/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.pl /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.pl # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Left Termination of the query pattern flatten(g,a) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (12) QDP (13) PisEmptyProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: Clauses: flatten(atom(X), .(X, [])). flatten(cons(atom(X), U), .(X, Y)) :- flatten(U, Y). flatten(cons(cons(U, V), W), X) :- flatten(cons(U, cons(V, W)), X). Query: flatten(g,a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: flatten_in_2: (b,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: flatten_in_ga(atom(X), .(X, [])) -> flatten_out_ga(atom(X), .(X, [])) flatten_in_ga(cons(atom(X), U), .(X, Y)) -> U1_ga(X, U, Y, flatten_in_ga(U, Y)) flatten_in_ga(cons(cons(U, V), W), X) -> U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X)) U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) -> flatten_out_ga(cons(cons(U, V), W), X) U1_ga(X, U, Y, flatten_out_ga(U, Y)) -> flatten_out_ga(cons(atom(X), U), .(X, Y)) The argument filtering Pi contains the following mapping: flatten_in_ga(x1, x2) = flatten_in_ga(x1) atom(x1) = atom(x1) flatten_out_ga(x1, x2) = flatten_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) .(x1, x2) = .(x1, x2) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: flatten_in_ga(atom(X), .(X, [])) -> flatten_out_ga(atom(X), .(X, [])) flatten_in_ga(cons(atom(X), U), .(X, Y)) -> U1_ga(X, U, Y, flatten_in_ga(U, Y)) flatten_in_ga(cons(cons(U, V), W), X) -> U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X)) U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) -> flatten_out_ga(cons(cons(U, V), W), X) U1_ga(X, U, Y, flatten_out_ga(U, Y)) -> flatten_out_ga(cons(atom(X), U), .(X, Y)) The argument filtering Pi contains the following mapping: flatten_in_ga(x1, x2) = flatten_in_ga(x1) atom(x1) = atom(x1) flatten_out_ga(x1, x2) = flatten_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) .(x1, x2) = .(x1, x2) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) -> U1_GA(X, U, Y, flatten_in_ga(U, Y)) FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) -> FLATTEN_IN_GA(U, Y) FLATTEN_IN_GA(cons(cons(U, V), W), X) -> U2_GA(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X)) FLATTEN_IN_GA(cons(cons(U, V), W), X) -> FLATTEN_IN_GA(cons(U, cons(V, W)), X) The TRS R consists of the following rules: flatten_in_ga(atom(X), .(X, [])) -> flatten_out_ga(atom(X), .(X, [])) flatten_in_ga(cons(atom(X), U), .(X, Y)) -> U1_ga(X, U, Y, flatten_in_ga(U, Y)) flatten_in_ga(cons(cons(U, V), W), X) -> U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X)) U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) -> flatten_out_ga(cons(cons(U, V), W), X) U1_ga(X, U, Y, flatten_out_ga(U, Y)) -> flatten_out_ga(cons(atom(X), U), .(X, Y)) The argument filtering Pi contains the following mapping: flatten_in_ga(x1, x2) = flatten_in_ga(x1) atom(x1) = atom(x1) flatten_out_ga(x1, x2) = flatten_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) .(x1, x2) = .(x1, x2) FLATTEN_IN_GA(x1, x2) = FLATTEN_IN_GA(x1) U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4) U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) -> U1_GA(X, U, Y, flatten_in_ga(U, Y)) FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) -> FLATTEN_IN_GA(U, Y) FLATTEN_IN_GA(cons(cons(U, V), W), X) -> U2_GA(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X)) FLATTEN_IN_GA(cons(cons(U, V), W), X) -> FLATTEN_IN_GA(cons(U, cons(V, W)), X) The TRS R consists of the following rules: flatten_in_ga(atom(X), .(X, [])) -> flatten_out_ga(atom(X), .(X, [])) flatten_in_ga(cons(atom(X), U), .(X, Y)) -> U1_ga(X, U, Y, flatten_in_ga(U, Y)) flatten_in_ga(cons(cons(U, V), W), X) -> U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X)) U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) -> flatten_out_ga(cons(cons(U, V), W), X) U1_ga(X, U, Y, flatten_out_ga(U, Y)) -> flatten_out_ga(cons(atom(X), U), .(X, Y)) The argument filtering Pi contains the following mapping: flatten_in_ga(x1, x2) = flatten_in_ga(x1) atom(x1) = atom(x1) flatten_out_ga(x1, x2) = flatten_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) .(x1, x2) = .(x1, x2) FLATTEN_IN_GA(x1, x2) = FLATTEN_IN_GA(x1) U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4) U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: FLATTEN_IN_GA(cons(cons(U, V), W), X) -> FLATTEN_IN_GA(cons(U, cons(V, W)), X) FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) -> FLATTEN_IN_GA(U, Y) The TRS R consists of the following rules: flatten_in_ga(atom(X), .(X, [])) -> flatten_out_ga(atom(X), .(X, [])) flatten_in_ga(cons(atom(X), U), .(X, Y)) -> U1_ga(X, U, Y, flatten_in_ga(U, Y)) flatten_in_ga(cons(cons(U, V), W), X) -> U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X)) U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) -> flatten_out_ga(cons(cons(U, V), W), X) U1_ga(X, U, Y, flatten_out_ga(U, Y)) -> flatten_out_ga(cons(atom(X), U), .(X, Y)) The argument filtering Pi contains the following mapping: flatten_in_ga(x1, x2) = flatten_in_ga(x1) atom(x1) = atom(x1) flatten_out_ga(x1, x2) = flatten_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) .(x1, x2) = .(x1, x2) FLATTEN_IN_GA(x1, x2) = FLATTEN_IN_GA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: FLATTEN_IN_GA(cons(cons(U, V), W), X) -> FLATTEN_IN_GA(cons(U, cons(V, W)), X) FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) -> FLATTEN_IN_GA(U, Y) R is empty. The argument filtering Pi contains the following mapping: atom(x1) = atom(x1) cons(x1, x2) = cons(x1, x2) .(x1, x2) = .(x1, x2) FLATTEN_IN_GA(x1, x2) = FLATTEN_IN_GA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: FLATTEN_IN_GA(cons(cons(U, V), W)) -> FLATTEN_IN_GA(cons(U, cons(V, W))) FLATTEN_IN_GA(cons(atom(X), U)) -> FLATTEN_IN_GA(U) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: FLATTEN_IN_GA(cons(cons(U, V), W)) -> FLATTEN_IN_GA(cons(U, cons(V, W))) FLATTEN_IN_GA(cons(atom(X), U)) -> FLATTEN_IN_GA(U) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(FLATTEN_IN_GA(x_1)) = 2*x_1 POL(atom(x_1)) = x_1 POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 ---------------------------------------- (12) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (13) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (14) YES