/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) MRRProof [EQUIVALENT, 98 ms] (11) QDP (12) TransformationProof [EQUIVALENT, 0 ms] (13) QDP (14) QReductionProof [EQUIVALENT, 0 ms] (15) QDP (16) TransformationProof [EQUIVALENT, 0 ms] (17) QDP (18) TransformationProof [EQUIVALENT, 0 ms] (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) TransformationProof [EQUIVALENT, 0 ms] (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QReductionProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPOrderProof [EQUIVALENT, 32 ms] (31) QDP (32) TransformationProof [EQUIVALENT, 0 ms] (33) QDP (34) DependencyGraphProof [EQUIVALENT, 0 ms] (35) TRUE (36) QDP (37) QDPPairToRuleProof [EQUIVALENT, 0 ms] (38) AND (39) QDP (40) TransformationProof [EQUIVALENT, 0 ms] (41) QDP (42) DependencyGraphProof [EQUIVALENT, 0 ms] (43) QDP (44) UsableRulesProof [EQUIVALENT, 0 ms] (45) QDP (46) QReductionProof [EQUIVALENT, 0 ms] (47) QDP (48) InductionCalculusProof [EQUIVALENT, 0 ms] (49) QDP (50) NonInfProof [EQUIVALENT, 193 ms] (51) QDP (52) DependencyGraphProof [EQUIVALENT, 0 ms] (53) TRUE (54) QDP (55) QDPSizeChangeProof [EQUIVALENT, 0 ms] (56) YES (57) QDP (58) QDPSizeChangeProof [EQUIVALENT, 0 ms] (59) YES (60) QDP (61) QDPSizeChangeProof [EQUIVALENT, 0 ms] (62) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ordering = LT | EQ | GT ; data Tup2 a b = Tup2 a b ; data Main.WHNF a = WHNF a ; compareMyInt :: MyInt -> MyInt -> Ordering; compareMyInt = primCmpInt; dsEm :: (b -> a) -> b -> a; dsEm f x = Main.seq x (f x); enforceWHNF :: Main.WHNF a -> b -> b; enforceWHNF (Main.WHNF x) y = y; enumFromToMyInt :: MyInt -> MyInt -> List MyInt; enumFromToMyInt = numericEnumFromTo; esEsOrdering :: Ordering -> Ordering -> MyBool; esEsOrdering LT LT = MyTrue; esEsOrdering LT EQ = MyFalse; esEsOrdering LT GT = MyFalse; esEsOrdering EQ LT = MyFalse; esEsOrdering EQ EQ = MyTrue; esEsOrdering EQ GT = MyFalse; esEsOrdering GT LT = MyFalse; esEsOrdering GT EQ = MyFalse; esEsOrdering GT GT = MyTrue; flip :: (b -> c -> a) -> c -> b -> a; flip f x y = f y x; fromIntMyInt :: MyInt -> MyInt; fromIntMyInt x = x; fsEsOrdering :: Ordering -> Ordering -> MyBool; fsEsOrdering x y = not (esEsOrdering x y); ltEsMyInt :: MyInt -> MyInt -> MyBool; ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; not :: MyBool -> MyBool; not MyTrue = MyFalse; not MyFalse = MyTrue; numericEnumFrom n = Cons n (dsEm numericEnumFrom (psMyInt n (fromIntMyInt (Main.Pos (Main.Succ Main.Zero))))); numericEnumFromTo n m = takeWhile (flip ltEsMyInt m) (numericEnumFrom n); otherwise :: MyBool; otherwise = MyTrue; primCmpInt :: MyInt -> MyInt -> Ordering; primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; primCmpInt (Main.Pos x) (Main.Neg y) = GT; primCmpInt (Main.Neg x) (Main.Pos y) = LT; primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; primCmpNat :: Main.Nat -> Main.Nat -> Ordering; primCmpNat Main.Zero Main.Zero = EQ; primCmpNat Main.Zero (Main.Succ y) = LT; primCmpNat (Main.Succ x) Main.Zero = GT; primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusInt :: MyInt -> MyInt -> MyInt; primPlusInt (Main.Pos x) (Main.Neg y) = primMinusNat x y; primPlusInt (Main.Neg x) (Main.Pos y) = primMinusNat y x; primPlusInt (Main.Neg x) (Main.Neg y) = Main.Neg (primPlusNat x y); primPlusInt (Main.Pos x) (Main.Pos y) = Main.Pos (primPlusNat x y); primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); psMyInt :: MyInt -> MyInt -> MyInt; psMyInt = primPlusInt; rangeMyInt :: Tup2 MyInt MyInt -> List MyInt; rangeMyInt (Tup2 m n) = enumFromToMyInt m n; seq :: a -> b -> b; seq x y = Main.enforceWHNF (Main.WHNF x) y; takeWhile :: (a -> MyBool) -> List a -> List a; takeWhile p Nil = takeWhile3 p Nil; takeWhile p (Cons x xs) = takeWhile2 p (Cons x xs); takeWhile0 p x xs MyTrue = Nil; takeWhile1 p x xs MyTrue = Cons x (takeWhile p xs); takeWhile1 p x xs MyFalse = takeWhile0 p x xs otherwise; takeWhile2 p (Cons x xs) = takeWhile1 p x xs (p x); takeWhile3 p Nil = Nil; takeWhile3 vx vy = takeWhile2 vx vy; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ordering = LT | EQ | GT ; data Tup2 b a = Tup2 b a ; data Main.WHNF a = WHNF a ; compareMyInt :: MyInt -> MyInt -> Ordering; compareMyInt = primCmpInt; dsEm :: (b -> a) -> b -> a; dsEm f x = Main.seq x (f x); enforceWHNF :: Main.WHNF b -> a -> a; enforceWHNF (Main.WHNF x) y = y; enumFromToMyInt :: MyInt -> MyInt -> List MyInt; enumFromToMyInt = numericEnumFromTo; esEsOrdering :: Ordering -> Ordering -> MyBool; esEsOrdering LT LT = MyTrue; esEsOrdering LT EQ = MyFalse; esEsOrdering LT GT = MyFalse; esEsOrdering EQ LT = MyFalse; esEsOrdering EQ EQ = MyTrue; esEsOrdering EQ GT = MyFalse; esEsOrdering GT LT = MyFalse; esEsOrdering GT EQ = MyFalse; esEsOrdering GT GT = MyTrue; flip :: (b -> c -> a) -> c -> b -> a; flip f x y = f y x; fromIntMyInt :: MyInt -> MyInt; fromIntMyInt x = x; fsEsOrdering :: Ordering -> Ordering -> MyBool; fsEsOrdering x y = not (esEsOrdering x y); ltEsMyInt :: MyInt -> MyInt -> MyBool; ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; not :: MyBool -> MyBool; not MyTrue = MyFalse; not MyFalse = MyTrue; numericEnumFrom n = Cons n (dsEm numericEnumFrom (psMyInt n (fromIntMyInt (Main.Pos (Main.Succ Main.Zero))))); numericEnumFromTo n m = takeWhile (flip ltEsMyInt m) (numericEnumFrom n); otherwise :: MyBool; otherwise = MyTrue; primCmpInt :: MyInt -> MyInt -> Ordering; primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; primCmpInt (Main.Pos x) (Main.Neg y) = GT; primCmpInt (Main.Neg x) (Main.Pos y) = LT; primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; primCmpNat :: Main.Nat -> Main.Nat -> Ordering; primCmpNat Main.Zero Main.Zero = EQ; primCmpNat Main.Zero (Main.Succ y) = LT; primCmpNat (Main.Succ x) Main.Zero = GT; primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusInt :: MyInt -> MyInt -> MyInt; primPlusInt (Main.Pos x) (Main.Neg y) = primMinusNat x y; primPlusInt (Main.Neg x) (Main.Pos y) = primMinusNat y x; primPlusInt (Main.Neg x) (Main.Neg y) = Main.Neg (primPlusNat x y); primPlusInt (Main.Pos x) (Main.Pos y) = Main.Pos (primPlusNat x y); primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); psMyInt :: MyInt -> MyInt -> MyInt; psMyInt = primPlusInt; rangeMyInt :: Tup2 MyInt MyInt -> List MyInt; rangeMyInt (Tup2 m n) = enumFromToMyInt m n; seq :: a -> b -> b; seq x y = Main.enforceWHNF (Main.WHNF x) y; takeWhile :: (a -> MyBool) -> List a -> List a; takeWhile p Nil = takeWhile3 p Nil; takeWhile p (Cons x xs) = takeWhile2 p (Cons x xs); takeWhile0 p x xs MyTrue = Nil; takeWhile1 p x xs MyTrue = Cons x (takeWhile p xs); takeWhile1 p x xs MyFalse = takeWhile0 p x xs otherwise; takeWhile2 p (Cons x xs) = takeWhile1 p x xs (p x); takeWhile3 p Nil = Nil; takeWhile3 vx vy = takeWhile2 vx vy; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ordering = LT | EQ | GT ; data Tup2 b a = Tup2 b a ; data Main.WHNF a = WHNF a ; compareMyInt :: MyInt -> MyInt -> Ordering; compareMyInt = primCmpInt; dsEm :: (a -> b) -> a -> b; dsEm f x = Main.seq x (f x); enforceWHNF :: Main.WHNF b -> a -> a; enforceWHNF (Main.WHNF x) y = y; enumFromToMyInt :: MyInt -> MyInt -> List MyInt; enumFromToMyInt = numericEnumFromTo; esEsOrdering :: Ordering -> Ordering -> MyBool; esEsOrdering LT LT = MyTrue; esEsOrdering LT EQ = MyFalse; esEsOrdering LT GT = MyFalse; esEsOrdering EQ LT = MyFalse; esEsOrdering EQ EQ = MyTrue; esEsOrdering EQ GT = MyFalse; esEsOrdering GT LT = MyFalse; esEsOrdering GT EQ = MyFalse; esEsOrdering GT GT = MyTrue; flip :: (b -> a -> c) -> a -> b -> c; flip f x y = f y x; fromIntMyInt :: MyInt -> MyInt; fromIntMyInt x = x; fsEsOrdering :: Ordering -> Ordering -> MyBool; fsEsOrdering x y = not (esEsOrdering x y); ltEsMyInt :: MyInt -> MyInt -> MyBool; ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; not :: MyBool -> MyBool; not MyTrue = MyFalse; not MyFalse = MyTrue; numericEnumFrom n = Cons n (dsEm numericEnumFrom (psMyInt n (fromIntMyInt (Main.Pos (Main.Succ Main.Zero))))); numericEnumFromTo n m = takeWhile (flip ltEsMyInt m) (numericEnumFrom n); otherwise :: MyBool; otherwise = MyTrue; primCmpInt :: MyInt -> MyInt -> Ordering; primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; primCmpInt (Main.Pos x) (Main.Neg y) = GT; primCmpInt (Main.Neg x) (Main.Pos y) = LT; primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; primCmpNat :: Main.Nat -> Main.Nat -> Ordering; primCmpNat Main.Zero Main.Zero = EQ; primCmpNat Main.Zero (Main.Succ y) = LT; primCmpNat (Main.Succ x) Main.Zero = GT; primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusInt :: MyInt -> MyInt -> MyInt; primPlusInt (Main.Pos x) (Main.Neg y) = primMinusNat x y; primPlusInt (Main.Neg x) (Main.Pos y) = primMinusNat y x; primPlusInt (Main.Neg x) (Main.Neg y) = Main.Neg (primPlusNat x y); primPlusInt (Main.Pos x) (Main.Pos y) = Main.Pos (primPlusNat x y); primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); psMyInt :: MyInt -> MyInt -> MyInt; psMyInt = primPlusInt; rangeMyInt :: Tup2 MyInt MyInt -> List MyInt; rangeMyInt (Tup2 m n) = enumFromToMyInt m n; seq :: a -> b -> b; seq x y = Main.enforceWHNF (Main.WHNF x) y; takeWhile :: (a -> MyBool) -> List a -> List a; takeWhile p Nil = takeWhile3 p Nil; takeWhile p (Cons x xs) = takeWhile2 p (Cons x xs); takeWhile0 p x xs MyTrue = Nil; takeWhile1 p x xs MyTrue = Cons x (takeWhile p xs); takeWhile1 p x xs MyFalse = takeWhile0 p x xs otherwise; takeWhile2 p (Cons x xs) = takeWhile1 p x xs (p x); takeWhile3 p Nil = Nil; takeWhile3 vx vy = takeWhile2 vx vy; } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="rangeMyInt",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="rangeMyInt vz3",fontsize=16,color="burlywood",shape="triangle"];811[label="vz3/Tup2 vz30 vz31",fontsize=10,color="white",style="solid",shape="box"];3 -> 811[label="",style="solid", color="burlywood", weight=9]; 811 -> 4[label="",style="solid", color="burlywood", weight=3]; 4[label="rangeMyInt (Tup2 vz30 vz31)",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="enumFromToMyInt vz30 vz31",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="numericEnumFromTo vz30 vz31",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="takeWhile (flip ltEsMyInt vz31) (numericEnumFrom vz30)",fontsize=16,color="black",shape="triangle"];7 -> 8[label="",style="solid", color="black", weight=3]; 8[label="takeWhile (flip ltEsMyInt vz31) (Cons vz30 (dsEm numericEnumFrom (psMyInt vz30 (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="takeWhile2 (flip ltEsMyInt vz31) (Cons vz30 (dsEm numericEnumFrom (psMyInt vz30 (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];9 -> 10[label="",style="solid", color="black", weight=3]; 10[label="takeWhile1 (flip ltEsMyInt vz31) vz30 (dsEm numericEnumFrom (psMyInt vz30 (fromIntMyInt (Pos (Succ Zero))))) (flip ltEsMyInt vz31 vz30)",fontsize=16,color="black",shape="box"];10 -> 11[label="",style="solid", color="black", weight=3]; 11[label="takeWhile1 (flip ltEsMyInt vz31) vz30 (dsEm numericEnumFrom (psMyInt vz30 (fromIntMyInt (Pos (Succ Zero))))) (ltEsMyInt vz30 vz31)",fontsize=16,color="black",shape="box"];11 -> 12[label="",style="solid", color="black", weight=3]; 12[label="takeWhile1 (flip ltEsMyInt vz31) vz30 (dsEm numericEnumFrom (psMyInt vz30 (fromIntMyInt (Pos (Succ Zero))))) (fsEsOrdering (compareMyInt vz30 vz31) GT)",fontsize=16,color="black",shape="box"];12 -> 13[label="",style="solid", color="black", weight=3]; 13[label="takeWhile1 (flip ltEsMyInt vz31) vz30 (dsEm numericEnumFrom (psMyInt vz30 (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (compareMyInt vz30 vz31) GT))",fontsize=16,color="black",shape="box"];13 -> 14[label="",style="solid", color="black", weight=3]; 14[label="takeWhile1 (flip ltEsMyInt vz31) vz30 (dsEm numericEnumFrom (psMyInt vz30 (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt vz30 vz31) GT))",fontsize=16,color="burlywood",shape="box"];812[label="vz30/Pos vz300",fontsize=10,color="white",style="solid",shape="box"];14 -> 812[label="",style="solid", color="burlywood", weight=9]; 812 -> 15[label="",style="solid", color="burlywood", weight=3]; 813[label="vz30/Neg vz300",fontsize=10,color="white",style="solid",shape="box"];14 -> 813[label="",style="solid", color="burlywood", weight=9]; 813 -> 16[label="",style="solid", color="burlywood", weight=3]; 15[label="takeWhile1 (flip ltEsMyInt vz31) (Pos vz300) (dsEm numericEnumFrom (psMyInt (Pos vz300) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos vz300) vz31) GT))",fontsize=16,color="burlywood",shape="box"];814[label="vz300/Succ vz3000",fontsize=10,color="white",style="solid",shape="box"];15 -> 814[label="",style="solid", color="burlywood", weight=9]; 814 -> 17[label="",style="solid", color="burlywood", weight=3]; 815[label="vz300/Zero",fontsize=10,color="white",style="solid",shape="box"];15 -> 815[label="",style="solid", color="burlywood", weight=9]; 815 -> 18[label="",style="solid", color="burlywood", weight=3]; 16[label="takeWhile1 (flip ltEsMyInt vz31) (Neg vz300) (dsEm numericEnumFrom (psMyInt (Neg vz300) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg vz300) vz31) GT))",fontsize=16,color="burlywood",shape="box"];816[label="vz300/Succ vz3000",fontsize=10,color="white",style="solid",shape="box"];16 -> 816[label="",style="solid", color="burlywood", weight=9]; 816 -> 19[label="",style="solid", color="burlywood", weight=3]; 817[label="vz300/Zero",fontsize=10,color="white",style="solid",shape="box"];16 -> 817[label="",style="solid", color="burlywood", weight=9]; 817 -> 20[label="",style="solid", color="burlywood", weight=3]; 17[label="takeWhile1 (flip ltEsMyInt vz31) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos (Succ vz3000)) vz31) GT))",fontsize=16,color="burlywood",shape="box"];818[label="vz31/Pos vz310",fontsize=10,color="white",style="solid",shape="box"];17 -> 818[label="",style="solid", color="burlywood", weight=9]; 818 -> 21[label="",style="solid", color="burlywood", weight=3]; 819[label="vz31/Neg vz310",fontsize=10,color="white",style="solid",shape="box"];17 -> 819[label="",style="solid", color="burlywood", weight=9]; 819 -> 22[label="",style="solid", color="burlywood", weight=3]; 18[label="takeWhile1 (flip ltEsMyInt vz31) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos Zero) vz31) GT))",fontsize=16,color="burlywood",shape="box"];820[label="vz31/Pos vz310",fontsize=10,color="white",style="solid",shape="box"];18 -> 820[label="",style="solid", color="burlywood", weight=9]; 820 -> 23[label="",style="solid", color="burlywood", weight=3]; 821[label="vz31/Neg vz310",fontsize=10,color="white",style="solid",shape="box"];18 -> 821[label="",style="solid", color="burlywood", weight=9]; 821 -> 24[label="",style="solid", color="burlywood", weight=3]; 19[label="takeWhile1 (flip ltEsMyInt vz31) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg (Succ vz3000)) vz31) GT))",fontsize=16,color="burlywood",shape="box"];822[label="vz31/Pos vz310",fontsize=10,color="white",style="solid",shape="box"];19 -> 822[label="",style="solid", color="burlywood", weight=9]; 822 -> 25[label="",style="solid", color="burlywood", weight=3]; 823[label="vz31/Neg vz310",fontsize=10,color="white",style="solid",shape="box"];19 -> 823[label="",style="solid", color="burlywood", weight=9]; 823 -> 26[label="",style="solid", color="burlywood", weight=3]; 20[label="takeWhile1 (flip ltEsMyInt vz31) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg Zero) vz31) GT))",fontsize=16,color="burlywood",shape="box"];824[label="vz31/Pos vz310",fontsize=10,color="white",style="solid",shape="box"];20 -> 824[label="",style="solid", color="burlywood", weight=9]; 824 -> 27[label="",style="solid", color="burlywood", weight=3]; 825[label="vz31/Neg vz310",fontsize=10,color="white",style="solid",shape="box"];20 -> 825[label="",style="solid", color="burlywood", weight=9]; 825 -> 28[label="",style="solid", color="burlywood", weight=3]; 21[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos (Succ vz3000)) (Pos vz310)) GT))",fontsize=16,color="black",shape="box"];21 -> 29[label="",style="solid", color="black", weight=3]; 22[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos (Succ vz3000)) (Neg vz310)) GT))",fontsize=16,color="black",shape="box"];22 -> 30[label="",style="solid", color="black", weight=3]; 23[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos Zero) (Pos vz310)) GT))",fontsize=16,color="burlywood",shape="box"];826[label="vz310/Succ vz3100",fontsize=10,color="white",style="solid",shape="box"];23 -> 826[label="",style="solid", color="burlywood", weight=9]; 826 -> 31[label="",style="solid", color="burlywood", weight=3]; 827[label="vz310/Zero",fontsize=10,color="white",style="solid",shape="box"];23 -> 827[label="",style="solid", color="burlywood", weight=9]; 827 -> 32[label="",style="solid", color="burlywood", weight=3]; 24[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos Zero) (Neg vz310)) GT))",fontsize=16,color="burlywood",shape="box"];828[label="vz310/Succ vz3100",fontsize=10,color="white",style="solid",shape="box"];24 -> 828[label="",style="solid", color="burlywood", weight=9]; 828 -> 33[label="",style="solid", color="burlywood", weight=3]; 829[label="vz310/Zero",fontsize=10,color="white",style="solid",shape="box"];24 -> 829[label="",style="solid", color="burlywood", weight=9]; 829 -> 34[label="",style="solid", color="burlywood", weight=3]; 25[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg (Succ vz3000)) (Pos vz310)) GT))",fontsize=16,color="black",shape="box"];25 -> 35[label="",style="solid", color="black", weight=3]; 26[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg (Succ vz3000)) (Neg vz310)) GT))",fontsize=16,color="black",shape="box"];26 -> 36[label="",style="solid", color="black", weight=3]; 27[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg Zero) (Pos vz310)) GT))",fontsize=16,color="burlywood",shape="box"];830[label="vz310/Succ vz3100",fontsize=10,color="white",style="solid",shape="box"];27 -> 830[label="",style="solid", color="burlywood", weight=9]; 830 -> 37[label="",style="solid", color="burlywood", weight=3]; 831[label="vz310/Zero",fontsize=10,color="white",style="solid",shape="box"];27 -> 831[label="",style="solid", color="burlywood", weight=9]; 831 -> 38[label="",style="solid", color="burlywood", weight=3]; 28[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg Zero) (Neg vz310)) GT))",fontsize=16,color="burlywood",shape="box"];832[label="vz310/Succ vz3100",fontsize=10,color="white",style="solid",shape="box"];28 -> 832[label="",style="solid", color="burlywood", weight=9]; 832 -> 39[label="",style="solid", color="burlywood", weight=3]; 833[label="vz310/Zero",fontsize=10,color="white",style="solid",shape="box"];28 -> 833[label="",style="solid", color="burlywood", weight=9]; 833 -> 40[label="",style="solid", color="burlywood", weight=3]; 29[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz3000) vz310) GT))",fontsize=16,color="burlywood",shape="box"];834[label="vz310/Succ vz3100",fontsize=10,color="white",style="solid",shape="box"];29 -> 834[label="",style="solid", color="burlywood", weight=9]; 834 -> 41[label="",style="solid", color="burlywood", weight=3]; 835[label="vz310/Zero",fontsize=10,color="white",style="solid",shape="box"];29 -> 835[label="",style="solid", color="burlywood", weight=9]; 835 -> 42[label="",style="solid", color="burlywood", weight=3]; 30[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];30 -> 43[label="",style="solid", color="black", weight=3]; 31[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos Zero) (Pos (Succ vz3100))) GT))",fontsize=16,color="black",shape="box"];31 -> 44[label="",style="solid", color="black", weight=3]; 32[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos Zero) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];32 -> 45[label="",style="solid", color="black", weight=3]; 33[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos Zero) (Neg (Succ vz3100))) GT))",fontsize=16,color="black",shape="box"];33 -> 46[label="",style="solid", color="black", weight=3]; 34[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Pos Zero) (Neg Zero)) GT))",fontsize=16,color="black",shape="box"];34 -> 47[label="",style="solid", color="black", weight=3]; 35[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];35 -> 48[label="",style="solid", color="black", weight=3]; 36[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat vz310 (Succ vz3000)) GT))",fontsize=16,color="burlywood",shape="box"];836[label="vz310/Succ vz3100",fontsize=10,color="white",style="solid",shape="box"];36 -> 836[label="",style="solid", color="burlywood", weight=9]; 836 -> 49[label="",style="solid", color="burlywood", weight=3]; 837[label="vz310/Zero",fontsize=10,color="white",style="solid",shape="box"];36 -> 837[label="",style="solid", color="burlywood", weight=9]; 837 -> 50[label="",style="solid", color="burlywood", weight=3]; 37[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg Zero) (Pos (Succ vz3100))) GT))",fontsize=16,color="black",shape="box"];37 -> 51[label="",style="solid", color="black", weight=3]; 38[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg Zero) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];38 -> 52[label="",style="solid", color="black", weight=3]; 39[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg Zero) (Neg (Succ vz3100))) GT))",fontsize=16,color="black",shape="box"];39 -> 53[label="",style="solid", color="black", weight=3]; 40[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpInt (Neg Zero) (Neg Zero)) GT))",fontsize=16,color="black",shape="box"];40 -> 54[label="",style="solid", color="black", weight=3]; 41[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz3000) (Succ vz3100)) GT))",fontsize=16,color="black",shape="box"];41 -> 55[label="",style="solid", color="black", weight=3]; 42[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz3000) Zero) GT))",fontsize=16,color="black",shape="box"];42 -> 56[label="",style="solid", color="black", weight=3]; 43[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not MyTrue)",fontsize=16,color="black",shape="box"];43 -> 57[label="",style="solid", color="black", weight=3]; 44[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat Zero (Succ vz3100)) GT))",fontsize=16,color="black",shape="box"];44 -> 58[label="",style="solid", color="black", weight=3]; 45[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];45 -> 59[label="",style="solid", color="black", weight=3]; 46[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];46 -> 60[label="",style="solid", color="black", weight=3]; 47[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];47 -> 61[label="",style="solid", color="black", weight=3]; 48[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];48 -> 62[label="",style="solid", color="black", weight=3]; 49[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz3100) (Succ vz3000)) GT))",fontsize=16,color="black",shape="box"];49 -> 63[label="",style="solid", color="black", weight=3]; 50[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat Zero (Succ vz3000)) GT))",fontsize=16,color="black",shape="box"];50 -> 64[label="",style="solid", color="black", weight=3]; 51[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];51 -> 65[label="",style="solid", color="black", weight=3]; 52[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];52 -> 66[label="",style="solid", color="black", weight=3]; 53[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz3100) Zero) GT))",fontsize=16,color="black",shape="box"];53 -> 67[label="",style="solid", color="black", weight=3]; 54[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];54 -> 68[label="",style="solid", color="black", weight=3]; 55 -> 447[label="",style="dashed", color="red", weight=0]; 55[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat vz3000 vz3100) GT))",fontsize=16,color="magenta"];55 -> 448[label="",style="dashed", color="magenta", weight=3]; 55 -> 449[label="",style="dashed", color="magenta", weight=3]; 55 -> 450[label="",style="dashed", color="magenta", weight=3]; 55 -> 451[label="",style="dashed", color="magenta", weight=3]; 56[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];56 -> 71[label="",style="solid", color="black", weight=3]; 57[label="takeWhile1 (flip ltEsMyInt (Neg vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) MyFalse",fontsize=16,color="black",shape="box"];57 -> 72[label="",style="solid", color="black", weight=3]; 58[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];58 -> 73[label="",style="solid", color="black", weight=3]; 59[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];59 -> 74[label="",style="solid", color="black", weight=3]; 60[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyTrue)",fontsize=16,color="black",shape="box"];60 -> 75[label="",style="solid", color="black", weight=3]; 61[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];61 -> 76[label="",style="solid", color="black", weight=3]; 62[label="takeWhile1 (flip ltEsMyInt (Pos vz310)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];62 -> 77[label="",style="solid", color="black", weight=3]; 63 -> 723[label="",style="dashed", color="red", weight=0]; 63[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat vz3100 vz3000) GT))",fontsize=16,color="magenta"];63 -> 724[label="",style="dashed", color="magenta", weight=3]; 63 -> 725[label="",style="dashed", color="magenta", weight=3]; 63 -> 726[label="",style="dashed", color="magenta", weight=3]; 63 -> 727[label="",style="dashed", color="magenta", weight=3]; 63 -> 728[label="",style="dashed", color="magenta", weight=3]; 64[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];64 -> 80[label="",style="solid", color="black", weight=3]; 65[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];65 -> 81[label="",style="solid", color="black", weight=3]; 66[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];66 -> 82[label="",style="solid", color="black", weight=3]; 67[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];67 -> 83[label="",style="solid", color="black", weight=3]; 68[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];68 -> 84[label="",style="solid", color="black", weight=3]; 448[label="vz3100",fontsize=16,color="green",shape="box"];449[label="vz3000",fontsize=16,color="green",shape="box"];450[label="vz3100",fontsize=16,color="green",shape="box"];451[label="vz3000",fontsize=16,color="green",shape="box"];447[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat vz23 vz24) GT))",fontsize=16,color="burlywood",shape="triangle"];838[label="vz23/Succ vz230",fontsize=10,color="white",style="solid",shape="box"];447 -> 838[label="",style="solid", color="burlywood", weight=9]; 838 -> 476[label="",style="solid", color="burlywood", weight=3]; 839[label="vz23/Zero",fontsize=10,color="white",style="solid",shape="box"];447 -> 839[label="",style="solid", color="burlywood", weight=9]; 839 -> 477[label="",style="solid", color="burlywood", weight=3]; 71[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not MyTrue)",fontsize=16,color="black",shape="box"];71 -> 89[label="",style="solid", color="black", weight=3]; 72[label="takeWhile0 (flip ltEsMyInt (Neg vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) otherwise",fontsize=16,color="black",shape="box"];72 -> 90[label="",style="solid", color="black", weight=3]; 73[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];73 -> 91[label="",style="solid", color="black", weight=3]; 74[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];74 -> 92[label="",style="solid", color="black", weight=3]; 75[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) MyFalse",fontsize=16,color="black",shape="box"];75 -> 93[label="",style="solid", color="black", weight=3]; 76[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];76 -> 94[label="",style="solid", color="black", weight=3]; 77[label="Cons (Neg (Succ vz3000)) (takeWhile (flip ltEsMyInt (Pos vz310)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];77 -> 95[label="",style="dashed", color="green", weight=3]; 724[label="vz3100",fontsize=16,color="green",shape="box"];725[label="vz3000",fontsize=16,color="green",shape="box"];726 -> 180[label="",style="dashed", color="red", weight=0]; 726[label="psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];727[label="vz3100",fontsize=16,color="green",shape="box"];728[label="vz3000",fontsize=16,color="green",shape="box"];723[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat vz67 vz68) GT))",fontsize=16,color="burlywood",shape="triangle"];840[label="vz67/Succ vz670",fontsize=10,color="white",style="solid",shape="box"];723 -> 840[label="",style="solid", color="burlywood", weight=9]; 840 -> 779[label="",style="solid", color="burlywood", weight=3]; 841[label="vz67/Zero",fontsize=10,color="white",style="solid",shape="box"];723 -> 841[label="",style="solid", color="burlywood", weight=9]; 841 -> 780[label="",style="solid", color="burlywood", weight=3]; 80[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="box"];80 -> 100[label="",style="solid", color="black", weight=3]; 81[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];81 -> 101[label="",style="solid", color="black", weight=3]; 82[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];82 -> 102[label="",style="solid", color="black", weight=3]; 83[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (not MyTrue)",fontsize=16,color="black",shape="box"];83 -> 103[label="",style="solid", color="black", weight=3]; 84[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];84 -> 104[label="",style="solid", color="black", weight=3]; 476[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz230) vz24) GT))",fontsize=16,color="burlywood",shape="box"];842[label="vz24/Succ vz240",fontsize=10,color="white",style="solid",shape="box"];476 -> 842[label="",style="solid", color="burlywood", weight=9]; 842 -> 483[label="",style="solid", color="burlywood", weight=3]; 843[label="vz24/Zero",fontsize=10,color="white",style="solid",shape="box"];476 -> 843[label="",style="solid", color="burlywood", weight=9]; 843 -> 484[label="",style="solid", color="burlywood", weight=3]; 477[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat Zero vz24) GT))",fontsize=16,color="burlywood",shape="box"];844[label="vz24/Succ vz240",fontsize=10,color="white",style="solid",shape="box"];477 -> 844[label="",style="solid", color="burlywood", weight=9]; 844 -> 485[label="",style="solid", color="burlywood", weight=3]; 845[label="vz24/Zero",fontsize=10,color="white",style="solid",shape="box"];477 -> 845[label="",style="solid", color="burlywood", weight=9]; 845 -> 486[label="",style="solid", color="burlywood", weight=3]; 89[label="takeWhile1 (flip ltEsMyInt (Pos Zero)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) MyFalse",fontsize=16,color="black",shape="box"];89 -> 109[label="",style="solid", color="black", weight=3]; 90[label="takeWhile0 (flip ltEsMyInt (Neg vz310)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];90 -> 110[label="",style="solid", color="black", weight=3]; 91[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];91 -> 111[label="",style="solid", color="black", weight=3]; 92[label="Cons (Pos Zero) (takeWhile (flip ltEsMyInt (Pos Zero)) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];92 -> 112[label="",style="dashed", color="green", weight=3]; 93[label="takeWhile0 (flip ltEsMyInt (Neg (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) otherwise",fontsize=16,color="black",shape="box"];93 -> 113[label="",style="solid", color="black", weight=3]; 94[label="Cons (Pos Zero) (takeWhile (flip ltEsMyInt (Neg Zero)) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];94 -> 114[label="",style="dashed", color="green", weight=3]; 95[label="takeWhile (flip ltEsMyInt (Pos vz310)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];95 -> 115[label="",style="solid", color="black", weight=3]; 180[label="psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="triangle"];180 -> 206[label="",style="solid", color="black", weight=3]; 779[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat (Succ vz670) vz68) GT))",fontsize=16,color="burlywood",shape="box"];846[label="vz68/Succ vz680",fontsize=10,color="white",style="solid",shape="box"];779 -> 846[label="",style="solid", color="burlywood", weight=9]; 846 -> 782[label="",style="solid", color="burlywood", weight=3]; 847[label="vz68/Zero",fontsize=10,color="white",style="solid",shape="box"];779 -> 847[label="",style="solid", color="burlywood", weight=9]; 847 -> 783[label="",style="solid", color="burlywood", weight=3]; 780[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat Zero vz68) GT))",fontsize=16,color="burlywood",shape="box"];848[label="vz68/Succ vz680",fontsize=10,color="white",style="solid",shape="box"];780 -> 848[label="",style="solid", color="burlywood", weight=9]; 848 -> 784[label="",style="solid", color="burlywood", weight=3]; 849[label="vz68/Zero",fontsize=10,color="white",style="solid",shape="box"];780 -> 849[label="",style="solid", color="burlywood", weight=9]; 849 -> 785[label="",style="solid", color="burlywood", weight=3]; 100[label="takeWhile1 (flip ltEsMyInt (Neg Zero)) (Neg (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];100 -> 120[label="",style="solid", color="black", weight=3]; 101[label="Cons (Neg Zero) (takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];101 -> 121[label="",style="dashed", color="green", weight=3]; 102[label="Cons (Neg Zero) (takeWhile (flip ltEsMyInt (Pos Zero)) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];102 -> 122[label="",style="dashed", color="green", weight=3]; 103[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) MyFalse",fontsize=16,color="black",shape="box"];103 -> 123[label="",style="solid", color="black", weight=3]; 104[label="Cons (Neg Zero) (takeWhile (flip ltEsMyInt (Neg Zero)) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];104 -> 124[label="",style="dashed", color="green", weight=3]; 483[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz230) (Succ vz240)) GT))",fontsize=16,color="black",shape="box"];483 -> 490[label="",style="solid", color="black", weight=3]; 484[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat (Succ vz230) Zero) GT))",fontsize=16,color="black",shape="box"];484 -> 491[label="",style="solid", color="black", weight=3]; 485[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat Zero (Succ vz240)) GT))",fontsize=16,color="black",shape="box"];485 -> 492[label="",style="solid", color="black", weight=3]; 486[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat Zero Zero) GT))",fontsize=16,color="black",shape="box"];486 -> 493[label="",style="solid", color="black", weight=3]; 109[label="takeWhile0 (flip ltEsMyInt (Pos Zero)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) otherwise",fontsize=16,color="black",shape="box"];109 -> 130[label="",style="solid", color="black", weight=3]; 110[label="Nil",fontsize=16,color="green",shape="box"];111[label="Cons (Pos Zero) (takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];111 -> 131[label="",style="dashed", color="green", weight=3]; 112[label="takeWhile (flip ltEsMyInt (Pos Zero)) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];112 -> 132[label="",style="solid", color="black", weight=3]; 113[label="takeWhile0 (flip ltEsMyInt (Neg (Succ vz3100))) (Pos Zero) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];113 -> 133[label="",style="solid", color="black", weight=3]; 114[label="takeWhile (flip ltEsMyInt (Neg Zero)) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];114 -> 134[label="",style="solid", color="black", weight=3]; 115[label="takeWhile (flip ltEsMyInt (Pos vz310)) (seq (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];115 -> 135[label="",style="solid", color="black", weight=3]; 206[label="primPlusInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];206 -> 245[label="",style="solid", color="black", weight=3]; 782[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat (Succ vz670) (Succ vz680)) GT))",fontsize=16,color="black",shape="box"];782 -> 788[label="",style="solid", color="black", weight=3]; 783[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat (Succ vz670) Zero) GT))",fontsize=16,color="black",shape="box"];783 -> 789[label="",style="solid", color="black", weight=3]; 784[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat Zero (Succ vz680)) GT))",fontsize=16,color="black",shape="box"];784 -> 790[label="",style="solid", color="black", weight=3]; 785[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat Zero Zero) GT))",fontsize=16,color="black",shape="box"];785 -> 791[label="",style="solid", color="black", weight=3]; 120[label="Cons (Neg (Succ vz3000)) (takeWhile (flip ltEsMyInt (Neg Zero)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];120 -> 141[label="",style="dashed", color="green", weight=3]; 121[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];121 -> 142[label="",style="solid", color="black", weight=3]; 122[label="takeWhile (flip ltEsMyInt (Pos Zero)) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];122 -> 143[label="",style="solid", color="black", weight=3]; 123[label="takeWhile0 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) otherwise",fontsize=16,color="black",shape="box"];123 -> 144[label="",style="solid", color="black", weight=3]; 124[label="takeWhile (flip ltEsMyInt (Neg Zero)) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];124 -> 145[label="",style="solid", color="black", weight=3]; 490 -> 447[label="",style="dashed", color="red", weight=0]; 490[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering (primCmpNat vz230 vz240) GT))",fontsize=16,color="magenta"];490 -> 505[label="",style="dashed", color="magenta", weight=3]; 490 -> 506[label="",style="dashed", color="magenta", weight=3]; 491[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];491 -> 507[label="",style="solid", color="black", weight=3]; 492[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];492 -> 508[label="",style="solid", color="black", weight=3]; 493[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];493 -> 509[label="",style="solid", color="black", weight=3]; 130[label="takeWhile0 (flip ltEsMyInt (Pos Zero)) (Pos (Succ vz3000)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];130 -> 153[label="",style="solid", color="black", weight=3]; 131[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (dsEm numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];131 -> 154[label="",style="solid", color="black", weight=3]; 132[label="takeWhile (flip ltEsMyInt (Pos Zero)) (seq (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];132 -> 155[label="",style="solid", color="black", weight=3]; 133[label="Nil",fontsize=16,color="green",shape="box"];134[label="takeWhile (flip ltEsMyInt (Neg Zero)) (seq (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];134 -> 156[label="",style="solid", color="black", weight=3]; 135[label="takeWhile (flip ltEsMyInt (Pos vz310)) (enforceWHNF (WHNF (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];135 -> 157[label="",style="solid", color="black", weight=3]; 245[label="primPlusInt (Neg (Succ vz3000)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];245 -> 273[label="",style="solid", color="black", weight=3]; 788 -> 723[label="",style="dashed", color="red", weight=0]; 788[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering (primCmpNat vz670 vz680) GT))",fontsize=16,color="magenta"];788 -> 794[label="",style="dashed", color="magenta", weight=3]; 788 -> 795[label="",style="dashed", color="magenta", weight=3]; 789[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];789 -> 796[label="",style="solid", color="black", weight=3]; 790[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];790 -> 797[label="",style="solid", color="black", weight=3]; 791[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];791 -> 798[label="",style="solid", color="black", weight=3]; 141[label="takeWhile (flip ltEsMyInt (Neg Zero)) (dsEm numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];141 -> 165[label="",style="solid", color="black", weight=3]; 142[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (seq (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];142 -> 166[label="",style="solid", color="black", weight=3]; 143[label="takeWhile (flip ltEsMyInt (Pos Zero)) (seq (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];143 -> 167[label="",style="solid", color="black", weight=3]; 144[label="takeWhile0 (flip ltEsMyInt (Neg (Succ vz3100))) (Neg Zero) (dsEm numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];144 -> 168[label="",style="solid", color="black", weight=3]; 145[label="takeWhile (flip ltEsMyInt (Neg Zero)) (seq (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];145 -> 169[label="",style="solid", color="black", weight=3]; 505[label="vz240",fontsize=16,color="green",shape="box"];506[label="vz230",fontsize=16,color="green",shape="box"];507[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not MyTrue)",fontsize=16,color="black",shape="box"];507 -> 521[label="",style="solid", color="black", weight=3]; 508[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="black",shape="triangle"];508 -> 522[label="",style="solid", color="black", weight=3]; 509 -> 508[label="",style="dashed", color="red", weight=0]; 509[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (not MyFalse)",fontsize=16,color="magenta"];153[label="Nil",fontsize=16,color="green",shape="box"];154[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (seq (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];154 -> 177[label="",style="solid", color="black", weight=3]; 155[label="takeWhile (flip ltEsMyInt (Pos Zero)) (enforceWHNF (WHNF (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];155 -> 178[label="",style="solid", color="black", weight=3]; 156 -> 219[label="",style="dashed", color="red", weight=0]; 156[label="takeWhile (flip ltEsMyInt (Neg Zero)) (enforceWHNF (WHNF (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="magenta"];156 -> 220[label="",style="dashed", color="magenta", weight=3]; 156 -> 221[label="",style="dashed", color="magenta", weight=3]; 157 -> 7[label="",style="dashed", color="red", weight=0]; 157[label="takeWhile (flip ltEsMyInt (Pos vz310)) (numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="magenta"];157 -> 180[label="",style="dashed", color="magenta", weight=3]; 157 -> 181[label="",style="dashed", color="magenta", weight=3]; 273[label="primMinusNat (Succ Zero) (Succ vz3000)",fontsize=16,color="black",shape="box"];273 -> 297[label="",style="solid", color="black", weight=3]; 794[label="vz680",fontsize=16,color="green",shape="box"];795[label="vz670",fontsize=16,color="green",shape="box"];796[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not MyTrue)",fontsize=16,color="black",shape="box"];796 -> 799[label="",style="solid", color="black", weight=3]; 797[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not MyFalse)",fontsize=16,color="black",shape="triangle"];797 -> 800[label="",style="solid", color="black", weight=3]; 798 -> 797[label="",style="dashed", color="red", weight=0]; 798[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) (not MyFalse)",fontsize=16,color="magenta"];165[label="takeWhile (flip ltEsMyInt (Neg Zero)) (seq (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];165 -> 189[label="",style="solid", color="black", weight=3]; 166[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (enforceWHNF (WHNF (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];166 -> 190[label="",style="solid", color="black", weight=3]; 167[label="takeWhile (flip ltEsMyInt (Pos Zero)) (enforceWHNF (WHNF (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];167 -> 191[label="",style="solid", color="black", weight=3]; 168[label="Nil",fontsize=16,color="green",shape="box"];169 -> 219[label="",style="dashed", color="red", weight=0]; 169[label="takeWhile (flip ltEsMyInt (Neg Zero)) (enforceWHNF (WHNF (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="magenta"];169 -> 222[label="",style="dashed", color="magenta", weight=3]; 169 -> 223[label="",style="dashed", color="magenta", weight=3]; 521[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) MyFalse",fontsize=16,color="black",shape="box"];521 -> 530[label="",style="solid", color="black", weight=3]; 522[label="takeWhile1 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];522 -> 531[label="",style="solid", color="black", weight=3]; 177[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (enforceWHNF (WHNF (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];177 -> 201[label="",style="solid", color="black", weight=3]; 178 -> 7[label="",style="dashed", color="red", weight=0]; 178[label="takeWhile (flip ltEsMyInt (Pos Zero)) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="magenta"];178 -> 202[label="",style="dashed", color="magenta", weight=3]; 178 -> 203[label="",style="dashed", color="magenta", weight=3]; 220[label="psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="triangle"];220 -> 226[label="",style="solid", color="black", weight=3]; 221 -> 220[label="",style="dashed", color="red", weight=0]; 221[label="psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];219[label="takeWhile (flip ltEsMyInt (Neg Zero)) (enforceWHNF (WHNF vz10) (numericEnumFrom vz9))",fontsize=16,color="black",shape="triangle"];219 -> 227[label="",style="solid", color="black", weight=3]; 181[label="Pos vz310",fontsize=16,color="green",shape="box"];297[label="primMinusNat Zero vz3000",fontsize=16,color="burlywood",shape="box"];850[label="vz3000/Succ vz30000",fontsize=10,color="white",style="solid",shape="box"];297 -> 850[label="",style="solid", color="burlywood", weight=9]; 850 -> 322[label="",style="solid", color="burlywood", weight=3]; 851[label="vz3000/Zero",fontsize=10,color="white",style="solid",shape="box"];297 -> 851[label="",style="solid", color="burlywood", weight=9]; 851 -> 323[label="",style="solid", color="burlywood", weight=3]; 799[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) MyFalse",fontsize=16,color="black",shape="box"];799 -> 801[label="",style="solid", color="black", weight=3]; 800[label="takeWhile1 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) MyTrue",fontsize=16,color="black",shape="box"];800 -> 802[label="",style="solid", color="black", weight=3]; 189 -> 219[label="",style="dashed", color="red", weight=0]; 189[label="takeWhile (flip ltEsMyInt (Neg Zero)) (enforceWHNF (WHNF (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="magenta"];189 -> 224[label="",style="dashed", color="magenta", weight=3]; 189 -> 225[label="",style="dashed", color="magenta", weight=3]; 190 -> 7[label="",style="dashed", color="red", weight=0]; 190[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="magenta"];190 -> 228[label="",style="dashed", color="magenta", weight=3]; 190 -> 229[label="",style="dashed", color="magenta", weight=3]; 191 -> 7[label="",style="dashed", color="red", weight=0]; 191[label="takeWhile (flip ltEsMyInt (Pos Zero)) (numericEnumFrom (psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="magenta"];191 -> 230[label="",style="dashed", color="magenta", weight=3]; 191 -> 231[label="",style="dashed", color="magenta", weight=3]; 222[label="psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="triangle"];222 -> 232[label="",style="solid", color="black", weight=3]; 223 -> 222[label="",style="dashed", color="red", weight=0]; 223[label="psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];530[label="takeWhile0 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) otherwise",fontsize=16,color="black",shape="box"];530 -> 536[label="",style="solid", color="black", weight=3]; 531[label="Cons (Pos (Succ vz22)) (takeWhile (flip ltEsMyInt (Pos (Succ vz21))) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="green",shape="box"];531 -> 537[label="",style="dashed", color="green", weight=3]; 201 -> 7[label="",style="dashed", color="red", weight=0]; 201[label="takeWhile (flip ltEsMyInt (Pos (Succ vz3100))) (numericEnumFrom (psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="magenta"];201 -> 243[label="",style="dashed", color="magenta", weight=3]; 201 -> 244[label="",style="dashed", color="magenta", weight=3]; 202 -> 220[label="",style="dashed", color="red", weight=0]; 202[label="psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];203[label="Pos Zero",fontsize=16,color="green",shape="box"];226[label="primPlusInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];226 -> 260[label="",style="solid", color="black", weight=3]; 227 -> 7[label="",style="dashed", color="red", weight=0]; 227[label="takeWhile (flip ltEsMyInt (Neg Zero)) (numericEnumFrom vz9)",fontsize=16,color="magenta"];227 -> 261[label="",style="dashed", color="magenta", weight=3]; 227 -> 262[label="",style="dashed", color="magenta", weight=3]; 322[label="primMinusNat Zero (Succ vz30000)",fontsize=16,color="black",shape="box"];322 -> 344[label="",style="solid", color="black", weight=3]; 323[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];323 -> 345[label="",style="solid", color="black", weight=3]; 801[label="takeWhile0 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) otherwise",fontsize=16,color="black",shape="box"];801 -> 803[label="",style="solid", color="black", weight=3]; 802[label="Cons (Neg (Succ vz65)) (takeWhile (flip ltEsMyInt (Neg (Succ vz64))) (dsEm numericEnumFrom vz66))",fontsize=16,color="green",shape="box"];802 -> 804[label="",style="dashed", color="green", weight=3]; 224 -> 180[label="",style="dashed", color="red", weight=0]; 224[label="psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];225 -> 180[label="",style="dashed", color="red", weight=0]; 225[label="psMyInt (Neg (Succ vz3000)) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];228 -> 222[label="",style="dashed", color="red", weight=0]; 228[label="psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];229[label="Pos (Succ vz3100)",fontsize=16,color="green",shape="box"];230 -> 222[label="",style="dashed", color="red", weight=0]; 230[label="psMyInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];231[label="Pos Zero",fontsize=16,color="green",shape="box"];232[label="primPlusInt (Neg Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];232 -> 263[label="",style="solid", color="black", weight=3]; 536[label="takeWhile0 (flip ltEsMyInt (Pos (Succ vz21))) (Pos (Succ vz22)) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) MyTrue",fontsize=16,color="black",shape="box"];536 -> 542[label="",style="solid", color="black", weight=3]; 537[label="takeWhile (flip ltEsMyInt (Pos (Succ vz21))) (dsEm numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="black",shape="box"];537 -> 543[label="",style="solid", color="black", weight=3]; 243 -> 220[label="",style="dashed", color="red", weight=0]; 243[label="psMyInt (Pos Zero) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];244[label="Pos (Succ vz3100)",fontsize=16,color="green",shape="box"];260[label="primPlusInt (Pos Zero) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];260 -> 285[label="",style="solid", color="black", weight=3]; 261[label="vz9",fontsize=16,color="green",shape="box"];262[label="Neg Zero",fontsize=16,color="green",shape="box"];344[label="Neg (Succ vz30000)",fontsize=16,color="green",shape="box"];345[label="Pos Zero",fontsize=16,color="green",shape="box"];803[label="takeWhile0 (flip ltEsMyInt (Neg (Succ vz64))) (Neg (Succ vz65)) (dsEm numericEnumFrom vz66) MyTrue",fontsize=16,color="black",shape="box"];803 -> 805[label="",style="solid", color="black", weight=3]; 804[label="takeWhile (flip ltEsMyInt (Neg (Succ vz64))) (dsEm numericEnumFrom vz66)",fontsize=16,color="black",shape="box"];804 -> 806[label="",style="solid", color="black", weight=3]; 263[label="primPlusInt (Neg Zero) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];263 -> 286[label="",style="solid", color="black", weight=3]; 542[label="Nil",fontsize=16,color="green",shape="box"];543[label="takeWhile (flip ltEsMyInt (Pos (Succ vz21))) (seq (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero)))) (numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];543 -> 547[label="",style="solid", color="black", weight=3]; 285[label="Pos (primPlusNat Zero (Succ Zero))",fontsize=16,color="green",shape="box"];285 -> 306[label="",style="dashed", color="green", weight=3]; 805[label="Nil",fontsize=16,color="green",shape="box"];806[label="takeWhile (flip ltEsMyInt (Neg (Succ vz64))) (seq vz66 (numericEnumFrom vz66))",fontsize=16,color="black",shape="box"];806 -> 807[label="",style="solid", color="black", weight=3]; 286[label="primMinusNat (Succ Zero) Zero",fontsize=16,color="black",shape="box"];286 -> 307[label="",style="solid", color="black", weight=3]; 547[label="takeWhile (flip ltEsMyInt (Pos (Succ vz21))) (enforceWHNF (WHNF (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))) (numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero))))))",fontsize=16,color="black",shape="box"];547 -> 583[label="",style="solid", color="black", weight=3]; 306[label="primPlusNat Zero (Succ Zero)",fontsize=16,color="black",shape="box"];306 -> 333[label="",style="solid", color="black", weight=3]; 807[label="takeWhile (flip ltEsMyInt (Neg (Succ vz64))) (enforceWHNF (WHNF vz66) (numericEnumFrom vz66))",fontsize=16,color="black",shape="box"];807 -> 808[label="",style="solid", color="black", weight=3]; 307[label="Pos (Succ Zero)",fontsize=16,color="green",shape="box"];583 -> 7[label="",style="dashed", color="red", weight=0]; 583[label="takeWhile (flip ltEsMyInt (Pos (Succ vz21))) (numericEnumFrom (psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero)))))",fontsize=16,color="magenta"];583 -> 619[label="",style="dashed", color="magenta", weight=3]; 583 -> 620[label="",style="dashed", color="magenta", weight=3]; 333[label="Succ Zero",fontsize=16,color="green",shape="box"];808 -> 7[label="",style="dashed", color="red", weight=0]; 808[label="takeWhile (flip ltEsMyInt (Neg (Succ vz64))) (numericEnumFrom vz66)",fontsize=16,color="magenta"];808 -> 809[label="",style="dashed", color="magenta", weight=3]; 808 -> 810[label="",style="dashed", color="magenta", weight=3]; 619[label="psMyInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];619 -> 650[label="",style="solid", color="black", weight=3]; 620[label="Pos (Succ vz21)",fontsize=16,color="green",shape="box"];809[label="vz66",fontsize=16,color="green",shape="box"];810[label="Neg (Succ vz64)",fontsize=16,color="green",shape="box"];650[label="primPlusInt (Pos (Succ vz22)) (fromIntMyInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];650 -> 663[label="",style="solid", color="black", weight=3]; 663[label="primPlusInt (Pos (Succ vz22)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];663 -> 701[label="",style="solid", color="black", weight=3]; 701[label="Pos (primPlusNat (Succ vz22) (Succ Zero))",fontsize=16,color="green",shape="box"];701 -> 713[label="",style="dashed", color="green", weight=3]; 713[label="primPlusNat (Succ vz22) (Succ Zero)",fontsize=16,color="black",shape="box"];713 -> 722[label="",style="solid", color="black", weight=3]; 722[label="Succ (Succ (primPlusNat vz22 Zero))",fontsize=16,color="green",shape="box"];722 -> 781[label="",style="dashed", color="green", weight=3]; 781[label="primPlusNat vz22 Zero",fontsize=16,color="burlywood",shape="box"];852[label="vz22/Succ vz220",fontsize=10,color="white",style="solid",shape="box"];781 -> 852[label="",style="solid", color="burlywood", weight=9]; 852 -> 786[label="",style="solid", color="burlywood", weight=3]; 853[label="vz22/Zero",fontsize=10,color="white",style="solid",shape="box"];781 -> 853[label="",style="solid", color="burlywood", weight=9]; 853 -> 787[label="",style="solid", color="burlywood", weight=3]; 786[label="primPlusNat (Succ vz220) Zero",fontsize=16,color="black",shape="box"];786 -> 792[label="",style="solid", color="black", weight=3]; 787[label="primPlusNat Zero Zero",fontsize=16,color="black",shape="box"];787 -> 793[label="",style="solid", color="black", weight=3]; 792[label="Succ vz220",fontsize=16,color="green",shape="box"];793[label="Zero",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile12(vz64, vz65, vz66) -> new_takeWhile(Main.Neg(Main.Succ(vz64)), vz66) new_takeWhile(Main.Pos(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile(Main.Pos(Main.Zero), new_psMyInt) new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> new_takeWhile1(vz3100, vz3000, vz3000, vz3100) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(new_psMyInt, new_psMyInt) new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Neg(Main.Zero)) -> new_takeWhile(Main.Pos(Main.Succ(vz3100)), new_psMyInt1) new_takeWhile1(vz21, vz22, Main.Succ(vz230), Main.Succ(vz240)) -> new_takeWhile1(vz21, vz22, vz230, vz240) new_takeWhile11(vz64, vz65, vz66, Main.Zero, Main.Succ(vz680)) -> new_takeWhile(Main.Neg(Main.Succ(vz64)), vz66) new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) new_takeWhile(Main.Pos(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile(Main.Pos(Main.Zero), new_psMyInt1) new_takeWhile11(vz64, vz65, vz66, Main.Succ(vz670), Main.Succ(vz680)) -> new_takeWhile11(vz64, vz65, vz66, vz670, vz680) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Zero)) -> new_takeWhile(Main.Pos(Main.Succ(vz3100)), new_psMyInt) new_takeWhile11(vz64, vz65, vz66, Main.Zero, Main.Zero) -> new_takeWhile12(vz64, vz65, vz66) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) new_takeWhile(Main.Neg(Main.Succ(vz3100)), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile11(vz3100, vz3000, new_psMyInt0(vz3000), vz3100, vz3000) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(new_psMyInt1, new_psMyInt1) new_takeWhile(Main.Pos(vz310), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile(Main.Pos(vz310), new_psMyInt0(vz3000)) new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(new_psMyInt, new_psMyInt) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(new_psMyInt1, new_psMyInt1) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) Used ordering: Polynomial interpretation [POLO]: POL(Main.Neg(x_1)) = x_1 POL(Main.Pos(x_1)) = x_1 POL(Main.Succ(x_1)) = 2*x_1 POL(Main.Zero) = 0 POL(new_primPlusNat(x_1)) = 2 + 2*x_1 POL(new_psMyInt) = 0 POL(new_psMyInt0(x_1)) = x_1 POL(new_psMyInt1) = 0 POL(new_takeWhile(x_1, x_2)) = 2 + x_1 + x_2 POL(new_takeWhile0(x_1, x_2)) = 2 + x_1 + x_2 ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(new_psMyInt, new_psMyInt) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(new_psMyInt1, new_psMyInt1) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(new_psMyInt, new_psMyInt) at position [0] we obtained the following new rules [LPAR04]: (new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt),new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(new_psMyInt1, new_psMyInt1) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primPlusNat(Main.Succ(x0)) new_primPlusNat(Main.Zero) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(new_psMyInt1, new_psMyInt1) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(new_psMyInt1, new_psMyInt1) at position [0] we obtained the following new rules [LPAR04]: (new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt1),new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt1)) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt1) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt) at position [1] we obtained the following new rules [LPAR04]: (new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))),new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero)))) ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt1) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt1) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_psMyInt ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt1) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), new_psMyInt1) at position [1] we obtained the following new rules [LPAR04]: (new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))),new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero)))) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_psMyInt1 ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) The set Q consists of the following terms: new_psMyInt0(Main.Zero) new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile0(new_psMyInt0(vz3000), new_psMyInt0(vz3000)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(Main.Neg(x_1)) = x_1 POL(Main.Pos(x_1)) = 0 POL(Main.Succ(x_1)) = 1 + x_1 POL(Main.Zero) = 0 POL(new_psMyInt0(x_1)) = x_1 POL(new_takeWhile(x_1, x_2)) = x_2 POL(new_takeWhile0(x_1, x_2)) = x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) The set Q consists of the following terms: new_psMyInt0(Main.Zero) new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule new_takeWhile0(vz10, vz9) -> new_takeWhile(Main.Neg(Main.Zero), vz9) we obtained the following new rules [LPAR04]: (new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) -> new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Succ(Main.Zero))),new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) -> new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Succ(Main.Zero)))) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) new_takeWhile(Main.Neg(Main.Zero), Main.Neg(Main.Zero)) -> new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) new_takeWhile0(Main.Pos(Main.Succ(Main.Zero)), Main.Pos(Main.Succ(Main.Zero))) -> new_takeWhile(Main.Neg(Main.Zero), Main.Pos(Main.Succ(Main.Zero))) The TRS R consists of the following rules: new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) The set Q consists of the following terms: new_psMyInt0(Main.Zero) new_psMyInt0(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. ---------------------------------------- (35) TRUE ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile1(vz21, vz22, Main.Succ(vz230), Main.Succ(vz240)) -> new_takeWhile1(vz21, vz22, vz230, vz240) new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> new_takeWhile1(vz3100, vz3000, vz3000, vz3100) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QDPPairToRuleProof (EQUIVALENT) The dependency pair new_takeWhile1(vz21, vz22, Main.Succ(vz230), Main.Succ(vz240)) -> new_takeWhile1(vz21, vz22, vz230, vz240) was transformed to the following new rules: anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) the following new pairs maintain the fan-in: new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) the following new pairs maintain the fan-out: H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) ---------------------------------------- (38) Complex Obligation (AND) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> new_takeWhile1(vz3100, vz3000, vz3000, vz3100) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) new_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) anew_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) new_new_takeWhile1(Main.Zero, Main.Succ(x0)) new_new_takeWhile1(Main.Zero, Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> new_takeWhile1(vz3100, vz3000, vz3000, vz3100) we obtained the following new rules [LPAR04]: (new_takeWhile(Main.Pos(Main.Succ(z0)), Main.Pos(Main.Succ(Main.Succ(y_0)))) -> new_takeWhile1(z0, Main.Succ(y_0), Main.Succ(y_0), z0),new_takeWhile(Main.Pos(Main.Succ(z0)), Main.Pos(Main.Succ(Main.Succ(y_0)))) -> new_takeWhile1(z0, Main.Succ(y_0), Main.Succ(y_0), z0)) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) new_takeWhile(Main.Pos(Main.Succ(z0)), Main.Pos(Main.Succ(Main.Succ(y_0)))) -> new_takeWhile1(z0, Main.Succ(y_0), Main.Succ(y_0), z0) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) new_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) anew_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) new_new_takeWhile1(Main.Zero, Main.Succ(x0)) new_new_takeWhile1(Main.Zero, Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) new_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) anew_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) new_new_takeWhile1(Main.Zero, Main.Succ(x0)) new_new_takeWhile1(Main.Zero, Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) The TRS R consists of the following rules: new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) new_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) anew_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) new_new_takeWhile1(Main.Zero, Main.Succ(x0)) new_new_takeWhile1(Main.Zero, Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_psMyInt1 new_psMyInt0(Main.Zero) new_psMyInt new_psMyInt0(Main.Succ(x0)) ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) The TRS R consists of the following rules: new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) The set Q consists of the following terms: new_primPlusNat(Main.Succ(x0)) new_primPlusNat(Main.Zero) new_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) anew_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) new_new_takeWhile1(Main.Zero, Main.Succ(x0)) new_new_takeWhile1(Main.Zero, Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) InductionCalculusProof (EQUIVALENT) Note that final constraints are written in bold face. For Pair new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) the following chains were created: *We consider the chain new_takeWhile(Main.Pos(Main.Succ(x2)), Main.Pos(Main.Succ(x3))) -> H(x2, x3, anew_new_takeWhile1(x3, x2)), H(x4, x5, cons_new_takeWhile1(Main.Zero, Main.Succ(x6))) -> new_takeWhile1(x4, x5, Main.Zero, Main.Succ(x6)) which results in the following constraint: (1) (H(x2, x3, anew_new_takeWhile1(x3, x2))=H(x4, x5, cons_new_takeWhile1(Main.Zero, Main.Succ(x6))) ==> new_takeWhile(Main.Pos(Main.Succ(x2)), Main.Pos(Main.Succ(x3)))_>=_H(x2, x3, anew_new_takeWhile1(x3, x2))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (anew_new_takeWhile1(x3, x2)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(x2)), Main.Pos(Main.Succ(x3)))_>=_H(x2, x3, anew_new_takeWhile1(x3, x2))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on anew_new_takeWhile1(x3, x2)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) which results in the following new constraint: (3) (new_new_takeWhile1(x101, x100)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x100))), Main.Pos(Main.Succ(Main.Succ(x101))))_>=_H(Main.Succ(x100), Main.Succ(x101), anew_new_takeWhile1(Main.Succ(x101), Main.Succ(x100)))) We simplified constraint (3) using rule (V) (with possible (I) afterwards) using induction on new_new_takeWhile1(x101, x100)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) which results in the following new constraints: (4) (new_new_takeWhile1(x103, x102)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) & (\/x104:new_new_takeWhile1(x103, x102)=cons_new_takeWhile1(Main.Zero, Main.Succ(x104)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102)))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x102)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x103)))))_>=_H(Main.Succ(Main.Succ(x102)), Main.Succ(Main.Succ(x103)), anew_new_takeWhile1(Main.Succ(Main.Succ(x103)), Main.Succ(Main.Succ(x102))))) (5) (cons_new_takeWhile1(Main.Zero, Main.Succ(x105))=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x105)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x105)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x105))))) (6) (cons_new_takeWhile1(Main.Zero, Main.Zero)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (\/x104:new_new_takeWhile1(x103, x102)=cons_new_takeWhile1(Main.Zero, Main.Succ(x104)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102)))) with sigma = [x104 / x6] which results in the following new constraint: (7) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x102)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x103)))))_>=_H(Main.Succ(Main.Succ(x102)), Main.Succ(Main.Succ(x103)), anew_new_takeWhile1(Main.Succ(Main.Succ(x103)), Main.Succ(Main.Succ(x102))))) We simplified constraint (5) using rules (I), (II), (IV) which results in the following new constraint: (8) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x105)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x105)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x105))))) We solved constraint (6) using rules (I), (II). *We consider the chain new_takeWhile(Main.Pos(Main.Succ(x9)), Main.Pos(Main.Succ(x10))) -> H(x9, x10, anew_new_takeWhile1(x10, x9)), H(x11, x12, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(x11, x12, Main.Zero, Main.Zero) which results in the following constraint: (1) (H(x9, x10, anew_new_takeWhile1(x10, x9))=H(x11, x12, cons_new_takeWhile1(Main.Zero, Main.Zero)) ==> new_takeWhile(Main.Pos(Main.Succ(x9)), Main.Pos(Main.Succ(x10)))_>=_H(x9, x10, anew_new_takeWhile1(x10, x9))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (anew_new_takeWhile1(x10, x9)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(x9)), Main.Pos(Main.Succ(x10)))_>=_H(x9, x10, anew_new_takeWhile1(x10, x9))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on anew_new_takeWhile1(x10, x9)=cons_new_takeWhile1(Main.Zero, Main.Zero) which results in the following new constraint: (3) (new_new_takeWhile1(x107, x106)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x106))), Main.Pos(Main.Succ(Main.Succ(x107))))_>=_H(Main.Succ(x106), Main.Succ(x107), anew_new_takeWhile1(Main.Succ(x107), Main.Succ(x106)))) We simplified constraint (3) using rule (V) (with possible (I) afterwards) using induction on new_new_takeWhile1(x107, x106)=cons_new_takeWhile1(Main.Zero, Main.Zero) which results in the following new constraints: (4) (new_new_takeWhile1(x109, x108)=cons_new_takeWhile1(Main.Zero, Main.Zero) & (new_new_takeWhile1(x109, x108)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108)))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x108)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x109)))))_>=_H(Main.Succ(Main.Succ(x108)), Main.Succ(Main.Succ(x109)), anew_new_takeWhile1(Main.Succ(Main.Succ(x109)), Main.Succ(Main.Succ(x108))))) (5) (cons_new_takeWhile1(Main.Zero, Main.Succ(x110))=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x110)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x110)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x110))))) (6) (cons_new_takeWhile1(Main.Zero, Main.Zero)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (new_new_takeWhile1(x109, x108)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108)))) with sigma = [ ] which results in the following new constraint: (7) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x108)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x109)))))_>=_H(Main.Succ(Main.Succ(x108)), Main.Succ(Main.Succ(x109)), anew_new_takeWhile1(Main.Succ(Main.Succ(x109)), Main.Succ(Main.Succ(x108))))) We solved constraint (5) using rules (I), (II).We simplified constraint (6) using rules (I), (II) which results in the following new constraint: (8) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) For Pair H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) the following chains were created: *We consider the chain H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25))) -> new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25)), new_takeWhile1(x26, x27, Main.Zero, Main.Succ(x28)) -> new_takeWhile(Main.Pos(Main.Succ(x26)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x27))))) which results in the following constraint: (1) (new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))=new_takeWhile1(x26, x27, Main.Zero, Main.Succ(x28)) ==> H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25)))_>=_new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25)))_>=_new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))) For Pair new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) the following chains were created: *We consider the chain new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40)) -> new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39))))), new_takeWhile(Main.Pos(Main.Succ(x41)), Main.Pos(Main.Succ(x42))) -> H(x41, x42, anew_new_takeWhile1(x42, x41)) which results in the following constraint: (1) (new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))=new_takeWhile(Main.Pos(Main.Succ(x41)), Main.Pos(Main.Succ(x42))) ==> new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40))_>=_new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40))_>=_new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))) For Pair H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) the following chains were created: *We consider the chain H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(x66, x67, Main.Zero, Main.Zero), new_takeWhile1(x68, x69, Main.Zero, Main.Zero) -> new_takeWhile10(x68, x69) which results in the following constraint: (1) (new_takeWhile1(x66, x67, Main.Zero, Main.Zero)=new_takeWhile1(x68, x69, Main.Zero, Main.Zero) ==> H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero))_>=_new_takeWhile1(x66, x67, Main.Zero, Main.Zero)) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero))_>=_new_takeWhile1(x66, x67, Main.Zero, Main.Zero)) For Pair new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) the following chains were created: *We consider the chain new_takeWhile1(x82, x83, Main.Zero, Main.Zero) -> new_takeWhile10(x82, x83), new_takeWhile10(x84, x85) -> new_takeWhile(Main.Pos(Main.Succ(x84)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x85))))) which results in the following constraint: (1) (new_takeWhile10(x82, x83)=new_takeWhile10(x84, x85) ==> new_takeWhile1(x82, x83, Main.Zero, Main.Zero)_>=_new_takeWhile10(x82, x83)) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (new_takeWhile1(x82, x83, Main.Zero, Main.Zero)_>=_new_takeWhile10(x82, x83)) For Pair new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) the following chains were created: *We consider the chain new_takeWhile10(x86, x87) -> new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87))))), new_takeWhile(Main.Pos(Main.Succ(x88)), Main.Pos(Main.Succ(x89))) -> H(x88, x89, anew_new_takeWhile1(x89, x88)) which results in the following constraint: (1) (new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))=new_takeWhile(Main.Pos(Main.Succ(x88)), Main.Pos(Main.Succ(x89))) ==> new_takeWhile10(x86, x87)_>=_new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (new_takeWhile10(x86, x87)_>=_new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))) To summarize, we get the following constraints P__>=_ for the following pairs. *new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x102)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x103)))))_>=_H(Main.Succ(Main.Succ(x102)), Main.Succ(Main.Succ(x103)), anew_new_takeWhile1(Main.Succ(Main.Succ(x103)), Main.Succ(Main.Succ(x102))))) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x105)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x105)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x105))))) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x108)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x109)))))_>=_H(Main.Succ(Main.Succ(x108)), Main.Succ(Main.Succ(x109)), anew_new_takeWhile1(Main.Succ(Main.Succ(x109)), Main.Succ(Main.Succ(x108))))) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) *H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) *(H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25)))_>=_new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))) *new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) *(new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40))_>=_new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))) *H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) *(H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero))_>=_new_takeWhile1(x66, x67, Main.Zero, Main.Zero)) *new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) *(new_takeWhile1(x82, x83, Main.Zero, Main.Zero)_>=_new_takeWhile10(x82, x83)) *new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) *(new_takeWhile10(x86, x87)_>=_new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) The TRS R consists of the following rules: new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) The set Q consists of the following terms: new_primPlusNat(Main.Succ(x0)) new_primPlusNat(Main.Zero) new_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) anew_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) new_new_takeWhile1(Main.Zero, Main.Succ(x0)) new_new_takeWhile1(Main.Zero, Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) the following chains were created: *We consider the chain new_takeWhile(Main.Pos(Main.Succ(x2)), Main.Pos(Main.Succ(x3))) -> H(x2, x3, anew_new_takeWhile1(x3, x2)), H(x4, x5, cons_new_takeWhile1(Main.Zero, Main.Succ(x6))) -> new_takeWhile1(x4, x5, Main.Zero, Main.Succ(x6)) which results in the following constraint: (1) (H(x2, x3, anew_new_takeWhile1(x3, x2))=H(x4, x5, cons_new_takeWhile1(Main.Zero, Main.Succ(x6))) ==> new_takeWhile(Main.Pos(Main.Succ(x2)), Main.Pos(Main.Succ(x3)))_>=_H(x2, x3, anew_new_takeWhile1(x3, x2))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (anew_new_takeWhile1(x3, x2)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(x2)), Main.Pos(Main.Succ(x3)))_>=_H(x2, x3, anew_new_takeWhile1(x3, x2))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on anew_new_takeWhile1(x3, x2)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) which results in the following new constraint: (3) (new_new_takeWhile1(x101, x100)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x100))), Main.Pos(Main.Succ(Main.Succ(x101))))_>=_H(Main.Succ(x100), Main.Succ(x101), anew_new_takeWhile1(Main.Succ(x101), Main.Succ(x100)))) We simplified constraint (3) using rule (V) (with possible (I) afterwards) using induction on new_new_takeWhile1(x101, x100)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) which results in the following new constraints: (4) (new_new_takeWhile1(x103, x102)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) & (\/x104:new_new_takeWhile1(x103, x102)=cons_new_takeWhile1(Main.Zero, Main.Succ(x104)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102)))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x102)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x103)))))_>=_H(Main.Succ(Main.Succ(x102)), Main.Succ(Main.Succ(x103)), anew_new_takeWhile1(Main.Succ(Main.Succ(x103)), Main.Succ(Main.Succ(x102))))) (5) (cons_new_takeWhile1(Main.Zero, Main.Succ(x105))=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x105)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x105)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x105))))) (6) (cons_new_takeWhile1(Main.Zero, Main.Zero)=cons_new_takeWhile1(Main.Zero, Main.Succ(x6)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (\/x104:new_new_takeWhile1(x103, x102)=cons_new_takeWhile1(Main.Zero, Main.Succ(x104)) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102)))) with sigma = [x104 / x6] which results in the following new constraint: (7) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x102)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x103)))))_>=_H(Main.Succ(Main.Succ(x102)), Main.Succ(Main.Succ(x103)), anew_new_takeWhile1(Main.Succ(Main.Succ(x103)), Main.Succ(Main.Succ(x102))))) We simplified constraint (5) using rules (I), (II), (IV) which results in the following new constraint: (8) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x105)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x105)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x105))))) We solved constraint (6) using rules (I), (II). *We consider the chain new_takeWhile(Main.Pos(Main.Succ(x9)), Main.Pos(Main.Succ(x10))) -> H(x9, x10, anew_new_takeWhile1(x10, x9)), H(x11, x12, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(x11, x12, Main.Zero, Main.Zero) which results in the following constraint: (1) (H(x9, x10, anew_new_takeWhile1(x10, x9))=H(x11, x12, cons_new_takeWhile1(Main.Zero, Main.Zero)) ==> new_takeWhile(Main.Pos(Main.Succ(x9)), Main.Pos(Main.Succ(x10)))_>=_H(x9, x10, anew_new_takeWhile1(x10, x9))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (anew_new_takeWhile1(x10, x9)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(x9)), Main.Pos(Main.Succ(x10)))_>=_H(x9, x10, anew_new_takeWhile1(x10, x9))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on anew_new_takeWhile1(x10, x9)=cons_new_takeWhile1(Main.Zero, Main.Zero) which results in the following new constraint: (3) (new_new_takeWhile1(x107, x106)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x106))), Main.Pos(Main.Succ(Main.Succ(x107))))_>=_H(Main.Succ(x106), Main.Succ(x107), anew_new_takeWhile1(Main.Succ(x107), Main.Succ(x106)))) We simplified constraint (3) using rule (V) (with possible (I) afterwards) using induction on new_new_takeWhile1(x107, x106)=cons_new_takeWhile1(Main.Zero, Main.Zero) which results in the following new constraints: (4) (new_new_takeWhile1(x109, x108)=cons_new_takeWhile1(Main.Zero, Main.Zero) & (new_new_takeWhile1(x109, x108)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108)))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x108)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x109)))))_>=_H(Main.Succ(Main.Succ(x108)), Main.Succ(Main.Succ(x109)), anew_new_takeWhile1(Main.Succ(Main.Succ(x109)), Main.Succ(Main.Succ(x108))))) (5) (cons_new_takeWhile1(Main.Zero, Main.Succ(x110))=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x110)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x110)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x110))))) (6) (cons_new_takeWhile1(Main.Zero, Main.Zero)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (new_new_takeWhile1(x109, x108)=cons_new_takeWhile1(Main.Zero, Main.Zero) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108)))) with sigma = [ ] which results in the following new constraint: (7) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x108)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x109)))))_>=_H(Main.Succ(Main.Succ(x108)), Main.Succ(Main.Succ(x109)), anew_new_takeWhile1(Main.Succ(Main.Succ(x109)), Main.Succ(Main.Succ(x108))))) We solved constraint (5) using rules (I), (II).We simplified constraint (6) using rules (I), (II) which results in the following new constraint: (8) (new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) For Pair H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) the following chains were created: *We consider the chain H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25))) -> new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25)), new_takeWhile1(x26, x27, Main.Zero, Main.Succ(x28)) -> new_takeWhile(Main.Pos(Main.Succ(x26)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x27))))) which results in the following constraint: (1) (new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))=new_takeWhile1(x26, x27, Main.Zero, Main.Succ(x28)) ==> H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25)))_>=_new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25)))_>=_new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))) For Pair new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) the following chains were created: *We consider the chain new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40)) -> new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39))))), new_takeWhile(Main.Pos(Main.Succ(x41)), Main.Pos(Main.Succ(x42))) -> H(x41, x42, anew_new_takeWhile1(x42, x41)) which results in the following constraint: (1) (new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))=new_takeWhile(Main.Pos(Main.Succ(x41)), Main.Pos(Main.Succ(x42))) ==> new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40))_>=_new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40))_>=_new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))) For Pair H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) the following chains were created: *We consider the chain H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(x66, x67, Main.Zero, Main.Zero), new_takeWhile1(x68, x69, Main.Zero, Main.Zero) -> new_takeWhile10(x68, x69) which results in the following constraint: (1) (new_takeWhile1(x66, x67, Main.Zero, Main.Zero)=new_takeWhile1(x68, x69, Main.Zero, Main.Zero) ==> H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero))_>=_new_takeWhile1(x66, x67, Main.Zero, Main.Zero)) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero))_>=_new_takeWhile1(x66, x67, Main.Zero, Main.Zero)) For Pair new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) the following chains were created: *We consider the chain new_takeWhile1(x82, x83, Main.Zero, Main.Zero) -> new_takeWhile10(x82, x83), new_takeWhile10(x84, x85) -> new_takeWhile(Main.Pos(Main.Succ(x84)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x85))))) which results in the following constraint: (1) (new_takeWhile10(x82, x83)=new_takeWhile10(x84, x85) ==> new_takeWhile1(x82, x83, Main.Zero, Main.Zero)_>=_new_takeWhile10(x82, x83)) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (new_takeWhile1(x82, x83, Main.Zero, Main.Zero)_>=_new_takeWhile10(x82, x83)) For Pair new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) the following chains were created: *We consider the chain new_takeWhile10(x86, x87) -> new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87))))), new_takeWhile(Main.Pos(Main.Succ(x88)), Main.Pos(Main.Succ(x89))) -> H(x88, x89, anew_new_takeWhile1(x89, x88)) which results in the following constraint: (1) (new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))=new_takeWhile(Main.Pos(Main.Succ(x88)), Main.Pos(Main.Succ(x89))) ==> new_takeWhile10(x86, x87)_>=_new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (new_takeWhile10(x86, x87)_>=_new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))) To summarize, we get the following constraints P__>=_ for the following pairs. *new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x102))), Main.Pos(Main.Succ(Main.Succ(x103))))_>=_H(Main.Succ(x102), Main.Succ(x103), anew_new_takeWhile1(Main.Succ(x103), Main.Succ(x102))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x102)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x103)))))_>=_H(Main.Succ(Main.Succ(x102)), Main.Succ(Main.Succ(x103)), anew_new_takeWhile1(Main.Succ(Main.Succ(x103)), Main.Succ(Main.Succ(x102))))) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x105)))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Succ(x105)), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Succ(x105))))) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(x108))), Main.Pos(Main.Succ(Main.Succ(x109))))_>=_H(Main.Succ(x108), Main.Succ(x109), anew_new_takeWhile1(Main.Succ(x109), Main.Succ(x108))) ==> new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Succ(x108)))), Main.Pos(Main.Succ(Main.Succ(Main.Succ(x109)))))_>=_H(Main.Succ(Main.Succ(x108)), Main.Succ(Main.Succ(x109)), anew_new_takeWhile1(Main.Succ(Main.Succ(x109)), Main.Succ(Main.Succ(x108))))) *(new_takeWhile(Main.Pos(Main.Succ(Main.Succ(Main.Zero))), Main.Pos(Main.Succ(Main.Succ(Main.Zero))))_>=_H(Main.Succ(Main.Zero), Main.Succ(Main.Zero), anew_new_takeWhile1(Main.Succ(Main.Zero), Main.Succ(Main.Zero)))) *H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) *(H(x23, x24, cons_new_takeWhile1(Main.Zero, Main.Succ(x25)))_>=_new_takeWhile1(x23, x24, Main.Zero, Main.Succ(x25))) *new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) *(new_takeWhile1(x38, x39, Main.Zero, Main.Succ(x40))_>=_new_takeWhile(Main.Pos(Main.Succ(x38)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x39)))))) *H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) *(H(x66, x67, cons_new_takeWhile1(Main.Zero, Main.Zero))_>=_new_takeWhile1(x66, x67, Main.Zero, Main.Zero)) *new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) *(new_takeWhile1(x82, x83, Main.Zero, Main.Zero)_>=_new_takeWhile10(x82, x83)) *new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) *(new_takeWhile10(x86, x87)_>=_new_takeWhile(Main.Pos(Main.Succ(x86)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(x87)))))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(H(x_1, x_2, x_3)) = -1 + x_1 - x_2 - x_3 POL(Main.Pos(x_1)) = 1 + x_1 POL(Main.Succ(x_1)) = 1 + x_1 POL(Main.Zero) = 0 POL(anew_new_takeWhile1(x_1, x_2)) = 0 POL(c) = -1 POL(cons_new_takeWhile1(x_1, x_2)) = 0 POL(new_new_takeWhile1(x_1, x_2)) = 0 POL(new_primPlusNat(x_1)) = x_1 POL(new_takeWhile(x_1, x_2)) = x_1 - x_2 POL(new_takeWhile1(x_1, x_2, x_3, x_4)) = -1 + x_1 - x_2 + x_3 POL(new_takeWhile10(x_1, x_2)) = -1 + x_1 - x_2 The following pairs are in P_>: new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) The following pairs are in P_bound: new_takeWhile(Main.Pos(Main.Succ(vz3100)), Main.Pos(Main.Succ(vz3000))) -> H(vz3100, vz3000, anew_new_takeWhile1(vz3000, vz3100)) The following rules are usable: new_new_takeWhile1(vz230, vz240) -> anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) Main.Zero -> new_primPlusNat(Main.Zero) Main.Succ(vz220) -> new_primPlusNat(Main.Succ(vz220)) new_new_takeWhile1(vz230, vz240) -> new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) cons_new_takeWhile1(Main.Zero, Main.Zero) -> new_new_takeWhile1(Main.Zero, Main.Zero) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Succ(vz240))) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) new_takeWhile1(vz21, vz22, Main.Zero, Main.Succ(vz240)) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) H(vz21, vz22, cons_new_takeWhile1(Main.Zero, Main.Zero)) -> new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) new_takeWhile1(vz21, vz22, Main.Zero, Main.Zero) -> new_takeWhile10(vz21, vz22) new_takeWhile10(vz21, vz22) -> new_takeWhile(Main.Pos(Main.Succ(vz21)), Main.Pos(Main.Succ(Main.Succ(new_primPlusNat(vz22))))) The TRS R consists of the following rules: new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) anew_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Succ(vz230), Main.Succ(vz240)) -> new_new_takeWhile1(vz230, vz240) new_new_takeWhile1(Main.Zero, Main.Succ(vz240)) -> cons_new_takeWhile1(Main.Zero, Main.Succ(vz240)) new_new_takeWhile1(Main.Zero, Main.Zero) -> cons_new_takeWhile1(Main.Zero, Main.Zero) The set Q consists of the following terms: new_primPlusNat(Main.Succ(x0)) new_primPlusNat(Main.Zero) new_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) anew_new_takeWhile1(Main.Succ(x0), Main.Succ(x1)) new_new_takeWhile1(Main.Zero, Main.Succ(x0)) new_new_takeWhile1(Main.Zero, Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 5 less nodes. ---------------------------------------- (53) TRUE ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile1(vz21, vz22, Main.Succ(vz230), Main.Succ(vz240)) -> new_takeWhile1(vz21, vz22, vz230, vz240) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_takeWhile1(vz21, vz22, Main.Succ(vz230), Main.Succ(vz240)) -> new_takeWhile1(vz21, vz22, vz230, vz240) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 4 ---------------------------------------- (56) YES ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile(Main.Pos(vz310), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile(Main.Pos(vz310), new_psMyInt0(vz3000)) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) QDPSizeChangeProof (EQUIVALENT) We used the following order together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem. Order:Polynomial interpretation [POLO]: POL(Main.Neg(x_1)) = x_1 POL(Main.Pos(x_1)) = 1 POL(Main.Succ(x_1)) = 1 + x_1 POL(Main.Zero) = 1 POL(new_psMyInt0(x_1)) = x_1 From the DPs we obtained the following set of size-change graphs: *new_takeWhile(Main.Pos(vz310), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile(Main.Pos(vz310), new_psMyInt0(vz3000)) (allowed arguments on rhs = {1, 2}) The graph contains the following edges 1 >= 1, 2 > 2 We oriented the following set of usable rules [AAECC05,FROCOS05]. new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) ---------------------------------------- (59) YES ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: new_takeWhile(Main.Neg(Main.Succ(vz3100)), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile11(vz3100, vz3000, new_psMyInt0(vz3000), vz3100, vz3000) new_takeWhile11(vz64, vz65, vz66, Main.Zero, Main.Succ(vz680)) -> new_takeWhile(Main.Neg(Main.Succ(vz64)), vz66) new_takeWhile11(vz64, vz65, vz66, Main.Succ(vz670), Main.Succ(vz680)) -> new_takeWhile11(vz64, vz65, vz66, vz670, vz680) new_takeWhile11(vz64, vz65, vz66, Main.Zero, Main.Zero) -> new_takeWhile12(vz64, vz65, vz66) new_takeWhile12(vz64, vz65, vz66) -> new_takeWhile(Main.Neg(Main.Succ(vz64)), vz66) The TRS R consists of the following rules: new_psMyInt1 -> Main.Pos(Main.Succ(Main.Zero)) new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_primPlusNat(Main.Zero) -> Main.Zero new_primPlusNat(Main.Succ(vz220)) -> Main.Succ(vz220) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) new_psMyInt -> Main.Pos(Main.Succ(Main.Zero)) The set Q consists of the following terms: new_psMyInt1 new_psMyInt0(Main.Zero) new_primPlusNat(Main.Succ(x0)) new_psMyInt new_psMyInt0(Main.Succ(x0)) new_primPlusNat(Main.Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QDPSizeChangeProof (EQUIVALENT) We used the following order together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem. Order:Polynomial interpretation [POLO]: POL(Main.Neg(x_1)) = x_1 POL(Main.Pos(x_1)) = 0 POL(Main.Succ(x_1)) = 1 + x_1 POL(Main.Zero) = 1 POL(new_psMyInt0(x_1)) = x_1 From the DPs we obtained the following set of size-change graphs: *new_takeWhile11(vz64, vz65, vz66, Main.Zero, Main.Succ(vz680)) -> new_takeWhile(Main.Neg(Main.Succ(vz64)), vz66) (allowed arguments on rhs = {1, 2}) The graph contains the following edges 3 >= 2 *new_takeWhile12(vz64, vz65, vz66) -> new_takeWhile(Main.Neg(Main.Succ(vz64)), vz66) (allowed arguments on rhs = {1, 2}) The graph contains the following edges 3 >= 2 *new_takeWhile(Main.Neg(Main.Succ(vz3100)), Main.Neg(Main.Succ(vz3000))) -> new_takeWhile11(vz3100, vz3000, new_psMyInt0(vz3000), vz3100, vz3000) (allowed arguments on rhs = {1, 2, 3, 4, 5}) The graph contains the following edges 1 > 1, 2 > 2, 2 > 3, 1 > 4, 2 > 5 *new_takeWhile11(vz64, vz65, vz66, Main.Succ(vz670), Main.Succ(vz680)) -> new_takeWhile11(vz64, vz65, vz66, vz670, vz680) (allowed arguments on rhs = {1, 2, 3, 4, 5}) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 > 4, 5 > 5 *new_takeWhile11(vz64, vz65, vz66, Main.Zero, Main.Zero) -> new_takeWhile12(vz64, vz65, vz66) (allowed arguments on rhs = {1, 2, 3}) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3 We oriented the following set of usable rules [AAECC05,FROCOS05]. new_psMyInt0(Main.Zero) -> Main.Pos(Main.Zero) new_psMyInt0(Main.Succ(vz30000)) -> Main.Neg(Main.Succ(vz30000)) ---------------------------------------- (62) YES