/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [EQUIVALENT, 26 ms] (6) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Tup0 = Tup0 ; esEsMyInt :: MyInt -> MyInt -> MyBool; esEsMyInt = primEqInt; flip :: (b -> c -> a) -> c -> b -> a; flip f x y = f y x; fromEnumTup0 :: Tup0 -> MyInt; fromEnumTup0 Tup0 = Main.Pos Main.Zero; msMyInt :: MyInt -> MyInt -> MyInt; msMyInt = primMinusInt; predTup0 :: Tup0 -> Tup0; predTup0 = pt toEnumTup0 (pt (subtractMyInt (Main.Pos (Main.Succ Main.Zero))) fromEnumTup0); primEqInt :: MyInt -> MyInt -> MyBool; primEqInt (Main.Pos (Main.Succ x)) (Main.Pos (Main.Succ y)) = primEqNat x y; primEqInt (Main.Neg (Main.Succ x)) (Main.Neg (Main.Succ y)) = primEqNat x y; primEqInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt vv vw = MyFalse; primEqNat :: Main.Nat -> Main.Nat -> MyBool; primEqNat Main.Zero Main.Zero = MyTrue; primEqNat Main.Zero (Main.Succ y) = MyFalse; primEqNat (Main.Succ x) Main.Zero = MyFalse; primEqNat (Main.Succ x) (Main.Succ y) = primEqNat x y; primMinusInt :: MyInt -> MyInt -> MyInt; primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); pt :: (a -> c) -> (b -> a) -> b -> c; pt f g x = f (g x); subtractMyInt :: MyInt -> MyInt -> MyInt; subtractMyInt = flip msMyInt; toEnum0 MyTrue vx = Tup0; toEnum1 vx = toEnum0 (esEsMyInt vx (Main.Pos Main.Zero)) vx; toEnumTup0 :: MyInt -> Tup0; toEnumTup0 vx = toEnum1 vx; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Tup0 = Tup0 ; esEsMyInt :: MyInt -> MyInt -> MyBool; esEsMyInt = primEqInt; flip :: (c -> a -> b) -> a -> c -> b; flip f x y = f y x; fromEnumTup0 :: Tup0 -> MyInt; fromEnumTup0 Tup0 = Main.Pos Main.Zero; msMyInt :: MyInt -> MyInt -> MyInt; msMyInt = primMinusInt; predTup0 :: Tup0 -> Tup0; predTup0 = pt toEnumTup0 (pt (subtractMyInt (Main.Pos (Main.Succ Main.Zero))) fromEnumTup0); primEqInt :: MyInt -> MyInt -> MyBool; primEqInt (Main.Pos (Main.Succ x)) (Main.Pos (Main.Succ y)) = primEqNat x y; primEqInt (Main.Neg (Main.Succ x)) (Main.Neg (Main.Succ y)) = primEqNat x y; primEqInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt vv vw = MyFalse; primEqNat :: Main.Nat -> Main.Nat -> MyBool; primEqNat Main.Zero Main.Zero = MyTrue; primEqNat Main.Zero (Main.Succ y) = MyFalse; primEqNat (Main.Succ x) Main.Zero = MyFalse; primEqNat (Main.Succ x) (Main.Succ y) = primEqNat x y; primMinusInt :: MyInt -> MyInt -> MyInt; primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); pt :: (b -> c) -> (a -> b) -> a -> c; pt f g x = f (g x); subtractMyInt :: MyInt -> MyInt -> MyInt; subtractMyInt = flip msMyInt; toEnum0 MyTrue vx = Tup0; toEnum1 vx = toEnum0 (esEsMyInt vx (Main.Pos Main.Zero)) vx; toEnumTup0 :: MyInt -> Tup0; toEnumTup0 vx = toEnum1 vx; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Tup0 = Tup0 ; esEsMyInt :: MyInt -> MyInt -> MyBool; esEsMyInt = primEqInt; flip :: (b -> c -> a) -> c -> b -> a; flip f x y = f y x; fromEnumTup0 :: Tup0 -> MyInt; fromEnumTup0 Tup0 = Main.Pos Main.Zero; msMyInt :: MyInt -> MyInt -> MyInt; msMyInt = primMinusInt; predTup0 :: Tup0 -> Tup0; predTup0 = pt toEnumTup0 (pt (subtractMyInt (Main.Pos (Main.Succ Main.Zero))) fromEnumTup0); primEqInt :: MyInt -> MyInt -> MyBool; primEqInt (Main.Pos (Main.Succ x)) (Main.Pos (Main.Succ y)) = primEqNat x y; primEqInt (Main.Neg (Main.Succ x)) (Main.Neg (Main.Succ y)) = primEqNat x y; primEqInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt vv vw = MyFalse; primEqNat :: Main.Nat -> Main.Nat -> MyBool; primEqNat Main.Zero Main.Zero = MyTrue; primEqNat Main.Zero (Main.Succ y) = MyFalse; primEqNat (Main.Succ x) Main.Zero = MyFalse; primEqNat (Main.Succ x) (Main.Succ y) = primEqNat x y; primMinusInt :: MyInt -> MyInt -> MyInt; primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); pt :: (a -> b) -> (c -> a) -> c -> b; pt f g x = f (g x); subtractMyInt :: MyInt -> MyInt -> MyInt; subtractMyInt = flip msMyInt; toEnum0 MyTrue vx = Tup0; toEnum1 vx = toEnum0 (esEsMyInt vx (Main.Pos Main.Zero)) vx; toEnumTup0 :: MyInt -> Tup0; toEnumTup0 vx = toEnum1 vx; } ---------------------------------------- (5) Narrow (EQUIVALENT) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="predTup0",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="predTup0 wu3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 4[label="pt toEnumTup0 (pt (subtractMyInt (Pos (Succ Zero))) fromEnumTup0) wu3",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="toEnumTup0 (pt (subtractMyInt (Pos (Succ Zero))) fromEnumTup0 wu3)",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="toEnum1 (pt (subtractMyInt (Pos (Succ Zero))) fromEnumTup0 wu3)",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="toEnum0 (esEsMyInt (pt (subtractMyInt (Pos (Succ Zero))) fromEnumTup0 wu3) (Pos Zero)) (pt (subtractMyInt (Pos (Succ Zero))) fromEnumTup0 wu3)",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 8[label="toEnum0 (primEqInt (pt (subtractMyInt (Pos (Succ Zero))) fromEnumTup0 wu3) (Pos Zero)) (pt (subtractMyInt (Pos (Succ Zero))) fromEnumTup0 wu3)",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="toEnum0 (primEqInt (subtractMyInt (Pos (Succ Zero)) (fromEnumTup0 wu3)) (Pos Zero)) (subtractMyInt (Pos (Succ Zero)) (fromEnumTup0 wu3))",fontsize=16,color="black",shape="box"];9 -> 10[label="",style="solid", color="black", weight=3]; 10[label="toEnum0 (primEqInt (flip msMyInt (Pos (Succ Zero)) (fromEnumTup0 wu3)) (Pos Zero)) (flip msMyInt (Pos (Succ Zero)) (fromEnumTup0 wu3))",fontsize=16,color="black",shape="box"];10 -> 11[label="",style="solid", color="black", weight=3]; 11[label="toEnum0 (primEqInt (msMyInt (fromEnumTup0 wu3) (Pos (Succ Zero))) (Pos Zero)) (msMyInt (fromEnumTup0 wu3) (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];11 -> 12[label="",style="solid", color="black", weight=3]; 12[label="toEnum0 (primEqInt (primMinusInt (fromEnumTup0 wu3) (Pos (Succ Zero))) (Pos Zero)) (primMinusInt (fromEnumTup0 wu3) (Pos (Succ Zero)))",fontsize=16,color="burlywood",shape="box"];19[label="wu3/Tup0",fontsize=10,color="white",style="solid",shape="box"];12 -> 19[label="",style="solid", color="burlywood", weight=9]; 19 -> 13[label="",style="solid", color="burlywood", weight=3]; 13[label="toEnum0 (primEqInt (primMinusInt (fromEnumTup0 Tup0) (Pos (Succ Zero))) (Pos Zero)) (primMinusInt (fromEnumTup0 Tup0) (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];13 -> 14[label="",style="solid", color="black", weight=3]; 14[label="toEnum0 (primEqInt (primMinusInt (Pos Zero) (Pos (Succ Zero))) (Pos Zero)) (primMinusInt (Pos Zero) (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];14 -> 15[label="",style="solid", color="black", weight=3]; 15[label="toEnum0 (primEqInt (primMinusNat Zero (Succ Zero)) (Pos Zero)) (primMinusNat Zero (Succ Zero))",fontsize=16,color="black",shape="box"];15 -> 16[label="",style="solid", color="black", weight=3]; 16[label="toEnum0 (primEqInt (Neg (Succ Zero)) (Pos Zero)) (Neg (Succ Zero))",fontsize=16,color="black",shape="box"];16 -> 17[label="",style="solid", color="black", weight=3]; 17[label="toEnum0 MyFalse (Neg (Succ Zero))",fontsize=16,color="black",shape="box"];17 -> 18[label="",style="solid", color="black", weight=3]; 18[label="error []",fontsize=16,color="red",shape="box"];} ---------------------------------------- (6) YES