/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [EQUIVALENT, 14 ms] (6) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Tup0 = Tup0 ; data Tup2 a b = Tup2 a b ; indexTup0 :: Tup2 Tup0 Tup0 -> Tup0 -> MyInt; indexTup0 (Tup2 Tup0 Tup0) Tup0 = Main.Pos Main.Zero; null :: List a -> MyBool; null Nil = MyTrue; null (Cons vx vy) = MyFalse; otherwise :: MyBool; otherwise = MyTrue; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusInt :: MyInt -> MyInt -> MyInt; primPlusInt (Main.Pos x) (Main.Neg y) = primMinusNat x y; primPlusInt (Main.Neg x) (Main.Pos y) = primMinusNat y x; primPlusInt (Main.Neg x) (Main.Neg y) = Main.Neg (primPlusNat x y); primPlusInt (Main.Pos x) (Main.Pos y) = Main.Pos (primPlusNat x y); primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); psMyInt :: MyInt -> MyInt -> MyInt; psMyInt = primPlusInt; rangeSize0 vv vw MyTrue = psMyInt (indexTup0 (Tup2 vv vw) vw) (Main.Pos (Main.Succ Main.Zero)); rangeSize1 vv vw MyTrue = Main.Pos Main.Zero; rangeSize1 vv vw MyFalse = rangeSize0 vv vw otherwise; rangeSize2 (Tup2 vv vw) = rangeSize1 vv vw (null (rangeTup0 (Tup2 vv vw))); rangeSizeTup0 :: Tup2 Tup0 Tup0 -> MyInt; rangeSizeTup0 (Tup2 vv vw) = rangeSize2 (Tup2 vv vw); rangeTup0 :: Tup2 Tup0 Tup0 -> List Tup0; rangeTup0 (Tup2 Tup0 Tup0) = Cons Tup0 Nil; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Tup0 = Tup0 ; data Tup2 b a = Tup2 b a ; indexTup0 :: Tup2 Tup0 Tup0 -> Tup0 -> MyInt; indexTup0 (Tup2 Tup0 Tup0) Tup0 = Main.Pos Main.Zero; null :: List a -> MyBool; null Nil = MyTrue; null (Cons vx vy) = MyFalse; otherwise :: MyBool; otherwise = MyTrue; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusInt :: MyInt -> MyInt -> MyInt; primPlusInt (Main.Pos x) (Main.Neg y) = primMinusNat x y; primPlusInt (Main.Neg x) (Main.Pos y) = primMinusNat y x; primPlusInt (Main.Neg x) (Main.Neg y) = Main.Neg (primPlusNat x y); primPlusInt (Main.Pos x) (Main.Pos y) = Main.Pos (primPlusNat x y); primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); psMyInt :: MyInt -> MyInt -> MyInt; psMyInt = primPlusInt; rangeSize0 vv vw MyTrue = psMyInt (indexTup0 (Tup2 vv vw) vw) (Main.Pos (Main.Succ Main.Zero)); rangeSize1 vv vw MyTrue = Main.Pos Main.Zero; rangeSize1 vv vw MyFalse = rangeSize0 vv vw otherwise; rangeSize2 (Tup2 vv vw) = rangeSize1 vv vw (null (rangeTup0 (Tup2 vv vw))); rangeSizeTup0 :: Tup2 Tup0 Tup0 -> MyInt; rangeSizeTup0 (Tup2 vv vw) = rangeSize2 (Tup2 vv vw); rangeTup0 :: Tup2 Tup0 Tup0 -> List Tup0; rangeTup0 (Tup2 Tup0 Tup0) = Cons Tup0 Nil; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Tup0 = Tup0 ; data Tup2 a b = Tup2 a b ; indexTup0 :: Tup2 Tup0 Tup0 -> Tup0 -> MyInt; indexTup0 (Tup2 Tup0 Tup0) Tup0 = Main.Pos Main.Zero; null :: List a -> MyBool; null Nil = MyTrue; null (Cons vx vy) = MyFalse; otherwise :: MyBool; otherwise = MyTrue; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusInt :: MyInt -> MyInt -> MyInt; primPlusInt (Main.Pos x) (Main.Neg y) = primMinusNat x y; primPlusInt (Main.Neg x) (Main.Pos y) = primMinusNat y x; primPlusInt (Main.Neg x) (Main.Neg y) = Main.Neg (primPlusNat x y); primPlusInt (Main.Pos x) (Main.Pos y) = Main.Pos (primPlusNat x y); primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); psMyInt :: MyInt -> MyInt -> MyInt; psMyInt = primPlusInt; rangeSize0 vv vw MyTrue = psMyInt (indexTup0 (Tup2 vv vw) vw) (Main.Pos (Main.Succ Main.Zero)); rangeSize1 vv vw MyTrue = Main.Pos Main.Zero; rangeSize1 vv vw MyFalse = rangeSize0 vv vw otherwise; rangeSize2 (Tup2 vv vw) = rangeSize1 vv vw (null (rangeTup0 (Tup2 vv vw))); rangeSizeTup0 :: Tup2 Tup0 Tup0 -> MyInt; rangeSizeTup0 (Tup2 vv vw) = rangeSize2 (Tup2 vv vw); rangeTup0 :: Tup2 Tup0 Tup0 -> List Tup0; rangeTup0 (Tup2 Tup0 Tup0) = Cons Tup0 Nil; } ---------------------------------------- (5) Narrow (EQUIVALENT) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="rangeSizeTup0",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="rangeSizeTup0 wv3",fontsize=16,color="burlywood",shape="triangle"];19[label="wv3/Tup2 wv30 wv31",fontsize=10,color="white",style="solid",shape="box"];3 -> 19[label="",style="solid", color="burlywood", weight=9]; 19 -> 4[label="",style="solid", color="burlywood", weight=3]; 4[label="rangeSizeTup0 (Tup2 wv30 wv31)",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="rangeSize2 (Tup2 wv30 wv31)",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="rangeSize1 wv30 wv31 (null (rangeTup0 (Tup2 wv30 wv31)))",fontsize=16,color="burlywood",shape="box"];20[label="wv30/Tup0",fontsize=10,color="white",style="solid",shape="box"];6 -> 20[label="",style="solid", color="burlywood", weight=9]; 20 -> 7[label="",style="solid", color="burlywood", weight=3]; 7[label="rangeSize1 Tup0 wv31 (null (rangeTup0 (Tup2 Tup0 wv31)))",fontsize=16,color="burlywood",shape="box"];21[label="wv31/Tup0",fontsize=10,color="white",style="solid",shape="box"];7 -> 21[label="",style="solid", color="burlywood", weight=9]; 21 -> 8[label="",style="solid", color="burlywood", weight=3]; 8[label="rangeSize1 Tup0 Tup0 (null (rangeTup0 (Tup2 Tup0 Tup0)))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="rangeSize1 Tup0 Tup0 (null (Cons Tup0 Nil))",fontsize=16,color="black",shape="box"];9 -> 10[label="",style="solid", color="black", weight=3]; 10[label="rangeSize1 Tup0 Tup0 MyFalse",fontsize=16,color="black",shape="box"];10 -> 11[label="",style="solid", color="black", weight=3]; 11[label="rangeSize0 Tup0 Tup0 otherwise",fontsize=16,color="black",shape="box"];11 -> 12[label="",style="solid", color="black", weight=3]; 12[label="rangeSize0 Tup0 Tup0 MyTrue",fontsize=16,color="black",shape="box"];12 -> 13[label="",style="solid", color="black", weight=3]; 13[label="psMyInt (indexTup0 (Tup2 Tup0 Tup0) Tup0) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];13 -> 14[label="",style="solid", color="black", weight=3]; 14[label="primPlusInt (indexTup0 (Tup2 Tup0 Tup0) Tup0) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];14 -> 15[label="",style="solid", color="black", weight=3]; 15[label="primPlusInt (Pos Zero) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];15 -> 16[label="",style="solid", color="black", weight=3]; 16[label="Pos (primPlusNat Zero (Succ Zero))",fontsize=16,color="green",shape="box"];16 -> 17[label="",style="dashed", color="green", weight=3]; 17[label="primPlusNat Zero (Succ Zero)",fontsize=16,color="black",shape="box"];17 -> 18[label="",style="solid", color="black", weight=3]; 18[label="Succ Zero",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) YES