/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.pl /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.pl # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Left Termination of the query pattern append3(g,g,g,a) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Clauses: append([], L, L). append(.(H, L1), L2, .(H, L3)) :- append(L1, L2, L3). append3(A, B, C, D) :- ','(append(A, B, E), append(E, C, D)). Query: append3(g,g,g,a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: append3_in_4: (b,b,b,f) append_in_3: (b,b,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) append_in_gga([], L, L) -> append_out_gga([], L, L) append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) The argument filtering Pi contains the following mapping: append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) [] = [] append_out_gga(x1, x2, x3) = append_out_gga(x3) .(x1, x2) = .(x1, x2) U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) append_in_gga([], L, L) -> append_out_gga([], L, L) append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) The argument filtering Pi contains the following mapping: append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) [] = [] append_out_gga(x1, x2, x3) = append_out_gga(x3) .(x1, x2) = .(x1, x2) U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: APPEND3_IN_GGGA(A, B, C, D) -> U2_GGGA(A, B, C, D, append_in_gga(A, B, E)) APPEND3_IN_GGGA(A, B, C, D) -> APPEND_IN_GGA(A, B, E) APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3)) APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> U3_GGGA(A, B, C, D, append_in_gga(E, C, D)) U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> APPEND_IN_GGA(E, C, D) The TRS R consists of the following rules: append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) append_in_gga([], L, L) -> append_out_gga([], L, L) append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) The argument filtering Pi contains the following mapping: append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) [] = [] append_out_gga(x1, x2, x3) = append_out_gga(x3) .(x1, x2) = .(x1, x2) U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) APPEND3_IN_GGGA(x1, x2, x3, x4) = APPEND3_IN_GGGA(x1, x2, x3) U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x3, x5) APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) U1_GGA(x1, x2, x3, x4, x5) = U1_GGA(x1, x5) U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND3_IN_GGGA(A, B, C, D) -> U2_GGGA(A, B, C, D, append_in_gga(A, B, E)) APPEND3_IN_GGGA(A, B, C, D) -> APPEND_IN_GGA(A, B, E) APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3)) APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> U3_GGGA(A, B, C, D, append_in_gga(E, C, D)) U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> APPEND_IN_GGA(E, C, D) The TRS R consists of the following rules: append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) append_in_gga([], L, L) -> append_out_gga([], L, L) append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) The argument filtering Pi contains the following mapping: append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) [] = [] append_out_gga(x1, x2, x3) = append_out_gga(x3) .(x1, x2) = .(x1, x2) U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) APPEND3_IN_GGGA(x1, x2, x3, x4) = APPEND3_IN_GGGA(x1, x2, x3) U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x3, x5) APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) U1_GGA(x1, x2, x3, x4, x5) = U1_GGA(x1, x5) U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) The TRS R consists of the following rules: append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) append_in_gga([], L, L) -> append_out_gga([], L, L) append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) The argument filtering Pi contains the following mapping: append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) [] = [] append_out_gga(x1, x2, x3) = append_out_gga(x3) .(x1, x2) = .(x1, x2) U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND_IN_GGA(.(H, L1), L2) -> APPEND_IN_GGA(L1, L2) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPEND_IN_GGA(.(H, L1), L2) -> APPEND_IN_GGA(L1, L2) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (12) YES