/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) QDP (7) QDPSizeChangeProof [EQUIVALENT, 0 ms] (8) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } foldFM_GE :: Ord b => (b -> a -> c -> c) -> c -> b -> FiniteMap b a -> c; foldFM_GE k z fr EmptyFM = z; foldFM_GE k z fr (Branch key elt _ fm_l fm_r) | key >= fr = foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l | otherwise = foldFM_GE k z fr fm_r; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } foldFM_GE :: Ord b => (b -> c -> a -> a) -> a -> b -> FiniteMap b c -> a; foldFM_GE k z fr EmptyFM = z; foldFM_GE k z fr (Branch key elt vy fm_l fm_r) | key >= fr = foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l | otherwise = foldFM_GE k z fr fm_r; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "foldFM_GE k z fr EmptyFM = z; foldFM_GE k z fr (Branch key elt vy fm_l fm_r)|key >= frfoldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l|otherwisefoldFM_GE k z fr fm_r; " is transformed to "foldFM_GE k z fr EmptyFM = foldFM_GE3 k z fr EmptyFM; foldFM_GE k z fr (Branch key elt vy fm_l fm_r) = foldFM_GE2 k z fr (Branch key elt vy fm_l fm_r); " "foldFM_GE0 k z fr key elt vy fm_l fm_r True = foldFM_GE k z fr fm_r; " "foldFM_GE1 k z fr key elt vy fm_l fm_r True = foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l; foldFM_GE1 k z fr key elt vy fm_l fm_r False = foldFM_GE0 k z fr key elt vy fm_l fm_r otherwise; " "foldFM_GE2 k z fr (Branch key elt vy fm_l fm_r) = foldFM_GE1 k z fr key elt vy fm_l fm_r (key >= fr); " "foldFM_GE3 k z fr EmptyFM = z; foldFM_GE3 wv ww wx wy = foldFM_GE2 wv ww wx wy; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } foldFM_GE :: Ord c => (c -> b -> a -> a) -> a -> c -> FiniteMap c b -> a; foldFM_GE k z fr EmptyFM = foldFM_GE3 k z fr EmptyFM; foldFM_GE k z fr (Branch key elt vy fm_l fm_r) = foldFM_GE2 k z fr (Branch key elt vy fm_l fm_r); foldFM_GE0 k z fr key elt vy fm_l fm_r True = foldFM_GE k z fr fm_r; foldFM_GE1 k z fr key elt vy fm_l fm_r True = foldFM_GE k (k key elt (foldFM_GE k z fr fm_r)) fr fm_l; foldFM_GE1 k z fr key elt vy fm_l fm_r False = foldFM_GE0 k z fr key elt vy fm_l fm_r otherwise; foldFM_GE2 k z fr (Branch key elt vy fm_l fm_r) = foldFM_GE1 k z fr key elt vy fm_l fm_r (key >= fr); foldFM_GE3 k z fr EmptyFM = z; foldFM_GE3 wv ww wx wy = foldFM_GE2 wv ww wx wy; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.foldFM_GE",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.foldFM_GE wz3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="FiniteMap.foldFM_GE wz3 wz4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="FiniteMap.foldFM_GE wz3 wz4 wz5",fontsize=16,color="grey",shape="box"];5 -> 6[label="",style="dashed", color="grey", weight=3]; 6[label="FiniteMap.foldFM_GE wz3 wz4 wz5 wz6",fontsize=16,color="burlywood",shape="triangle"];29[label="wz6/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6 -> 29[label="",style="solid", color="burlywood", weight=9]; 29 -> 7[label="",style="solid", color="burlywood", weight=3]; 30[label="wz6/FiniteMap.Branch wz60 wz61 wz62 wz63 wz64",fontsize=10,color="white",style="solid",shape="box"];6 -> 30[label="",style="solid", color="burlywood", weight=9]; 30 -> 8[label="",style="solid", color="burlywood", weight=3]; 7[label="FiniteMap.foldFM_GE wz3 wz4 wz5 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="FiniteMap.foldFM_GE wz3 wz4 wz5 (FiniteMap.Branch wz60 wz61 wz62 wz63 wz64)",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="FiniteMap.foldFM_GE3 wz3 wz4 wz5 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10[label="FiniteMap.foldFM_GE2 wz3 wz4 wz5 (FiniteMap.Branch wz60 wz61 wz62 wz63 wz64)",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 11[label="wz4",fontsize=16,color="green",shape="box"];12[label="FiniteMap.foldFM_GE1 wz3 wz4 wz5 wz60 wz61 wz62 wz63 wz64 (wz60 >= wz5)",fontsize=16,color="black",shape="box"];12 -> 13[label="",style="solid", color="black", weight=3]; 13[label="FiniteMap.foldFM_GE1 wz3 wz4 wz5 wz60 wz61 wz62 wz63 wz64 (compare wz60 wz5 /= LT)",fontsize=16,color="black",shape="box"];13 -> 14[label="",style="solid", color="black", weight=3]; 14[label="FiniteMap.foldFM_GE1 wz3 wz4 wz5 wz60 wz61 wz62 wz63 wz64 (not (compare wz60 wz5 == LT))",fontsize=16,color="burlywood",shape="box"];31[label="wz60/()",fontsize=10,color="white",style="solid",shape="box"];14 -> 31[label="",style="solid", color="burlywood", weight=9]; 31 -> 15[label="",style="solid", color="burlywood", weight=3]; 15[label="FiniteMap.foldFM_GE1 wz3 wz4 wz5 () wz61 wz62 wz63 wz64 (not (compare () wz5 == LT))",fontsize=16,color="burlywood",shape="box"];32[label="wz5/()",fontsize=10,color="white",style="solid",shape="box"];15 -> 32[label="",style="solid", color="burlywood", weight=9]; 32 -> 16[label="",style="solid", color="burlywood", weight=3]; 16[label="FiniteMap.foldFM_GE1 wz3 wz4 () () wz61 wz62 wz63 wz64 (not (compare () () == LT))",fontsize=16,color="black",shape="box"];16 -> 17[label="",style="solid", color="black", weight=3]; 17[label="FiniteMap.foldFM_GE1 wz3 wz4 () () wz61 wz62 wz63 wz64 (not (EQ == LT))",fontsize=16,color="black",shape="box"];17 -> 18[label="",style="solid", color="black", weight=3]; 18[label="FiniteMap.foldFM_GE1 wz3 wz4 () () wz61 wz62 wz63 wz64 (not False)",fontsize=16,color="black",shape="box"];18 -> 19[label="",style="solid", color="black", weight=3]; 19[label="FiniteMap.foldFM_GE1 wz3 wz4 () () wz61 wz62 wz63 wz64 True",fontsize=16,color="black",shape="box"];19 -> 20[label="",style="solid", color="black", weight=3]; 20 -> 6[label="",style="dashed", color="red", weight=0]; 20[label="FiniteMap.foldFM_GE wz3 (wz3 () wz61 (FiniteMap.foldFM_GE wz3 wz4 () wz64)) () wz63",fontsize=16,color="magenta"];20 -> 21[label="",style="dashed", color="magenta", weight=3]; 20 -> 22[label="",style="dashed", color="magenta", weight=3]; 20 -> 23[label="",style="dashed", color="magenta", weight=3]; 21[label="wz3 () wz61 (FiniteMap.foldFM_GE wz3 wz4 () wz64)",fontsize=16,color="green",shape="box"];21 -> 24[label="",style="dashed", color="green", weight=3]; 21 -> 25[label="",style="dashed", color="green", weight=3]; 21 -> 26[label="",style="dashed", color="green", weight=3]; 22[label="wz63",fontsize=16,color="green",shape="box"];23[label="()",fontsize=16,color="green",shape="box"];24[label="()",fontsize=16,color="green",shape="box"];25[label="wz61",fontsize=16,color="green",shape="box"];26 -> 6[label="",style="dashed", color="red", weight=0]; 26[label="FiniteMap.foldFM_GE wz3 wz4 () wz64",fontsize=16,color="magenta"];26 -> 27[label="",style="dashed", color="magenta", weight=3]; 26 -> 28[label="",style="dashed", color="magenta", weight=3]; 27[label="wz64",fontsize=16,color="green",shape="box"];28[label="()",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldFM_GE(wz3, @0, Branch(@0, wz61, wz62, wz63, wz64), h, ba) -> new_foldFM_GE(wz3, @0, wz64, h, ba) new_foldFM_GE(wz3, @0, Branch(@0, wz61, wz62, wz63, wz64), h, ba) -> new_foldFM_GE(wz3, @0, wz63, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldFM_GE(wz3, @0, Branch(@0, wz61, wz62, wz63, wz64), h, ba) -> new_foldFM_GE(wz3, @0, wz64, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5 *new_foldFM_GE(wz3, @0, Branch(@0, wz61, wz62, wz63, wz64), h, ba) -> new_foldFM_GE(wz3, @0, wz63, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 2, 3 > 3, 4 >= 4, 5 >= 5 ---------------------------------------- (8) YES