/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) AND (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES (13) QDP (14) QDPSizeChangeProof [EQUIVALENT, 0 ms] (15) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data Tup0 = Tup0 ; foldr :: (a -> b -> b) -> b -> List a -> b; foldr f z Nil = z; foldr f z (Cons x xs) = f x (foldr f z xs); gtGt0 q vv = q; gtGtEsNil :: List a -> (a -> List b) -> List b; gtGtEsNil (Cons x xs) f = psPs (f x) (gtGtEsNil xs f); gtGtEsNil Nil f = Nil; gtGtNil :: List a -> List b -> List b; gtGtNil p q = gtGtEsNil p (gtGt0 q); psPs :: List a -> List a -> List a; psPs Nil ys = ys; psPs (Cons x xs) ys = Cons x (psPs xs ys); returnNil :: a -> List a; returnNil x = Cons x Nil; sequence_Nil :: List (List a) -> List Tup0; sequence_Nil = foldr gtGtNil (returnNil Tup0); } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data Tup0 = Tup0 ; foldr :: (a -> b -> b) -> b -> List a -> b; foldr f z Nil = z; foldr f z (Cons x xs) = f x (foldr f z xs); gtGt0 q vv = q; gtGtEsNil :: List a -> (a -> List b) -> List b; gtGtEsNil (Cons x xs) f = psPs (f x) (gtGtEsNil xs f); gtGtEsNil Nil f = Nil; gtGtNil :: List b -> List a -> List a; gtGtNil p q = gtGtEsNil p (gtGt0 q); psPs :: List a -> List a -> List a; psPs Nil ys = ys; psPs (Cons x xs) ys = Cons x (psPs xs ys); returnNil :: a -> List a; returnNil x = Cons x Nil; sequence_Nil :: List (List a) -> List Tup0; sequence_Nil = foldr gtGtNil (returnNil Tup0); } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data Tup0 = Tup0 ; foldr :: (a -> b -> b) -> b -> List a -> b; foldr f z Nil = z; foldr f z (Cons x xs) = f x (foldr f z xs); gtGt0 q vv = q; gtGtEsNil :: List b -> (b -> List a) -> List a; gtGtEsNil (Cons x xs) f = psPs (f x) (gtGtEsNil xs f); gtGtEsNil Nil f = Nil; gtGtNil :: List b -> List a -> List a; gtGtNil p q = gtGtEsNil p (gtGt0 q); psPs :: List a -> List a -> List a; psPs Nil ys = ys; psPs (Cons x xs) ys = Cons x (psPs xs ys); returnNil :: a -> List a; returnNil x = Cons x Nil; sequence_Nil :: List (List a) -> List Tup0; sequence_Nil = foldr gtGtNil (returnNil Tup0); } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="sequence_Nil",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="sequence_Nil vy3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 4[label="foldr gtGtNil (returnNil Tup0) vy3",fontsize=16,color="burlywood",shape="triangle"];28[label="vy3/Cons vy30 vy31",fontsize=10,color="white",style="solid",shape="box"];4 -> 28[label="",style="solid", color="burlywood", weight=9]; 28 -> 5[label="",style="solid", color="burlywood", weight=3]; 29[label="vy3/Nil",fontsize=10,color="white",style="solid",shape="box"];4 -> 29[label="",style="solid", color="burlywood", weight=9]; 29 -> 6[label="",style="solid", color="burlywood", weight=3]; 5[label="foldr gtGtNil (returnNil Tup0) (Cons vy30 vy31)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="foldr gtGtNil (returnNil Tup0) Nil",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7 -> 9[label="",style="dashed", color="red", weight=0]; 7[label="gtGtNil vy30 (foldr gtGtNil (returnNil Tup0) vy31)",fontsize=16,color="magenta"];7 -> 10[label="",style="dashed", color="magenta", weight=3]; 8[label="returnNil Tup0",fontsize=16,color="black",shape="box"];8 -> 11[label="",style="solid", color="black", weight=3]; 10 -> 4[label="",style="dashed", color="red", weight=0]; 10[label="foldr gtGtNil (returnNil Tup0) vy31",fontsize=16,color="magenta"];10 -> 12[label="",style="dashed", color="magenta", weight=3]; 9[label="gtGtNil vy30 vy4",fontsize=16,color="black",shape="triangle"];9 -> 13[label="",style="solid", color="black", weight=3]; 11[label="Cons Tup0 Nil",fontsize=16,color="green",shape="box"];12[label="vy31",fontsize=16,color="green",shape="box"];13[label="gtGtEsNil vy30 (gtGt0 vy4)",fontsize=16,color="burlywood",shape="triangle"];30[label="vy30/Cons vy300 vy301",fontsize=10,color="white",style="solid",shape="box"];13 -> 30[label="",style="solid", color="burlywood", weight=9]; 30 -> 14[label="",style="solid", color="burlywood", weight=3]; 31[label="vy30/Nil",fontsize=10,color="white",style="solid",shape="box"];13 -> 31[label="",style="solid", color="burlywood", weight=9]; 31 -> 15[label="",style="solid", color="burlywood", weight=3]; 14[label="gtGtEsNil (Cons vy300 vy301) (gtGt0 vy4)",fontsize=16,color="black",shape="box"];14 -> 16[label="",style="solid", color="black", weight=3]; 15[label="gtGtEsNil Nil (gtGt0 vy4)",fontsize=16,color="black",shape="box"];15 -> 17[label="",style="solid", color="black", weight=3]; 16 -> 18[label="",style="dashed", color="red", weight=0]; 16[label="psPs (gtGt0 vy4 vy300) (gtGtEsNil vy301 (gtGt0 vy4))",fontsize=16,color="magenta"];16 -> 19[label="",style="dashed", color="magenta", weight=3]; 17[label="Nil",fontsize=16,color="green",shape="box"];19 -> 13[label="",style="dashed", color="red", weight=0]; 19[label="gtGtEsNil vy301 (gtGt0 vy4)",fontsize=16,color="magenta"];19 -> 20[label="",style="dashed", color="magenta", weight=3]; 18[label="psPs (gtGt0 vy4 vy300) vy5",fontsize=16,color="black",shape="triangle"];18 -> 21[label="",style="solid", color="black", weight=3]; 20[label="vy301",fontsize=16,color="green",shape="box"];21[label="psPs vy4 vy5",fontsize=16,color="burlywood",shape="triangle"];32[label="vy4/Cons vy40 vy41",fontsize=10,color="white",style="solid",shape="box"];21 -> 32[label="",style="solid", color="burlywood", weight=9]; 32 -> 22[label="",style="solid", color="burlywood", weight=3]; 33[label="vy4/Nil",fontsize=10,color="white",style="solid",shape="box"];21 -> 33[label="",style="solid", color="burlywood", weight=9]; 33 -> 23[label="",style="solid", color="burlywood", weight=3]; 22[label="psPs (Cons vy40 vy41) vy5",fontsize=16,color="black",shape="box"];22 -> 24[label="",style="solid", color="black", weight=3]; 23[label="psPs Nil vy5",fontsize=16,color="black",shape="box"];23 -> 25[label="",style="solid", color="black", weight=3]; 24[label="Cons vy40 (psPs vy41 vy5)",fontsize=16,color="green",shape="box"];24 -> 26[label="",style="dashed", color="green", weight=3]; 25[label="vy5",fontsize=16,color="green",shape="box"];26 -> 21[label="",style="dashed", color="red", weight=0]; 26[label="psPs vy41 vy5",fontsize=16,color="magenta"];26 -> 27[label="",style="dashed", color="magenta", weight=3]; 27[label="vy41",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldr(Cons(vy30, vy31), h) -> new_foldr(vy31, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldr(Cons(vy30, vy31), h) -> new_foldr(vy31, h) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(Cons(vy40, vy41), vy5) -> new_psPs(vy41, vy5) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(Cons(vy40, vy41), vy5) -> new_psPs(vy41, vy5) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (12) YES ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEsNil(Cons(vy300, vy301), vy4, h) -> new_gtGtEsNil(vy301, vy4, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEsNil(Cons(vy300, vy301), vy4, h) -> new_gtGtEsNil(vy301, vy4, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (15) YES