/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.pl /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.pl # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Left Termination of the query pattern delmin(a,a,g) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 1 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Clauses: delete(X, tree(X, void, Right), Right). delete(X, tree(X, Left, void), Left). delete(X, tree(X, Left, Right), tree(Y, Left, Right1)) :- delmin(Right, Y, Right1). delete(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), delete(X, Left, Left1)). delete(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), delete(X, Right, Right1)). delmin(tree(Y, void, Right), Y, Right). delmin(tree(X, Left, X1), Y, tree(X, Left1, X2)) :- delmin(Left, Y, Left1). less(0, s(X3)). less(s(X), s(Y)) :- less(X, Y). Query: delmin(a,a,g) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: delmin_in_3: (f,f,b) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: delmin_in_aag(tree(Y, void, Right), Y, Right) -> delmin_out_aag(tree(Y, void, Right), Y, Right) delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1)) U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) -> delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) The argument filtering Pi contains the following mapping: delmin_in_aag(x1, x2, x3) = delmin_in_aag(x3) delmin_out_aag(x1, x2, x3) = delmin_out_aag(x3) tree(x1, x2, x3) = tree(x1, x2, x3) U6_aag(x1, x2, x3, x4, x5, x6, x7) = U6_aag(x1, x5, x6, x7) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: delmin_in_aag(tree(Y, void, Right), Y, Right) -> delmin_out_aag(tree(Y, void, Right), Y, Right) delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1)) U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) -> delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) The argument filtering Pi contains the following mapping: delmin_in_aag(x1, x2, x3) = delmin_in_aag(x3) delmin_out_aag(x1, x2, x3) = delmin_out_aag(x3) tree(x1, x2, x3) = tree(x1, x2, x3) U6_aag(x1, x2, x3, x4, x5, x6, x7) = U6_aag(x1, x5, x6, x7) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> U6_AAG(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1)) DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> DELMIN_IN_AAG(Left, Y, Left1) The TRS R consists of the following rules: delmin_in_aag(tree(Y, void, Right), Y, Right) -> delmin_out_aag(tree(Y, void, Right), Y, Right) delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1)) U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) -> delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) The argument filtering Pi contains the following mapping: delmin_in_aag(x1, x2, x3) = delmin_in_aag(x3) delmin_out_aag(x1, x2, x3) = delmin_out_aag(x3) tree(x1, x2, x3) = tree(x1, x2, x3) U6_aag(x1, x2, x3, x4, x5, x6, x7) = U6_aag(x1, x5, x6, x7) DELMIN_IN_AAG(x1, x2, x3) = DELMIN_IN_AAG(x3) U6_AAG(x1, x2, x3, x4, x5, x6, x7) = U6_AAG(x1, x5, x6, x7) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> U6_AAG(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1)) DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> DELMIN_IN_AAG(Left, Y, Left1) The TRS R consists of the following rules: delmin_in_aag(tree(Y, void, Right), Y, Right) -> delmin_out_aag(tree(Y, void, Right), Y, Right) delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1)) U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) -> delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) The argument filtering Pi contains the following mapping: delmin_in_aag(x1, x2, x3) = delmin_in_aag(x3) delmin_out_aag(x1, x2, x3) = delmin_out_aag(x3) tree(x1, x2, x3) = tree(x1, x2, x3) U6_aag(x1, x2, x3, x4, x5, x6, x7) = U6_aag(x1, x5, x6, x7) DELMIN_IN_AAG(x1, x2, x3) = DELMIN_IN_AAG(x3) U6_AAG(x1, x2, x3, x4, x5, x6, x7) = U6_AAG(x1, x5, x6, x7) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> DELMIN_IN_AAG(Left, Y, Left1) The TRS R consists of the following rules: delmin_in_aag(tree(Y, void, Right), Y, Right) -> delmin_out_aag(tree(Y, void, Right), Y, Right) delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1)) U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) -> delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) The argument filtering Pi contains the following mapping: delmin_in_aag(x1, x2, x3) = delmin_in_aag(x3) delmin_out_aag(x1, x2, x3) = delmin_out_aag(x3) tree(x1, x2, x3) = tree(x1, x2, x3) U6_aag(x1, x2, x3, x4, x5, x6, x7) = U6_aag(x1, x5, x6, x7) DELMIN_IN_AAG(x1, x2, x3) = DELMIN_IN_AAG(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) -> DELMIN_IN_AAG(Left, Y, Left1) R is empty. The argument filtering Pi contains the following mapping: tree(x1, x2, x3) = tree(x1, x2, x3) DELMIN_IN_AAG(x1, x2, x3) = DELMIN_IN_AAG(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: DELMIN_IN_AAG(tree(X, Left1, X2)) -> DELMIN_IN_AAG(Left1) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DELMIN_IN_AAG(tree(X, Left1, X2)) -> DELMIN_IN_AAG(Left1) The graph contains the following edges 1 > 1 ---------------------------------------- (12) YES