) -> U2_GA(L, T, t_in_ga(L, .(plus, C))) E_IN_GA(L, T) -> T_IN_GA(L, .(plus, C)) T_IN_GA(L, T) -> U5_GA(L, T, n_in_ga(L, .(star, C))) T_IN_GA(L, T) -> N_IN_GA(L, .(star, C)) U5_GA(L, T, n_out_ga(L, .(star, C))) -> U6_GA(L, T, t_in_ga(C, T)) U5_GA(L, T, n_out_ga(L, .(star, C))) -> T_IN_GA(C, T) U2_GA(L, T, t_out_ga(L, .(plus, C))) -> U3_GA(L, T, e_in_ga(C, T)) U2_GA(L, T, t_out_ga(L, .(plus, C))) -> E_IN_GA(C, T) The TRS R consists of the following rules: e_in_ga(L, T) -> U1_ga(L, T, t_in_ga(L, T)) t_in_ga(L, T) -> U4_ga(L, T, n_in_ga(L, T)) n_in_ga(.(L, T), T) -> U7_ga(L, T, z_in_g(L)) z_in_g(a) -> z_out_g(a) z_in_g(b) -> z_out_g(b) z_in_g(c) -> z_out_g(c) U7_ga(L, T, z_out_g(L)) -> n_out_ga(.(L, T), T) n_in_ga(.(lbrace, A), B) -> U8_ga(A, B, e_in_ga(A, .(rbrace, B))) e_in_ga(L, T) -> U2_ga(L, T, t_in_ga(L, .(plus, C))) t_in_ga(L, T) -> U5_ga(L, T, n_in_ga(L, .(star, C))) U5_ga(L, T, n_out_ga(L, .(star, C))) -> U6_ga(L, T, t_in_ga(C, T)) U6_ga(L, T, t_out_ga(C, T)) -> t_out_ga(L, T) U2_ga(L, T, t_out_ga(L, .(plus, C))) -> U3_ga(L, T, e_in_ga(C, T)) U3_ga(L, T, e_out_ga(C, T)) -> e_out_ga(L, T) U8_ga(A, B, e_out_ga(A, .(rbrace, B))) -> n_out_ga(.(lbrace, A), B) U4_ga(L, T, n_out_ga(L, T)) -> t_out_ga(L, T) U1_ga(L, T, t_out_ga(L, T)) -> e_out_ga(L, T) The argument filtering Pi contains the following mapping: e_in_ga(x1, x2) = e_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) t_in_ga(x1, x2) = t_in_ga(x1) U4_ga(x1, x2, x3) = U4_ga(x3) n_in_ga(x1, x2) = n_in_ga(x1) .(x1, x2) = .(x1, x2) U7_ga(x1, x2, x3) = U7_ga(x2, x3) z_in_g(x1) = z_in_g(x1) a = a z_out_g(x1) = z_out_g b = b c = c n_out_ga(x1, x2) = n_out_ga(x2) lbrace = lbrace U8_ga(x1, x2, x3) = U8_ga(x3) U2_ga(x1, x2, x3) = U2_ga(x3) U5_ga(x1, x2, x3) = U5_ga(x3) star = star U6_ga(x1, x2, x3) = U6_ga(x3) t_out_ga(x1, x2) = t_out_ga(x2) plus = plus U3_ga(x1, x2, x3) = U3_ga(x3) e_out_ga(x1, x2) = e_out_ga(x2) rbrace = rbrace E_IN_GA(x1, x2) = E_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x3) T_IN_GA(x1, x2) = T_IN_GA(x1) U4_GA(x1, x2, x3) = U4_GA(x3) N_IN_GA(x1, x2) = N_IN_GA(x1) U7_GA(x1, x2, x3) = U7_GA(x2, x3) Z_IN_G(x1) = Z_IN_G(x1) U8_GA(x1, x2, x3) = U8_GA(x3) U2_GA(x1, x2, x3) = U2_GA(x3) U5_GA(x1, x2, x3) = U5_GA(x3) U6_GA(x1, x2, x3) = U6_GA(x3) U3_GA(x1, x2, x3) = U3_GA(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: E_IN_GA(L, T) -> U1_GA(L, T, t_in_ga(L, T)) E_IN_GA(L, T) -> T_IN_GA(L, T) T_IN_GA(L, T) -> U4_GA(L, T, n_in_ga(L, T)) T_IN_GA(L, T) -> N_IN_GA(L, T) N_IN_GA(.(L, T), T) -> U7_GA(L, T, z_in_g(L)) N_IN_GA(.(L, T), T) -> Z_IN_G(L) N_IN_GA(.(lbrace, A), B) -> U8_GA(A, B, e_in_ga(A, .(rbrace, B))) N_IN_GA(.(lbrace, A), B) -> E_IN_GA(A, .(rbrace, B)) E_IN_GA(L, T) -> U2_GA(L, T, t_in_ga(L, .(plus, C))) E_IN_GA(L, T) -> T_IN_GA(L, .(plus, C)) T_IN_GA(L, T) -> U5_GA(L, T, n_in_ga(L, .(star, C))) T_IN_GA(L, T) -> N_IN_GA(L, .(star, C)) U5_GA(L, T, n_out_ga(L, .(star, C))) -> U6_GA(L, T, t_in_ga(C, T)) U5_GA(L, T, n_out_ga(L, .(star, C))) -> T_IN_GA(C, T) U2_GA(L, T, t_out_ga(L, .(plus, C))) -> U3_GA(L, T, e_in_ga(C, T)) U2_GA(L, T, t_out_ga(L, .(plus, C))) -> E_IN_GA(C, T) The TRS R consists of the following rules: e_in_ga(L, T) -> U1_ga(L, T, t_in_ga(L, T)) t_in_ga(L, T) -> U4_ga(L, T, n_in_ga(L, T)) n_in_ga(.(L, T), T) -> U7_ga(L, T, z_in_g(L)) z_in_g(a) -> z_out_g(a) z_in_g(b) -> z_out_g(b) z_in_g(c) -> z_out_g(c) U7_ga(L, T, z_out_g(L)) -> n_out_ga(.(L, T), T) n_in_ga(.(lbrace, A), B) -> U8_ga(A, B, e_in_ga(A, .(rbrace, B))) e_in_ga(L, T) -> U2_ga(L, T, t_in_ga(L, .(plus, C))) t_in_ga(L, T) -> U5_ga(L, T, n_in_ga(L, .(star, C))) U5_ga(L, T, n_out_ga(L, .(star, C))) -> U6_ga(L, T, t_in_ga(C, T)) U6_ga(L, T, t_out_ga(C, T)) -> t_out_ga(L, T) U2_ga(L, T, t_out_ga(L, .(plus, C))) -> U3_ga(L, T, e_in_ga(C, T)) U3_ga(L, T, e_out_ga(C, T)) -> e_out_ga(L, T) U8_ga(A, B, e_out_ga(A, .(rbrace, B))) -> n_out_ga(.(lbrace, A), B) U4_ga(L, T, n_out_ga(L, T)) -> t_out_ga(L, T) U1_ga(L, T, t_out_ga(L, T)) -> e_out_ga(L, T) The argument filtering Pi contains the following mapping: e_in_ga(x1, x2) = e_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) t_in_ga(x1, x2) = t_in_ga(x1) U4_ga(x1, x2, x3) = U4_ga(x3) n_in_ga(x1, x2) = n_in_ga(x1) .(x1, x2) = .(x1, x2) U7_ga(x1, x2, x3) = U7_ga(x2, x3) z_in_g(x1) = z_in_g(x1) a = a z_out_g(x1) = z_out_g b = b c = c n_out_ga(x1, x2) = n_out_ga(x2) lbrace = lbrace U8_ga(x1, x2, x3) = U8_ga(x3) U2_ga(x1, x2, x3) = U2_ga(x3) U5_ga(x1, x2, x3) = U5_ga(x3) star = star U6_ga(x1, x2, x3) = U6_ga(x3) t_out_ga(x1, x2) = t_out_ga(x2) plus = plus U3_ga(x1, x2, x3) = U3_ga(x3) e_out_ga(x1, x2) = e_out_ga(x2) rbrace = rbrace E_IN_GA(x1, x2) = E_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x3) T_IN_GA(x1, x2) = T_IN_GA(x1) U4_GA(x1, x2, x3) = U4_GA(x3) N_IN_GA(x1, x2) = N_IN_GA(x1) U7_GA(x1, x2, x3) = U7_GA(x2, x3) Z_IN_G(x1) = Z_IN_G(x1) U8_GA(x1, x2, x3) = U8_GA(x3) U2_GA(x1, x2, x3) = U2_GA(x3) U5_GA(x1, x2, x3) = U5_GA(x3) U6_GA(x1, x2, x3) = U6_GA(x3) U3_GA(x1, x2, x3) = U3_GA(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: E_IN_GA(L, T) -> T_IN_GA(L, T) T_IN_GA(L, T) -> N_IN_GA(L, T) N_IN_GA(.(lbrace, A), B) -> E_IN_GA(A, .(rbrace, B)) E_IN_GA(L, T) -> U2_GA(L, T, t_in_ga(L, .(plus, C))) U2_GA(L, T, t_out_ga(L, .(plus, C))) -> E_IN_GA(C, T) E_IN_GA(L, T) -> T_IN_GA(L, .(plus, C)) T_IN_GA(L, T) -> U5_GA(L, T, n_in_ga(L, .(star, C))) U5_GA(L, T, n_out_ga(L, .(star, C))) -> T_IN_GA(C, T) T_IN_GA(L, T) -> N_IN_GA(L, .(star, C)) The TRS R consists of the following rules: e_in_ga(L, T) -> U1_ga(L, T, t_in_ga(L, T)) t_in_ga(L, T) -> U4_ga(L, T, n_in_ga(L, T)) n_in_ga(.(L, T), T) -> U7_ga(L, T, z_in_g(L)) z_in_g(a) -> z_out_g(a) z_in_g(b) -> z_out_g(b) z_in_g(c) -> z_out_g(c) U7_ga(L, T, z_out_g(L)) -> n_out_ga(.(L, T), T) n_in_ga(.(lbrace, A), B) -> U8_ga(A, B, e_in_ga(A, .(rbrace, B))) e_in_ga(L, T) -> U2_ga(L, T, t_in_ga(L, .(plus, C))) t_in_ga(L, T) -> U5_ga(L, T, n_in_ga(L, .(star, C))) U5_ga(L, T, n_out_ga(L, .(star, C))) -> U6_ga(L, T, t_in_ga(C, T)) U6_ga(L, T, t_out_ga(C, T)) -> t_out_ga(L, T) U2_ga(L, T, t_out_ga(L, .(plus, C))) -> U3_ga(L, T, e_in_ga(C, T)) U3_ga(L, T, e_out_ga(C, T)) -> e_out_ga(L, T) U8_ga(A, B, e_out_ga(A, .(rbrace, B))) -> n_out_ga(.(lbrace, A), B) U4_ga(L, T, n_out_ga(L, T)) -> t_out_ga(L, T) U1_ga(L, T, t_out_ga(L, T)) -> e_out_ga(L, T) The argument filtering Pi contains the following mapping: e_in_ga(x1, x2) = e_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) t_in_ga(x1, x2) = t_in_ga(x1) U4_ga(x1, x2, x3) = U4_ga(x3) n_in_ga(x1, x2) = n_in_ga(x1) .(x1, x2) = .(x1, x2) U7_ga(x1, x2, x3) = U7_ga(x2, x3) z_in_g(x1) = z_in_g(x1) a = a z_out_g(x1) = z_out_g b = b c = c n_out_ga(x1, x2) = n_out_ga(x2) lbrace = lbrace U8_ga(x1, x2, x3) = U8_ga(x3) U2_ga(x1, x2, x3) = U2_ga(x3) U5_ga(x1, x2, x3) = U5_ga(x3) star = star U6_ga(x1, x2, x3) = U6_ga(x3) t_out_ga(x1, x2) = t_out_ga(x2) plus = plus U3_ga(x1, x2, x3) = U3_ga(x3) e_out_ga(x1, x2) = e_out_ga(x2) rbrace = rbrace E_IN_GA(x1, x2) = E_IN_GA(x1) T_IN_GA(x1, x2) = T_IN_GA(x1) N_IN_GA(x1, x2) = N_IN_GA(x1) U2_GA(x1, x2, x3) = U2_GA(x3) U5_GA(x1, x2, x3) = U5_GA(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: E_IN_GA(L) -> T_IN_GA(L) T_IN_GA(L) -> N_IN_GA(L) N_IN_GA(.(lbrace, A)) -> E_IN_GA(A) E_IN_GA(L) -> U2_GA(t_in_ga(L)) U2_GA(t_out_ga(.(plus, C))) -> E_IN_GA(C) T_IN_GA(L) -> U5_GA(n_in_ga(L)) U5_GA(n_out_ga(.(star, C))) -> T_IN_GA(C) The TRS R consists of the following rules: e_in_ga(L) -> U1_ga(t_in_ga(L)) t_in_ga(L) -> U4_ga(n_in_ga(L)) n_in_ga(.(L, T)) -> U7_ga(T, z_in_g(L)) z_in_g(a) -> z_out_g z_in_g(b) -> z_out_g z_in_g(c) -> z_out_g U7_ga(T, z_out_g) -> n_out_ga(T) n_in_ga(.(lbrace, A)) -> U8_ga(e_in_ga(A)) e_in_ga(L) -> U2_ga(t_in_ga(L)) t_in_ga(L) -> U5_ga(n_in_ga(L)) U5_ga(n_out_ga(.(star, C))) -> U6_ga(t_in_ga(C)) U6_ga(t_out_ga(T)) -> t_out_ga(T) U2_ga(t_out_ga(.(plus, C))) -> U3_ga(e_in_ga(C)) U3_ga(e_out_ga(T)) -> e_out_ga(T) U8_ga(e_out_ga(.(rbrace, B))) -> n_out_ga(B) U4_ga(n_out_ga(T)) -> t_out_ga(T) U1_ga(t_out_ga(T)) -> e_out_ga(T) The set Q consists of the following terms: e_in_ga(x0) t_in_ga(x0) n_in_ga(x0) z_in_g(x0) U7_ga(x0, x1) U5_ga(x0) U6_ga(x0) U2_ga(x0) U3_ga(x0) U8_ga(x0) U4_ga(x0) U1_ga(x0) We have to consider all (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: N_IN_GA(.(lbrace, A)) -> E_IN_GA(A) U2_GA(t_out_ga(.(plus, C))) -> E_IN_GA(C) U5_GA(n_out_ga(.(star, C))) -> T_IN_GA(C) The following rules are removed from R: n_in_ga(.(L, T)) -> U7_ga(T, z_in_g(L)) z_in_g(a) -> z_out_g z_in_g(b) -> z_out_g z_in_g(c) -> z_out_g n_in_ga(.(lbrace, A)) -> U8_ga(e_in_ga(A)) U5_ga(n_out_ga(.(star, C))) -> U6_ga(t_in_ga(C)) U6_ga(t_out_ga(T)) -> t_out_ga(T) U2_ga(t_out_ga(.(plus, C))) -> U3_ga(e_in_ga(C)) U8_ga(e_out_ga(.(rbrace, B))) -> n_out_ga(B) Used ordering: POLO with Polynomial interpretation [POLO]: POL(.(x_1, x_2)) = 2*x_1 + x_2 POL(E_IN_GA(x_1)) = x_1 POL(N_IN_GA(x_1)) = x_1 POL(T_IN_GA(x_1)) = x_1 POL(U1_ga(x_1)) = x_1 POL(U2_GA(x_1)) = x_1 POL(U2_ga(x_1)) = x_1 POL(U3_ga(x_1)) = x_1 POL(U4_ga(x_1)) = x_1 POL(U5_GA(x_1)) = x_1 POL(U5_ga(x_1)) = x_1 POL(U6_ga(x_1)) = 2 + x_1 POL(U7_ga(x_1, x_2)) = x_1 + x_2 POL(U8_ga(x_1)) = x_1 POL(a) = 0 POL(b) = 0 POL(c) = 0 POL(e_in_ga(x_1)) = x_1 POL(e_out_ga(x_1)) = x_1 POL(lbrace) = 0 POL(n_in_ga(x_1)) = x_1 POL(n_out_ga(x_1)) = x_1 POL(plus) = 1 POL(rbrace) = 0 POL(star) = 2 POL(t_in_ga(x_1)) = x_1 POL(t_out_ga(x_1)) = x_1 POL(z_in_g(x_1)) = x_1 POL(z_out_g) = 0 ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: E_IN_GA(L) -> T_IN_GA(L) T_IN_GA(L) -> N_IN_GA(L) E_IN_GA(L) -> U2_GA(t_in_ga(L)) T_IN_GA(L) -> U5_GA(n_in_ga(L)) The TRS R consists of the following rules: e_in_ga(L) -> U1_ga(t_in_ga(L)) e_in_ga(L) -> U2_ga(t_in_ga(L)) t_in_ga(L) -> U4_ga(n_in_ga(L)) t_in_ga(L) -> U5_ga(n_in_ga(L)) U3_ga(e_out_ga(T)) -> e_out_ga(T) U4_ga(n_out_ga(T)) -> t_out_ga(T) U1_ga(t_out_ga(T)) -> e_out_ga(T) U7_ga(T, z_out_g) -> n_out_ga(T) The set Q consists of the following terms: e_in_ga(x0) t_in_ga(x0) n_in_ga(x0) z_in_g(x0) U7_ga(x0, x1) U5_ga(x0) U6_ga(x0) U2_ga(x0) U3_ga(x0) U8_ga(x0) U4_ga(x0) U1_ga(x0) We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes. ---------------------------------------- (12) TRUE