/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) AND (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; class Monad a => MonadPlus a where { mplus :: MonadPlus a => a b -> a b -> a b; mzero :: MonadPlus a => a b; } instance MonadPlus Maybe where { } instance MonadPlus [] where { mplus = (++); mzero = []; } msum :: MonadPlus a => [a b] -> a b; msum = foldr mplus mzero; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; class Monad a => MonadPlus a where { mplus :: MonadPlus a => a b -> a b -> a b; mzero :: MonadPlus a => a b; } instance MonadPlus Maybe where { } instance MonadPlus [] where { mplus = (++); mzero = []; } msum :: MonadPlus b => [b a] -> b a; msum = foldr mplus mzero; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; class Monad a => MonadPlus a where { mplus :: MonadPlus a => a b -> a b -> a b; mzero :: MonadPlus a => a b; } instance MonadPlus Maybe where { } instance MonadPlus [] where { mplus = (++); mzero = []; } msum :: MonadPlus b => [b a] -> b a; msum = foldr mplus mzero; } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.msum",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.msum vy3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 4[label="foldr Monad.mplus Monad.mzero vy3",fontsize=16,color="burlywood",shape="triangle"];20[label="vy3/vy30 : vy31",fontsize=10,color="white",style="solid",shape="box"];4 -> 20[label="",style="solid", color="burlywood", weight=9]; 20 -> 5[label="",style="solid", color="burlywood", weight=3]; 21[label="vy3/[]",fontsize=10,color="white",style="solid",shape="box"];4 -> 21[label="",style="solid", color="burlywood", weight=9]; 21 -> 6[label="",style="solid", color="burlywood", weight=3]; 5[label="foldr Monad.mplus Monad.mzero (vy30 : vy31)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="foldr Monad.mplus Monad.mzero []",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7 -> 9[label="",style="dashed", color="red", weight=0]; 7[label="Monad.mplus vy30 (foldr Monad.mplus Monad.mzero vy31)",fontsize=16,color="magenta"];7 -> 10[label="",style="dashed", color="magenta", weight=3]; 8[label="Monad.mzero",fontsize=16,color="black",shape="box"];8 -> 11[label="",style="solid", color="black", weight=3]; 10 -> 4[label="",style="dashed", color="red", weight=0]; 10[label="foldr Monad.mplus Monad.mzero vy31",fontsize=16,color="magenta"];10 -> 12[label="",style="dashed", color="magenta", weight=3]; 9[label="Monad.mplus vy30 vy4",fontsize=16,color="black",shape="triangle"];9 -> 13[label="",style="solid", color="black", weight=3]; 11[label="[]",fontsize=16,color="green",shape="box"];12[label="vy31",fontsize=16,color="green",shape="box"];13[label="(++) vy30 vy4",fontsize=16,color="burlywood",shape="triangle"];22[label="vy30/vy300 : vy301",fontsize=10,color="white",style="solid",shape="box"];13 -> 22[label="",style="solid", color="burlywood", weight=9]; 22 -> 14[label="",style="solid", color="burlywood", weight=3]; 23[label="vy30/[]",fontsize=10,color="white",style="solid",shape="box"];13 -> 23[label="",style="solid", color="burlywood", weight=9]; 23 -> 15[label="",style="solid", color="burlywood", weight=3]; 14[label="(++) (vy300 : vy301) vy4",fontsize=16,color="black",shape="box"];14 -> 16[label="",style="solid", color="black", weight=3]; 15[label="(++) [] vy4",fontsize=16,color="black",shape="box"];15 -> 17[label="",style="solid", color="black", weight=3]; 16[label="vy300 : vy301 ++ vy4",fontsize=16,color="green",shape="box"];16 -> 18[label="",style="dashed", color="green", weight=3]; 17[label="vy4",fontsize=16,color="green",shape="box"];18 -> 13[label="",style="dashed", color="red", weight=0]; 18[label="vy301 ++ vy4",fontsize=16,color="magenta"];18 -> 19[label="",style="dashed", color="magenta", weight=3]; 19[label="vy301",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(vy300, vy301), vy4, h) -> new_psPs(vy301, vy4, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(vy300, vy301), vy4, h) -> new_psPs(vy301, vy4, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldr(:(vy30, vy31), h) -> new_foldr(vy31, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldr(:(vy30, vy31), h) -> new_foldr(vy31, h) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (12) YES