/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.pl /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Left Termination of the query pattern countstack(g,a) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 5 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (12) QDP (13) PisEmptyProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: Clauses: countstack(empty, 0). countstack(push(nil, T), X) :- countstack(T, X). countstack(push(cons(U, V), T), s(X)) :- countstack(push(U, push(V, T)), X). Query: countstack(g,a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: countstack_in_2: (b,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: countstack_in_ga(empty, 0) -> countstack_out_ga(empty, 0) countstack_in_ga(push(nil, T), X) -> U1_ga(T, X, countstack_in_ga(T, X)) countstack_in_ga(push(cons(U, V), T), s(X)) -> U2_ga(U, V, T, X, countstack_in_ga(push(U, push(V, T)), X)) U2_ga(U, V, T, X, countstack_out_ga(push(U, push(V, T)), X)) -> countstack_out_ga(push(cons(U, V), T), s(X)) U1_ga(T, X, countstack_out_ga(T, X)) -> countstack_out_ga(push(nil, T), X) The argument filtering Pi contains the following mapping: countstack_in_ga(x1, x2) = countstack_in_ga(x1) empty = empty countstack_out_ga(x1, x2) = countstack_out_ga(x2) push(x1, x2) = push(x1, x2) nil = nil U1_ga(x1, x2, x3) = U1_ga(x3) cons(x1, x2) = cons(x1, x2) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) s(x1) = s(x1) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: countstack_in_ga(empty, 0) -> countstack_out_ga(empty, 0) countstack_in_ga(push(nil, T), X) -> U1_ga(T, X, countstack_in_ga(T, X)) countstack_in_ga(push(cons(U, V), T), s(X)) -> U2_ga(U, V, T, X, countstack_in_ga(push(U, push(V, T)), X)) U2_ga(U, V, T, X, countstack_out_ga(push(U, push(V, T)), X)) -> countstack_out_ga(push(cons(U, V), T), s(X)) U1_ga(T, X, countstack_out_ga(T, X)) -> countstack_out_ga(push(nil, T), X) The argument filtering Pi contains the following mapping: countstack_in_ga(x1, x2) = countstack_in_ga(x1) empty = empty countstack_out_ga(x1, x2) = countstack_out_ga(x2) push(x1, x2) = push(x1, x2) nil = nil U1_ga(x1, x2, x3) = U1_ga(x3) cons(x1, x2) = cons(x1, x2) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) s(x1) = s(x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: COUNTSTACK_IN_GA(push(nil, T), X) -> U1_GA(T, X, countstack_in_ga(T, X)) COUNTSTACK_IN_GA(push(nil, T), X) -> COUNTSTACK_IN_GA(T, X) COUNTSTACK_IN_GA(push(cons(U, V), T), s(X)) -> U2_GA(U, V, T, X, countstack_in_ga(push(U, push(V, T)), X)) COUNTSTACK_IN_GA(push(cons(U, V), T), s(X)) -> COUNTSTACK_IN_GA(push(U, push(V, T)), X) The TRS R consists of the following rules: countstack_in_ga(empty, 0) -> countstack_out_ga(empty, 0) countstack_in_ga(push(nil, T), X) -> U1_ga(T, X, countstack_in_ga(T, X)) countstack_in_ga(push(cons(U, V), T), s(X)) -> U2_ga(U, V, T, X, countstack_in_ga(push(U, push(V, T)), X)) U2_ga(U, V, T, X, countstack_out_ga(push(U, push(V, T)), X)) -> countstack_out_ga(push(cons(U, V), T), s(X)) U1_ga(T, X, countstack_out_ga(T, X)) -> countstack_out_ga(push(nil, T), X) The argument filtering Pi contains the following mapping: countstack_in_ga(x1, x2) = countstack_in_ga(x1) empty = empty countstack_out_ga(x1, x2) = countstack_out_ga(x2) push(x1, x2) = push(x1, x2) nil = nil U1_ga(x1, x2, x3) = U1_ga(x3) cons(x1, x2) = cons(x1, x2) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) s(x1) = s(x1) COUNTSTACK_IN_GA(x1, x2) = COUNTSTACK_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x3) U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: COUNTSTACK_IN_GA(push(nil, T), X) -> U1_GA(T, X, countstack_in_ga(T, X)) COUNTSTACK_IN_GA(push(nil, T), X) -> COUNTSTACK_IN_GA(T, X) COUNTSTACK_IN_GA(push(cons(U, V), T), s(X)) -> U2_GA(U, V, T, X, countstack_in_ga(push(U, push(V, T)), X)) COUNTSTACK_IN_GA(push(cons(U, V), T), s(X)) -> COUNTSTACK_IN_GA(push(U, push(V, T)), X) The TRS R consists of the following rules: countstack_in_ga(empty, 0) -> countstack_out_ga(empty, 0) countstack_in_ga(push(nil, T), X) -> U1_ga(T, X, countstack_in_ga(T, X)) countstack_in_ga(push(cons(U, V), T), s(X)) -> U2_ga(U, V, T, X, countstack_in_ga(push(U, push(V, T)), X)) U2_ga(U, V, T, X, countstack_out_ga(push(U, push(V, T)), X)) -> countstack_out_ga(push(cons(U, V), T), s(X)) U1_ga(T, X, countstack_out_ga(T, X)) -> countstack_out_ga(push(nil, T), X) The argument filtering Pi contains the following mapping: countstack_in_ga(x1, x2) = countstack_in_ga(x1) empty = empty countstack_out_ga(x1, x2) = countstack_out_ga(x2) push(x1, x2) = push(x1, x2) nil = nil U1_ga(x1, x2, x3) = U1_ga(x3) cons(x1, x2) = cons(x1, x2) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) s(x1) = s(x1) COUNTSTACK_IN_GA(x1, x2) = COUNTSTACK_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x3) U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: COUNTSTACK_IN_GA(push(cons(U, V), T), s(X)) -> COUNTSTACK_IN_GA(push(U, push(V, T)), X) COUNTSTACK_IN_GA(push(nil, T), X) -> COUNTSTACK_IN_GA(T, X) The TRS R consists of the following rules: countstack_in_ga(empty, 0) -> countstack_out_ga(empty, 0) countstack_in_ga(push(nil, T), X) -> U1_ga(T, X, countstack_in_ga(T, X)) countstack_in_ga(push(cons(U, V), T), s(X)) -> U2_ga(U, V, T, X, countstack_in_ga(push(U, push(V, T)), X)) U2_ga(U, V, T, X, countstack_out_ga(push(U, push(V, T)), X)) -> countstack_out_ga(push(cons(U, V), T), s(X)) U1_ga(T, X, countstack_out_ga(T, X)) -> countstack_out_ga(push(nil, T), X) The argument filtering Pi contains the following mapping: countstack_in_ga(x1, x2) = countstack_in_ga(x1) empty = empty countstack_out_ga(x1, x2) = countstack_out_ga(x2) push(x1, x2) = push(x1, x2) nil = nil U1_ga(x1, x2, x3) = U1_ga(x3) cons(x1, x2) = cons(x1, x2) U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) s(x1) = s(x1) COUNTSTACK_IN_GA(x1, x2) = COUNTSTACK_IN_GA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: COUNTSTACK_IN_GA(push(cons(U, V), T), s(X)) -> COUNTSTACK_IN_GA(push(U, push(V, T)), X) COUNTSTACK_IN_GA(push(nil, T), X) -> COUNTSTACK_IN_GA(T, X) R is empty. The argument filtering Pi contains the following mapping: push(x1, x2) = push(x1, x2) nil = nil cons(x1, x2) = cons(x1, x2) s(x1) = s(x1) COUNTSTACK_IN_GA(x1, x2) = COUNTSTACK_IN_GA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: COUNTSTACK_IN_GA(push(cons(U, V), T)) -> COUNTSTACK_IN_GA(push(U, push(V, T))) COUNTSTACK_IN_GA(push(nil, T)) -> COUNTSTACK_IN_GA(T) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: COUNTSTACK_IN_GA(push(cons(U, V), T)) -> COUNTSTACK_IN_GA(push(U, push(V, T))) COUNTSTACK_IN_GA(push(nil, T)) -> COUNTSTACK_IN_GA(T) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(COUNTSTACK_IN_GA(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = 1 + x_1 + 2*x_2 POL(nil) = 0 POL(push(x_1, x_2)) = 1 + 2*x_1 + x_2 ---------------------------------------- (12) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (13) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (14) YES