/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.pl /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.pl # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Left Termination of the query pattern p(g,g,g,a) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Clauses: p(M, N, s(R), RES) :- p(M, R, N, RES). p(M, s(N), R, RES) :- p(R, N, M, RES). p(M, X1, X2, M). Query: p(g,g,g,a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: p_in_4: (b,b,b,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) The argument filtering Pi contains the following mapping: p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) s(x1) = s(x1) U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) The argument filtering Pi contains the following mapping: p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) s(x1) = s(x1) U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: P_IN_GGGA(M, N, s(R), RES) -> U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES)) P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) P_IN_GGGA(M, s(N), R, RES) -> U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES)) P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) The TRS R consists of the following rules: p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) The argument filtering Pi contains the following mapping: p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) s(x1) = s(x1) U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) U1_GGGA(x1, x2, x3, x4, x5) = U1_GGGA(x5) U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: P_IN_GGGA(M, N, s(R), RES) -> U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES)) P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) P_IN_GGGA(M, s(N), R, RES) -> U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES)) P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) The TRS R consists of the following rules: p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) The argument filtering Pi contains the following mapping: p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) s(x1) = s(x1) U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) U1_GGGA(x1, x2, x3, x4, x5) = U1_GGGA(x5) U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) The TRS R consists of the following rules: p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) The argument filtering Pi contains the following mapping: p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) s(x1) = s(x1) U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) R is empty. The argument filtering Pi contains the following mapping: s(x1) = s(x1) P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: P_IN_GGGA(M, s(N), R) -> P_IN_GGGA(R, N, M) P_IN_GGGA(M, N, s(R)) -> P_IN_GGGA(M, R, N) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *P_IN_GGGA(M, s(N), R) -> P_IN_GGGA(R, N, M) The graph contains the following edges 3 >= 1, 2 > 2, 1 >= 3 *P_IN_GGGA(M, N, s(R)) -> P_IN_GGGA(M, R, N) The graph contains the following edges 1 >= 1, 3 > 2, 2 >= 3 ---------------------------------------- (12) YES