/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) AND (7) QDP (8) DependencyGraphProof [EQUIVALENT, 0 ms] (9) AND (10) QDP (11) TransformationProof [EQUIVALENT, 5 ms] (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) TransformationProof [EQUIVALENT, 0 ms] (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) DependencyGraphProof [EQUIVALENT, 0 ms] (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) UsableRulesProof [EQUIVALENT, 0 ms] (36) QDP (37) QReductionProof [EQUIVALENT, 0 ms] (38) QDP (39) QDPSizeChangeProof [EQUIVALENT, 0 ms] (40) YES (41) QDP (42) QDPOrderProof [EQUIVALENT, 48 ms] (43) QDP (44) DependencyGraphProof [EQUIVALENT, 0 ms] (45) QDP (46) QDPSizeChangeProof [EQUIVALENT, 0 ms] (47) YES (48) QDP (49) DependencyGraphProof [EQUIVALENT, 0 ms] (50) AND (51) QDP (52) MRRProof [EQUIVALENT, 0 ms] (53) QDP (54) PisEmptyProof [EQUIVALENT, 0 ms] (55) YES (56) QDP (57) QDPOrderProof [EQUIVALENT, 5 ms] (58) QDP (59) DependencyGraphProof [EQUIVALENT, 0 ms] (60) QDP (61) QDPSizeChangeProof [EQUIVALENT, 0 ms] (62) YES (63) QDP (64) QDPSizeChangeProof [EQUIVALENT, 0 ms] (65) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ratio a = CnPc a a ; data Tup2 b a = Tup2 b a ; error :: a; error = stop MyTrue; fst :: Tup2 a b -> a; fst (Tup2 x _) = x; primDivNatS :: Main.Nat -> Main.Nat -> Main.Nat; primDivNatS Main.Zero Main.Zero = Main.error; primDivNatS (Main.Succ x) Main.Zero = Main.error; primDivNatS (Main.Succ x) (Main.Succ y) = primDivNatS0 x y (primGEqNatS x y); primDivNatS Main.Zero (Main.Succ x) = Main.Zero; primDivNatS0 x y MyTrue = Main.Succ (primDivNatS (primMinusNatS x y) (Main.Succ y)); primDivNatS0 x y MyFalse = Main.Zero; primGEqNatS :: Main.Nat -> Main.Nat -> MyBool; primGEqNatS (Main.Succ x) Main.Zero = MyTrue; primGEqNatS (Main.Succ x) (Main.Succ y) = primGEqNatS x y; primGEqNatS Main.Zero (Main.Succ x) = MyFalse; primGEqNatS Main.Zero Main.Zero = MyTrue; primMinusNatS :: Main.Nat -> Main.Nat -> Main.Nat; primMinusNatS (Main.Succ x) (Main.Succ y) = primMinusNatS x y; primMinusNatS Main.Zero (Main.Succ y) = Main.Zero; primMinusNatS x Main.Zero = x; primModNatS :: Main.Nat -> Main.Nat -> Main.Nat; primModNatS Main.Zero Main.Zero = Main.error; primModNatS Main.Zero (Main.Succ x) = Main.Zero; primModNatS (Main.Succ x) Main.Zero = Main.error; primModNatS (Main.Succ x) (Main.Succ Main.Zero) = Main.Zero; primModNatS (Main.Succ x) (Main.Succ (Main.Succ y)) = primModNatS0 x y (primGEqNatS x (Main.Succ y)); primModNatS0 x y MyTrue = primModNatS (primMinusNatS x (Main.Succ y)) (Main.Succ (Main.Succ y)); primModNatS0 x y MyFalse = Main.Succ x; primQrmInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; primQrmInt x y = Tup2 (primQuotInt x y) (primRemInt x y); primQuotInt :: MyInt -> MyInt -> MyInt; primQuotInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); primQuotInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); primQuotInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); primQuotInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); primQuotInt vx vy = Main.error; primRemInt :: MyInt -> MyInt -> MyInt; primRemInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); primRemInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); primRemInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); primRemInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); primRemInt vv vw = Main.error; properFraction :: Ratio MyInt -> Tup2 MyInt (Ratio MyInt); properFraction (CnPc x y) = Tup2 (qProperFraction x y) (CnPc (rProperFraction x y) y); qProperFraction :: MyInt -> MyInt -> MyInt; qProperFraction x y = fst (quotRemMyInt x y); quotRemMyInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; quotRemMyInt = primQrmInt; rProperFraction :: MyInt -> MyInt -> MyInt; rProperFraction x y = snd (quotRemMyInt x y); snd :: Tup2 a b -> b; snd (Tup2 _ y) = y; stop :: MyBool -> a; stop MyFalse = stop MyFalse; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ratio a = CnPc a a ; data Tup2 b a = Tup2 b a ; error :: a; error = stop MyTrue; fst :: Tup2 b a -> b; fst (Tup2 x wv) = x; primDivNatS :: Main.Nat -> Main.Nat -> Main.Nat; primDivNatS Main.Zero Main.Zero = Main.error; primDivNatS (Main.Succ x) Main.Zero = Main.error; primDivNatS (Main.Succ x) (Main.Succ y) = primDivNatS0 x y (primGEqNatS x y); primDivNatS Main.Zero (Main.Succ x) = Main.Zero; primDivNatS0 x y MyTrue = Main.Succ (primDivNatS (primMinusNatS x y) (Main.Succ y)); primDivNatS0 x y MyFalse = Main.Zero; primGEqNatS :: Main.Nat -> Main.Nat -> MyBool; primGEqNatS (Main.Succ x) Main.Zero = MyTrue; primGEqNatS (Main.Succ x) (Main.Succ y) = primGEqNatS x y; primGEqNatS Main.Zero (Main.Succ x) = MyFalse; primGEqNatS Main.Zero Main.Zero = MyTrue; primMinusNatS :: Main.Nat -> Main.Nat -> Main.Nat; primMinusNatS (Main.Succ x) (Main.Succ y) = primMinusNatS x y; primMinusNatS Main.Zero (Main.Succ y) = Main.Zero; primMinusNatS x Main.Zero = x; primModNatS :: Main.Nat -> Main.Nat -> Main.Nat; primModNatS Main.Zero Main.Zero = Main.error; primModNatS Main.Zero (Main.Succ x) = Main.Zero; primModNatS (Main.Succ x) Main.Zero = Main.error; primModNatS (Main.Succ x) (Main.Succ Main.Zero) = Main.Zero; primModNatS (Main.Succ x) (Main.Succ (Main.Succ y)) = primModNatS0 x y (primGEqNatS x (Main.Succ y)); primModNatS0 x y MyTrue = primModNatS (primMinusNatS x (Main.Succ y)) (Main.Succ (Main.Succ y)); primModNatS0 x y MyFalse = Main.Succ x; primQrmInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; primQrmInt x y = Tup2 (primQuotInt x y) (primRemInt x y); primQuotInt :: MyInt -> MyInt -> MyInt; primQuotInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); primQuotInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); primQuotInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); primQuotInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); primQuotInt vx vy = Main.error; primRemInt :: MyInt -> MyInt -> MyInt; primRemInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); primRemInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); primRemInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); primRemInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); primRemInt vv vw = Main.error; properFraction :: Ratio MyInt -> Tup2 MyInt (Ratio MyInt); properFraction (CnPc x y) = Tup2 (qProperFraction x y) (CnPc (rProperFraction x y) y); qProperFraction :: MyInt -> MyInt -> MyInt; qProperFraction x y = fst (quotRemMyInt x y); quotRemMyInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; quotRemMyInt = primQrmInt; rProperFraction :: MyInt -> MyInt -> MyInt; rProperFraction x y = snd (quotRemMyInt x y); snd :: Tup2 b a -> a; snd (Tup2 ww y) = y; stop :: MyBool -> a; stop MyFalse = stop MyFalse; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ratio a = CnPc a a ; data Tup2 a b = Tup2 a b ; error :: a; error = stop MyTrue; fst :: Tup2 b a -> b; fst (Tup2 x wv) = x; primDivNatS :: Main.Nat -> Main.Nat -> Main.Nat; primDivNatS Main.Zero Main.Zero = Main.error; primDivNatS (Main.Succ x) Main.Zero = Main.error; primDivNatS (Main.Succ x) (Main.Succ y) = primDivNatS0 x y (primGEqNatS x y); primDivNatS Main.Zero (Main.Succ x) = Main.Zero; primDivNatS0 x y MyTrue = Main.Succ (primDivNatS (primMinusNatS x y) (Main.Succ y)); primDivNatS0 x y MyFalse = Main.Zero; primGEqNatS :: Main.Nat -> Main.Nat -> MyBool; primGEqNatS (Main.Succ x) Main.Zero = MyTrue; primGEqNatS (Main.Succ x) (Main.Succ y) = primGEqNatS x y; primGEqNatS Main.Zero (Main.Succ x) = MyFalse; primGEqNatS Main.Zero Main.Zero = MyTrue; primMinusNatS :: Main.Nat -> Main.Nat -> Main.Nat; primMinusNatS (Main.Succ x) (Main.Succ y) = primMinusNatS x y; primMinusNatS Main.Zero (Main.Succ y) = Main.Zero; primMinusNatS x Main.Zero = x; primModNatS :: Main.Nat -> Main.Nat -> Main.Nat; primModNatS Main.Zero Main.Zero = Main.error; primModNatS Main.Zero (Main.Succ x) = Main.Zero; primModNatS (Main.Succ x) Main.Zero = Main.error; primModNatS (Main.Succ x) (Main.Succ Main.Zero) = Main.Zero; primModNatS (Main.Succ x) (Main.Succ (Main.Succ y)) = primModNatS0 x y (primGEqNatS x (Main.Succ y)); primModNatS0 x y MyTrue = primModNatS (primMinusNatS x (Main.Succ y)) (Main.Succ (Main.Succ y)); primModNatS0 x y MyFalse = Main.Succ x; primQrmInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; primQrmInt x y = Tup2 (primQuotInt x y) (primRemInt x y); primQuotInt :: MyInt -> MyInt -> MyInt; primQuotInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); primQuotInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); primQuotInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); primQuotInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); primQuotInt vx vy = Main.error; primRemInt :: MyInt -> MyInt -> MyInt; primRemInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); primRemInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); primRemInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); primRemInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); primRemInt vv vw = Main.error; properFraction :: Ratio MyInt -> Tup2 MyInt (Ratio MyInt); properFraction (CnPc x y) = Tup2 (qProperFraction x y) (CnPc (rProperFraction x y) y); qProperFraction :: MyInt -> MyInt -> MyInt; qProperFraction x y = fst (quotRemMyInt x y); quotRemMyInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; quotRemMyInt = primQrmInt; rProperFraction :: MyInt -> MyInt -> MyInt; rProperFraction x y = snd (quotRemMyInt x y); snd :: Tup2 b a -> a; snd (Tup2 ww y) = y; stop :: MyBool -> a; stop MyFalse = stop MyFalse; } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="properFraction",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="properFraction wx3",fontsize=16,color="burlywood",shape="triangle"];666[label="wx3/CnPc wx30 wx31",fontsize=10,color="white",style="solid",shape="box"];3 -> 666[label="",style="solid", color="burlywood", weight=9]; 666 -> 4[label="",style="solid", color="burlywood", weight=3]; 4[label="properFraction (CnPc wx30 wx31)",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="Tup2 (qProperFraction wx30 wx31) (CnPc (rProperFraction wx30 wx31) wx31)",fontsize=16,color="green",shape="box"];5 -> 6[label="",style="dashed", color="green", weight=3]; 5 -> 7[label="",style="dashed", color="green", weight=3]; 6[label="qProperFraction wx30 wx31",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7[label="rProperFraction wx30 wx31",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="fst (quotRemMyInt wx30 wx31)",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="snd (quotRemMyInt wx30 wx31)",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10[label="fst (primQrmInt wx30 wx31)",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 11[label="snd (primQrmInt wx30 wx31)",fontsize=16,color="black",shape="box"];11 -> 13[label="",style="solid", color="black", weight=3]; 12[label="fst (Tup2 (primQuotInt wx30 wx31) (primRemInt wx30 wx31))",fontsize=16,color="black",shape="box"];12 -> 14[label="",style="solid", color="black", weight=3]; 13[label="snd (Tup2 (primQuotInt wx30 wx31) (primRemInt wx30 wx31))",fontsize=16,color="black",shape="box"];13 -> 15[label="",style="solid", color="black", weight=3]; 14[label="primQuotInt wx30 wx31",fontsize=16,color="burlywood",shape="box"];667[label="wx30/Pos wx300",fontsize=10,color="white",style="solid",shape="box"];14 -> 667[label="",style="solid", color="burlywood", weight=9]; 667 -> 16[label="",style="solid", color="burlywood", weight=3]; 668[label="wx30/Neg wx300",fontsize=10,color="white",style="solid",shape="box"];14 -> 668[label="",style="solid", color="burlywood", weight=9]; 668 -> 17[label="",style="solid", color="burlywood", weight=3]; 15[label="primRemInt wx30 wx31",fontsize=16,color="burlywood",shape="box"];669[label="wx30/Pos wx300",fontsize=10,color="white",style="solid",shape="box"];15 -> 669[label="",style="solid", color="burlywood", weight=9]; 669 -> 18[label="",style="solid", color="burlywood", weight=3]; 670[label="wx30/Neg wx300",fontsize=10,color="white",style="solid",shape="box"];15 -> 670[label="",style="solid", color="burlywood", weight=9]; 670 -> 19[label="",style="solid", color="burlywood", weight=3]; 16[label="primQuotInt (Pos wx300) wx31",fontsize=16,color="burlywood",shape="box"];671[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];16 -> 671[label="",style="solid", color="burlywood", weight=9]; 671 -> 20[label="",style="solid", color="burlywood", weight=3]; 672[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];16 -> 672[label="",style="solid", color="burlywood", weight=9]; 672 -> 21[label="",style="solid", color="burlywood", weight=3]; 17[label="primQuotInt (Neg wx300) wx31",fontsize=16,color="burlywood",shape="box"];673[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];17 -> 673[label="",style="solid", color="burlywood", weight=9]; 673 -> 22[label="",style="solid", color="burlywood", weight=3]; 674[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];17 -> 674[label="",style="solid", color="burlywood", weight=9]; 674 -> 23[label="",style="solid", color="burlywood", weight=3]; 18[label="primRemInt (Pos wx300) wx31",fontsize=16,color="burlywood",shape="box"];675[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];18 -> 675[label="",style="solid", color="burlywood", weight=9]; 675 -> 24[label="",style="solid", color="burlywood", weight=3]; 676[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];18 -> 676[label="",style="solid", color="burlywood", weight=9]; 676 -> 25[label="",style="solid", color="burlywood", weight=3]; 19[label="primRemInt (Neg wx300) wx31",fontsize=16,color="burlywood",shape="box"];677[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];19 -> 677[label="",style="solid", color="burlywood", weight=9]; 677 -> 26[label="",style="solid", color="burlywood", weight=3]; 678[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];19 -> 678[label="",style="solid", color="burlywood", weight=9]; 678 -> 27[label="",style="solid", color="burlywood", weight=3]; 20[label="primQuotInt (Pos wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];679[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];20 -> 679[label="",style="solid", color="burlywood", weight=9]; 679 -> 28[label="",style="solid", color="burlywood", weight=3]; 680[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];20 -> 680[label="",style="solid", color="burlywood", weight=9]; 680 -> 29[label="",style="solid", color="burlywood", weight=3]; 21[label="primQuotInt (Pos wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];681[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];21 -> 681[label="",style="solid", color="burlywood", weight=9]; 681 -> 30[label="",style="solid", color="burlywood", weight=3]; 682[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];21 -> 682[label="",style="solid", color="burlywood", weight=9]; 682 -> 31[label="",style="solid", color="burlywood", weight=3]; 22[label="primQuotInt (Neg wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];683[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];22 -> 683[label="",style="solid", color="burlywood", weight=9]; 683 -> 32[label="",style="solid", color="burlywood", weight=3]; 684[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];22 -> 684[label="",style="solid", color="burlywood", weight=9]; 684 -> 33[label="",style="solid", color="burlywood", weight=3]; 23[label="primQuotInt (Neg wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];685[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];23 -> 685[label="",style="solid", color="burlywood", weight=9]; 685 -> 34[label="",style="solid", color="burlywood", weight=3]; 686[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];23 -> 686[label="",style="solid", color="burlywood", weight=9]; 686 -> 35[label="",style="solid", color="burlywood", weight=3]; 24[label="primRemInt (Pos wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];687[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];24 -> 687[label="",style="solid", color="burlywood", weight=9]; 687 -> 36[label="",style="solid", color="burlywood", weight=3]; 688[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];24 -> 688[label="",style="solid", color="burlywood", weight=9]; 688 -> 37[label="",style="solid", color="burlywood", weight=3]; 25[label="primRemInt (Pos wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];689[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];25 -> 689[label="",style="solid", color="burlywood", weight=9]; 689 -> 38[label="",style="solid", color="burlywood", weight=3]; 690[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];25 -> 690[label="",style="solid", color="burlywood", weight=9]; 690 -> 39[label="",style="solid", color="burlywood", weight=3]; 26[label="primRemInt (Neg wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];691[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];26 -> 691[label="",style="solid", color="burlywood", weight=9]; 691 -> 40[label="",style="solid", color="burlywood", weight=3]; 692[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];26 -> 692[label="",style="solid", color="burlywood", weight=9]; 692 -> 41[label="",style="solid", color="burlywood", weight=3]; 27[label="primRemInt (Neg wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];693[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];27 -> 693[label="",style="solid", color="burlywood", weight=9]; 693 -> 42[label="",style="solid", color="burlywood", weight=3]; 694[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];27 -> 694[label="",style="solid", color="burlywood", weight=9]; 694 -> 43[label="",style="solid", color="burlywood", weight=3]; 28[label="primQuotInt (Pos wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];28 -> 44[label="",style="solid", color="black", weight=3]; 29[label="primQuotInt (Pos wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];29 -> 45[label="",style="solid", color="black", weight=3]; 30[label="primQuotInt (Pos wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];30 -> 46[label="",style="solid", color="black", weight=3]; 31[label="primQuotInt (Pos wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];31 -> 47[label="",style="solid", color="black", weight=3]; 32[label="primQuotInt (Neg wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];32 -> 48[label="",style="solid", color="black", weight=3]; 33[label="primQuotInt (Neg wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];33 -> 49[label="",style="solid", color="black", weight=3]; 34[label="primQuotInt (Neg wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];34 -> 50[label="",style="solid", color="black", weight=3]; 35[label="primQuotInt (Neg wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];35 -> 51[label="",style="solid", color="black", weight=3]; 36[label="primRemInt (Pos wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];36 -> 52[label="",style="solid", color="black", weight=3]; 37[label="primRemInt (Pos wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];37 -> 53[label="",style="solid", color="black", weight=3]; 38[label="primRemInt (Pos wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];38 -> 54[label="",style="solid", color="black", weight=3]; 39[label="primRemInt (Pos wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];39 -> 55[label="",style="solid", color="black", weight=3]; 40[label="primRemInt (Neg wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];40 -> 56[label="",style="solid", color="black", weight=3]; 41[label="primRemInt (Neg wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];41 -> 57[label="",style="solid", color="black", weight=3]; 42[label="primRemInt (Neg wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];42 -> 58[label="",style="solid", color="black", weight=3]; 43[label="primRemInt (Neg wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];43 -> 59[label="",style="solid", color="black", weight=3]; 44[label="Pos (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];44 -> 60[label="",style="dashed", color="green", weight=3]; 45[label="error",fontsize=16,color="black",shape="triangle"];45 -> 61[label="",style="solid", color="black", weight=3]; 46[label="Neg (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];46 -> 62[label="",style="dashed", color="green", weight=3]; 47 -> 45[label="",style="dashed", color="red", weight=0]; 47[label="error",fontsize=16,color="magenta"];48[label="Neg (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];48 -> 63[label="",style="dashed", color="green", weight=3]; 49 -> 45[label="",style="dashed", color="red", weight=0]; 49[label="error",fontsize=16,color="magenta"];50[label="Pos (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];50 -> 64[label="",style="dashed", color="green", weight=3]; 51 -> 45[label="",style="dashed", color="red", weight=0]; 51[label="error",fontsize=16,color="magenta"];52[label="Pos (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];52 -> 65[label="",style="dashed", color="green", weight=3]; 53 -> 45[label="",style="dashed", color="red", weight=0]; 53[label="error",fontsize=16,color="magenta"];54[label="Pos (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];54 -> 66[label="",style="dashed", color="green", weight=3]; 55 -> 45[label="",style="dashed", color="red", weight=0]; 55[label="error",fontsize=16,color="magenta"];56[label="Neg (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];56 -> 67[label="",style="dashed", color="green", weight=3]; 57 -> 45[label="",style="dashed", color="red", weight=0]; 57[label="error",fontsize=16,color="magenta"];58[label="Neg (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];58 -> 68[label="",style="dashed", color="green", weight=3]; 59 -> 45[label="",style="dashed", color="red", weight=0]; 59[label="error",fontsize=16,color="magenta"];60[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="burlywood",shape="triangle"];695[label="wx300/Succ wx3000",fontsize=10,color="white",style="solid",shape="box"];60 -> 695[label="",style="solid", color="burlywood", weight=9]; 695 -> 69[label="",style="solid", color="burlywood", weight=3]; 696[label="wx300/Zero",fontsize=10,color="white",style="solid",shape="box"];60 -> 696[label="",style="solid", color="burlywood", weight=9]; 696 -> 70[label="",style="solid", color="burlywood", weight=3]; 61[label="stop MyTrue",fontsize=16,color="black",shape="box"];61 -> 71[label="",style="solid", color="black", weight=3]; 62 -> 60[label="",style="dashed", color="red", weight=0]; 62[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];62 -> 72[label="",style="dashed", color="magenta", weight=3]; 63 -> 60[label="",style="dashed", color="red", weight=0]; 63[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];63 -> 73[label="",style="dashed", color="magenta", weight=3]; 64 -> 60[label="",style="dashed", color="red", weight=0]; 64[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];64 -> 74[label="",style="dashed", color="magenta", weight=3]; 64 -> 75[label="",style="dashed", color="magenta", weight=3]; 65[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="burlywood",shape="triangle"];697[label="wx300/Succ wx3000",fontsize=10,color="white",style="solid",shape="box"];65 -> 697[label="",style="solid", color="burlywood", weight=9]; 697 -> 76[label="",style="solid", color="burlywood", weight=3]; 698[label="wx300/Zero",fontsize=10,color="white",style="solid",shape="box"];65 -> 698[label="",style="solid", color="burlywood", weight=9]; 698 -> 77[label="",style="solid", color="burlywood", weight=3]; 66 -> 65[label="",style="dashed", color="red", weight=0]; 66[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];66 -> 78[label="",style="dashed", color="magenta", weight=3]; 67 -> 65[label="",style="dashed", color="red", weight=0]; 67[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];67 -> 79[label="",style="dashed", color="magenta", weight=3]; 68 -> 65[label="",style="dashed", color="red", weight=0]; 68[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];68 -> 80[label="",style="dashed", color="magenta", weight=3]; 68 -> 81[label="",style="dashed", color="magenta", weight=3]; 69[label="primDivNatS (Succ wx3000) (Succ wx3100)",fontsize=16,color="black",shape="box"];69 -> 82[label="",style="solid", color="black", weight=3]; 70[label="primDivNatS Zero (Succ wx3100)",fontsize=16,color="black",shape="box"];70 -> 83[label="",style="solid", color="black", weight=3]; 71[label="error []",fontsize=16,color="red",shape="box"];72[label="wx3100",fontsize=16,color="green",shape="box"];73[label="wx300",fontsize=16,color="green",shape="box"];74[label="wx300",fontsize=16,color="green",shape="box"];75[label="wx3100",fontsize=16,color="green",shape="box"];76[label="primModNatS (Succ wx3000) (Succ wx3100)",fontsize=16,color="burlywood",shape="box"];699[label="wx3100/Succ wx31000",fontsize=10,color="white",style="solid",shape="box"];76 -> 699[label="",style="solid", color="burlywood", weight=9]; 699 -> 84[label="",style="solid", color="burlywood", weight=3]; 700[label="wx3100/Zero",fontsize=10,color="white",style="solid",shape="box"];76 -> 700[label="",style="solid", color="burlywood", weight=9]; 700 -> 85[label="",style="solid", color="burlywood", weight=3]; 77[label="primModNatS Zero (Succ wx3100)",fontsize=16,color="black",shape="box"];77 -> 86[label="",style="solid", color="black", weight=3]; 78[label="wx3100",fontsize=16,color="green",shape="box"];79[label="wx300",fontsize=16,color="green",shape="box"];80[label="wx300",fontsize=16,color="green",shape="box"];81[label="wx3100",fontsize=16,color="green",shape="box"];82[label="primDivNatS0 wx3000 wx3100 (primGEqNatS wx3000 wx3100)",fontsize=16,color="burlywood",shape="box"];701[label="wx3000/Succ wx30000",fontsize=10,color="white",style="solid",shape="box"];82 -> 701[label="",style="solid", color="burlywood", weight=9]; 701 -> 87[label="",style="solid", color="burlywood", weight=3]; 702[label="wx3000/Zero",fontsize=10,color="white",style="solid",shape="box"];82 -> 702[label="",style="solid", color="burlywood", weight=9]; 702 -> 88[label="",style="solid", color="burlywood", weight=3]; 83[label="Zero",fontsize=16,color="green",shape="box"];84[label="primModNatS (Succ wx3000) (Succ (Succ wx31000))",fontsize=16,color="black",shape="box"];84 -> 89[label="",style="solid", color="black", weight=3]; 85[label="primModNatS (Succ wx3000) (Succ Zero)",fontsize=16,color="black",shape="box"];85 -> 90[label="",style="solid", color="black", weight=3]; 86[label="Zero",fontsize=16,color="green",shape="box"];87[label="primDivNatS0 (Succ wx30000) wx3100 (primGEqNatS (Succ wx30000) wx3100)",fontsize=16,color="burlywood",shape="box"];703[label="wx3100/Succ wx31000",fontsize=10,color="white",style="solid",shape="box"];87 -> 703[label="",style="solid", color="burlywood", weight=9]; 703 -> 91[label="",style="solid", color="burlywood", weight=3]; 704[label="wx3100/Zero",fontsize=10,color="white",style="solid",shape="box"];87 -> 704[label="",style="solid", color="burlywood", weight=9]; 704 -> 92[label="",style="solid", color="burlywood", weight=3]; 88[label="primDivNatS0 Zero wx3100 (primGEqNatS Zero wx3100)",fontsize=16,color="burlywood",shape="box"];705[label="wx3100/Succ wx31000",fontsize=10,color="white",style="solid",shape="box"];88 -> 705[label="",style="solid", color="burlywood", weight=9]; 705 -> 93[label="",style="solid", color="burlywood", weight=3]; 706[label="wx3100/Zero",fontsize=10,color="white",style="solid",shape="box"];88 -> 706[label="",style="solid", color="burlywood", weight=9]; 706 -> 94[label="",style="solid", color="burlywood", weight=3]; 89[label="primModNatS0 wx3000 wx31000 (primGEqNatS wx3000 (Succ wx31000))",fontsize=16,color="burlywood",shape="box"];707[label="wx3000/Succ wx30000",fontsize=10,color="white",style="solid",shape="box"];89 -> 707[label="",style="solid", color="burlywood", weight=9]; 707 -> 95[label="",style="solid", color="burlywood", weight=3]; 708[label="wx3000/Zero",fontsize=10,color="white",style="solid",shape="box"];89 -> 708[label="",style="solid", color="burlywood", weight=9]; 708 -> 96[label="",style="solid", color="burlywood", weight=3]; 90[label="Zero",fontsize=16,color="green",shape="box"];91[label="primDivNatS0 (Succ wx30000) (Succ wx31000) (primGEqNatS (Succ wx30000) (Succ wx31000))",fontsize=16,color="black",shape="box"];91 -> 97[label="",style="solid", color="black", weight=3]; 92[label="primDivNatS0 (Succ wx30000) Zero (primGEqNatS (Succ wx30000) Zero)",fontsize=16,color="black",shape="box"];92 -> 98[label="",style="solid", color="black", weight=3]; 93[label="primDivNatS0 Zero (Succ wx31000) (primGEqNatS Zero (Succ wx31000))",fontsize=16,color="black",shape="box"];93 -> 99[label="",style="solid", color="black", weight=3]; 94[label="primDivNatS0 Zero Zero (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];94 -> 100[label="",style="solid", color="black", weight=3]; 95[label="primModNatS0 (Succ wx30000) wx31000 (primGEqNatS (Succ wx30000) (Succ wx31000))",fontsize=16,color="black",shape="box"];95 -> 101[label="",style="solid", color="black", weight=3]; 96[label="primModNatS0 Zero wx31000 (primGEqNatS Zero (Succ wx31000))",fontsize=16,color="black",shape="box"];96 -> 102[label="",style="solid", color="black", weight=3]; 97 -> 548[label="",style="dashed", color="red", weight=0]; 97[label="primDivNatS0 (Succ wx30000) (Succ wx31000) (primGEqNatS wx30000 wx31000)",fontsize=16,color="magenta"];97 -> 549[label="",style="dashed", color="magenta", weight=3]; 97 -> 550[label="",style="dashed", color="magenta", weight=3]; 97 -> 551[label="",style="dashed", color="magenta", weight=3]; 97 -> 552[label="",style="dashed", color="magenta", weight=3]; 98[label="primDivNatS0 (Succ wx30000) Zero MyTrue",fontsize=16,color="black",shape="box"];98 -> 105[label="",style="solid", color="black", weight=3]; 99[label="primDivNatS0 Zero (Succ wx31000) MyFalse",fontsize=16,color="black",shape="box"];99 -> 106[label="",style="solid", color="black", weight=3]; 100[label="primDivNatS0 Zero Zero MyTrue",fontsize=16,color="black",shape="box"];100 -> 107[label="",style="solid", color="black", weight=3]; 101[label="primModNatS0 (Succ wx30000) wx31000 (primGEqNatS wx30000 wx31000)",fontsize=16,color="burlywood",shape="box"];709[label="wx30000/Succ wx300000",fontsize=10,color="white",style="solid",shape="box"];101 -> 709[label="",style="solid", color="burlywood", weight=9]; 709 -> 108[label="",style="solid", color="burlywood", weight=3]; 710[label="wx30000/Zero",fontsize=10,color="white",style="solid",shape="box"];101 -> 710[label="",style="solid", color="burlywood", weight=9]; 710 -> 109[label="",style="solid", color="burlywood", weight=3]; 102[label="primModNatS0 Zero wx31000 MyFalse",fontsize=16,color="black",shape="box"];102 -> 110[label="",style="solid", color="black", weight=3]; 549[label="wx31000",fontsize=16,color="green",shape="box"];550[label="wx31000",fontsize=16,color="green",shape="box"];551[label="wx30000",fontsize=16,color="green",shape="box"];552[label="wx30000",fontsize=16,color="green",shape="box"];548[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS wx44 wx45)",fontsize=16,color="burlywood",shape="triangle"];711[label="wx44/Succ wx440",fontsize=10,color="white",style="solid",shape="box"];548 -> 711[label="",style="solid", color="burlywood", weight=9]; 711 -> 589[label="",style="solid", color="burlywood", weight=3]; 712[label="wx44/Zero",fontsize=10,color="white",style="solid",shape="box"];548 -> 712[label="",style="solid", color="burlywood", weight=9]; 712 -> 590[label="",style="solid", color="burlywood", weight=3]; 105[label="Succ (primDivNatS (primMinusNatS (Succ wx30000) Zero) (Succ Zero))",fontsize=16,color="green",shape="box"];105 -> 115[label="",style="dashed", color="green", weight=3]; 106[label="Zero",fontsize=16,color="green",shape="box"];107[label="Succ (primDivNatS (primMinusNatS Zero Zero) (Succ Zero))",fontsize=16,color="green",shape="box"];107 -> 116[label="",style="dashed", color="green", weight=3]; 108[label="primModNatS0 (Succ (Succ wx300000)) wx31000 (primGEqNatS (Succ wx300000) wx31000)",fontsize=16,color="burlywood",shape="box"];713[label="wx31000/Succ wx310000",fontsize=10,color="white",style="solid",shape="box"];108 -> 713[label="",style="solid", color="burlywood", weight=9]; 713 -> 117[label="",style="solid", color="burlywood", weight=3]; 714[label="wx31000/Zero",fontsize=10,color="white",style="solid",shape="box"];108 -> 714[label="",style="solid", color="burlywood", weight=9]; 714 -> 118[label="",style="solid", color="burlywood", weight=3]; 109[label="primModNatS0 (Succ Zero) wx31000 (primGEqNatS Zero wx31000)",fontsize=16,color="burlywood",shape="box"];715[label="wx31000/Succ wx310000",fontsize=10,color="white",style="solid",shape="box"];109 -> 715[label="",style="solid", color="burlywood", weight=9]; 715 -> 119[label="",style="solid", color="burlywood", weight=3]; 716[label="wx31000/Zero",fontsize=10,color="white",style="solid",shape="box"];109 -> 716[label="",style="solid", color="burlywood", weight=9]; 716 -> 120[label="",style="solid", color="burlywood", weight=3]; 110[label="Succ Zero",fontsize=16,color="green",shape="box"];589[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS (Succ wx440) wx45)",fontsize=16,color="burlywood",shape="box"];717[label="wx45/Succ wx450",fontsize=10,color="white",style="solid",shape="box"];589 -> 717[label="",style="solid", color="burlywood", weight=9]; 717 -> 630[label="",style="solid", color="burlywood", weight=3]; 718[label="wx45/Zero",fontsize=10,color="white",style="solid",shape="box"];589 -> 718[label="",style="solid", color="burlywood", weight=9]; 718 -> 631[label="",style="solid", color="burlywood", weight=3]; 590[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS Zero wx45)",fontsize=16,color="burlywood",shape="box"];719[label="wx45/Succ wx450",fontsize=10,color="white",style="solid",shape="box"];590 -> 719[label="",style="solid", color="burlywood", weight=9]; 719 -> 632[label="",style="solid", color="burlywood", weight=3]; 720[label="wx45/Zero",fontsize=10,color="white",style="solid",shape="box"];590 -> 720[label="",style="solid", color="burlywood", weight=9]; 720 -> 633[label="",style="solid", color="burlywood", weight=3]; 115 -> 60[label="",style="dashed", color="red", weight=0]; 115[label="primDivNatS (primMinusNatS (Succ wx30000) Zero) (Succ Zero)",fontsize=16,color="magenta"];115 -> 125[label="",style="dashed", color="magenta", weight=3]; 115 -> 126[label="",style="dashed", color="magenta", weight=3]; 116 -> 60[label="",style="dashed", color="red", weight=0]; 116[label="primDivNatS (primMinusNatS Zero Zero) (Succ Zero)",fontsize=16,color="magenta"];116 -> 127[label="",style="dashed", color="magenta", weight=3]; 116 -> 128[label="",style="dashed", color="magenta", weight=3]; 117[label="primModNatS0 (Succ (Succ wx300000)) (Succ wx310000) (primGEqNatS (Succ wx300000) (Succ wx310000))",fontsize=16,color="black",shape="box"];117 -> 129[label="",style="solid", color="black", weight=3]; 118[label="primModNatS0 (Succ (Succ wx300000)) Zero (primGEqNatS (Succ wx300000) Zero)",fontsize=16,color="black",shape="box"];118 -> 130[label="",style="solid", color="black", weight=3]; 119[label="primModNatS0 (Succ Zero) (Succ wx310000) (primGEqNatS Zero (Succ wx310000))",fontsize=16,color="black",shape="box"];119 -> 131[label="",style="solid", color="black", weight=3]; 120[label="primModNatS0 (Succ Zero) Zero (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];120 -> 132[label="",style="solid", color="black", weight=3]; 630[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS (Succ wx440) (Succ wx450))",fontsize=16,color="black",shape="box"];630 -> 636[label="",style="solid", color="black", weight=3]; 631[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS (Succ wx440) Zero)",fontsize=16,color="black",shape="box"];631 -> 637[label="",style="solid", color="black", weight=3]; 632[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS Zero (Succ wx450))",fontsize=16,color="black",shape="box"];632 -> 638[label="",style="solid", color="black", weight=3]; 633[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];633 -> 639[label="",style="solid", color="black", weight=3]; 125[label="primMinusNatS (Succ wx30000) Zero",fontsize=16,color="black",shape="triangle"];125 -> 138[label="",style="solid", color="black", weight=3]; 126[label="Zero",fontsize=16,color="green",shape="box"];127[label="primMinusNatS Zero Zero",fontsize=16,color="black",shape="triangle"];127 -> 139[label="",style="solid", color="black", weight=3]; 128[label="Zero",fontsize=16,color="green",shape="box"];129 -> 593[label="",style="dashed", color="red", weight=0]; 129[label="primModNatS0 (Succ (Succ wx300000)) (Succ wx310000) (primGEqNatS wx300000 wx310000)",fontsize=16,color="magenta"];129 -> 594[label="",style="dashed", color="magenta", weight=3]; 129 -> 595[label="",style="dashed", color="magenta", weight=3]; 129 -> 596[label="",style="dashed", color="magenta", weight=3]; 129 -> 597[label="",style="dashed", color="magenta", weight=3]; 130[label="primModNatS0 (Succ (Succ wx300000)) Zero MyTrue",fontsize=16,color="black",shape="box"];130 -> 142[label="",style="solid", color="black", weight=3]; 131 -> 399[label="",style="dashed", color="red", weight=0]; 131[label="primModNatS0 (Succ Zero) (Succ wx310000) MyFalse",fontsize=16,color="magenta"];131 -> 400[label="",style="dashed", color="magenta", weight=3]; 131 -> 401[label="",style="dashed", color="magenta", weight=3]; 132[label="primModNatS0 (Succ Zero) Zero MyTrue",fontsize=16,color="black",shape="box"];132 -> 144[label="",style="solid", color="black", weight=3]; 636 -> 548[label="",style="dashed", color="red", weight=0]; 636[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS wx440 wx450)",fontsize=16,color="magenta"];636 -> 644[label="",style="dashed", color="magenta", weight=3]; 636 -> 645[label="",style="dashed", color="magenta", weight=3]; 637[label="primDivNatS0 (Succ wx42) (Succ wx43) MyTrue",fontsize=16,color="black",shape="triangle"];637 -> 646[label="",style="solid", color="black", weight=3]; 638[label="primDivNatS0 (Succ wx42) (Succ wx43) MyFalse",fontsize=16,color="black",shape="box"];638 -> 647[label="",style="solid", color="black", weight=3]; 639 -> 637[label="",style="dashed", color="red", weight=0]; 639[label="primDivNatS0 (Succ wx42) (Succ wx43) MyTrue",fontsize=16,color="magenta"];138[label="Succ wx30000",fontsize=16,color="green",shape="box"];139[label="Zero",fontsize=16,color="green",shape="box"];594[label="wx310000",fontsize=16,color="green",shape="box"];595[label="wx310000",fontsize=16,color="green",shape="box"];596[label="wx300000",fontsize=16,color="green",shape="box"];597[label="Succ wx300000",fontsize=16,color="green",shape="box"];593[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS wx49 wx50)",fontsize=16,color="burlywood",shape="triangle"];721[label="wx49/Succ wx490",fontsize=10,color="white",style="solid",shape="box"];593 -> 721[label="",style="solid", color="burlywood", weight=9]; 721 -> 634[label="",style="solid", color="burlywood", weight=3]; 722[label="wx49/Zero",fontsize=10,color="white",style="solid",shape="box"];593 -> 722[label="",style="solid", color="burlywood", weight=9]; 722 -> 635[label="",style="solid", color="burlywood", weight=3]; 142 -> 65[label="",style="dashed", color="red", weight=0]; 142[label="primModNatS (primMinusNatS (Succ (Succ wx300000)) (Succ Zero)) (Succ (Succ Zero))",fontsize=16,color="magenta"];142 -> 155[label="",style="dashed", color="magenta", weight=3]; 142 -> 156[label="",style="dashed", color="magenta", weight=3]; 400[label="Zero",fontsize=16,color="green",shape="box"];401[label="wx310000",fontsize=16,color="green",shape="box"];399[label="primModNatS0 (Succ wx33) (Succ wx34) MyFalse",fontsize=16,color="black",shape="triangle"];399 -> 414[label="",style="solid", color="black", weight=3]; 144 -> 65[label="",style="dashed", color="red", weight=0]; 144[label="primModNatS (primMinusNatS (Succ Zero) (Succ Zero)) (Succ (Succ Zero))",fontsize=16,color="magenta"];144 -> 157[label="",style="dashed", color="magenta", weight=3]; 144 -> 158[label="",style="dashed", color="magenta", weight=3]; 644[label="wx450",fontsize=16,color="green",shape="box"];645[label="wx440",fontsize=16,color="green",shape="box"];646[label="Succ (primDivNatS (primMinusNatS (Succ wx42) (Succ wx43)) (Succ (Succ wx43)))",fontsize=16,color="green",shape="box"];646 -> 652[label="",style="dashed", color="green", weight=3]; 647[label="Zero",fontsize=16,color="green",shape="box"];634[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS (Succ wx490) wx50)",fontsize=16,color="burlywood",shape="box"];723[label="wx50/Succ wx500",fontsize=10,color="white",style="solid",shape="box"];634 -> 723[label="",style="solid", color="burlywood", weight=9]; 723 -> 640[label="",style="solid", color="burlywood", weight=3]; 724[label="wx50/Zero",fontsize=10,color="white",style="solid",shape="box"];634 -> 724[label="",style="solid", color="burlywood", weight=9]; 724 -> 641[label="",style="solid", color="burlywood", weight=3]; 635[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS Zero wx50)",fontsize=16,color="burlywood",shape="box"];725[label="wx50/Succ wx500",fontsize=10,color="white",style="solid",shape="box"];635 -> 725[label="",style="solid", color="burlywood", weight=9]; 725 -> 642[label="",style="solid", color="burlywood", weight=3]; 726[label="wx50/Zero",fontsize=10,color="white",style="solid",shape="box"];635 -> 726[label="",style="solid", color="burlywood", weight=9]; 726 -> 643[label="",style="solid", color="burlywood", weight=3]; 155 -> 440[label="",style="dashed", color="red", weight=0]; 155[label="primMinusNatS (Succ (Succ wx300000)) (Succ Zero)",fontsize=16,color="magenta"];155 -> 441[label="",style="dashed", color="magenta", weight=3]; 155 -> 442[label="",style="dashed", color="magenta", weight=3]; 156[label="Succ Zero",fontsize=16,color="green",shape="box"];414[label="Succ (Succ wx33)",fontsize=16,color="green",shape="box"];157 -> 440[label="",style="dashed", color="red", weight=0]; 157[label="primMinusNatS (Succ Zero) (Succ Zero)",fontsize=16,color="magenta"];157 -> 443[label="",style="dashed", color="magenta", weight=3]; 157 -> 444[label="",style="dashed", color="magenta", weight=3]; 158[label="Succ Zero",fontsize=16,color="green",shape="box"];652 -> 60[label="",style="dashed", color="red", weight=0]; 652[label="primDivNatS (primMinusNatS (Succ wx42) (Succ wx43)) (Succ (Succ wx43))",fontsize=16,color="magenta"];652 -> 658[label="",style="dashed", color="magenta", weight=3]; 652 -> 659[label="",style="dashed", color="magenta", weight=3]; 640[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS (Succ wx490) (Succ wx500))",fontsize=16,color="black",shape="box"];640 -> 648[label="",style="solid", color="black", weight=3]; 641[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS (Succ wx490) Zero)",fontsize=16,color="black",shape="box"];641 -> 649[label="",style="solid", color="black", weight=3]; 642[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS Zero (Succ wx500))",fontsize=16,color="black",shape="box"];642 -> 650[label="",style="solid", color="black", weight=3]; 643[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];643 -> 651[label="",style="solid", color="black", weight=3]; 441[label="Zero",fontsize=16,color="green",shape="box"];442[label="Succ wx300000",fontsize=16,color="green",shape="box"];440[label="primMinusNatS (Succ wx36) (Succ wx37)",fontsize=16,color="black",shape="triangle"];440 -> 475[label="",style="solid", color="black", weight=3]; 443[label="Zero",fontsize=16,color="green",shape="box"];444[label="Zero",fontsize=16,color="green",shape="box"];658 -> 475[label="",style="dashed", color="red", weight=0]; 658[label="primMinusNatS (Succ wx42) (Succ wx43)",fontsize=16,color="magenta"];658 -> 662[label="",style="dashed", color="magenta", weight=3]; 658 -> 663[label="",style="dashed", color="magenta", weight=3]; 659[label="Succ wx43",fontsize=16,color="green",shape="box"];648 -> 593[label="",style="dashed", color="red", weight=0]; 648[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS wx490 wx500)",fontsize=16,color="magenta"];648 -> 653[label="",style="dashed", color="magenta", weight=3]; 648 -> 654[label="",style="dashed", color="magenta", weight=3]; 649[label="primModNatS0 (Succ wx47) (Succ wx48) MyTrue",fontsize=16,color="black",shape="triangle"];649 -> 655[label="",style="solid", color="black", weight=3]; 650 -> 399[label="",style="dashed", color="red", weight=0]; 650[label="primModNatS0 (Succ wx47) (Succ wx48) MyFalse",fontsize=16,color="magenta"];650 -> 656[label="",style="dashed", color="magenta", weight=3]; 650 -> 657[label="",style="dashed", color="magenta", weight=3]; 651 -> 649[label="",style="dashed", color="red", weight=0]; 651[label="primModNatS0 (Succ wx47) (Succ wx48) MyTrue",fontsize=16,color="magenta"];475[label="primMinusNatS wx36 wx37",fontsize=16,color="burlywood",shape="triangle"];727[label="wx36/Succ wx360",fontsize=10,color="white",style="solid",shape="box"];475 -> 727[label="",style="solid", color="burlywood", weight=9]; 727 -> 516[label="",style="solid", color="burlywood", weight=3]; 728[label="wx36/Zero",fontsize=10,color="white",style="solid",shape="box"];475 -> 728[label="",style="solid", color="burlywood", weight=9]; 728 -> 517[label="",style="solid", color="burlywood", weight=3]; 662[label="Succ wx43",fontsize=16,color="green",shape="box"];663[label="Succ wx42",fontsize=16,color="green",shape="box"];653[label="wx500",fontsize=16,color="green",shape="box"];654[label="wx490",fontsize=16,color="green",shape="box"];655 -> 65[label="",style="dashed", color="red", weight=0]; 655[label="primModNatS (primMinusNatS (Succ wx47) (Succ (Succ wx48))) (Succ (Succ (Succ wx48)))",fontsize=16,color="magenta"];655 -> 660[label="",style="dashed", color="magenta", weight=3]; 655 -> 661[label="",style="dashed", color="magenta", weight=3]; 656[label="wx47",fontsize=16,color="green",shape="box"];657[label="wx48",fontsize=16,color="green",shape="box"];516[label="primMinusNatS (Succ wx360) wx37",fontsize=16,color="burlywood",shape="box"];729[label="wx37/Succ wx370",fontsize=10,color="white",style="solid",shape="box"];516 -> 729[label="",style="solid", color="burlywood", weight=9]; 729 -> 530[label="",style="solid", color="burlywood", weight=3]; 730[label="wx37/Zero",fontsize=10,color="white",style="solid",shape="box"];516 -> 730[label="",style="solid", color="burlywood", weight=9]; 730 -> 531[label="",style="solid", color="burlywood", weight=3]; 517[label="primMinusNatS Zero wx37",fontsize=16,color="burlywood",shape="box"];731[label="wx37/Succ wx370",fontsize=10,color="white",style="solid",shape="box"];517 -> 731[label="",style="solid", color="burlywood", weight=9]; 731 -> 532[label="",style="solid", color="burlywood", weight=3]; 732[label="wx37/Zero",fontsize=10,color="white",style="solid",shape="box"];517 -> 732[label="",style="solid", color="burlywood", weight=9]; 732 -> 533[label="",style="solid", color="burlywood", weight=3]; 660 -> 475[label="",style="dashed", color="red", weight=0]; 660[label="primMinusNatS (Succ wx47) (Succ (Succ wx48))",fontsize=16,color="magenta"];660 -> 664[label="",style="dashed", color="magenta", weight=3]; 660 -> 665[label="",style="dashed", color="magenta", weight=3]; 661[label="Succ (Succ wx48)",fontsize=16,color="green",shape="box"];530[label="primMinusNatS (Succ wx360) (Succ wx370)",fontsize=16,color="black",shape="box"];530 -> 544[label="",style="solid", color="black", weight=3]; 531[label="primMinusNatS (Succ wx360) Zero",fontsize=16,color="black",shape="box"];531 -> 545[label="",style="solid", color="black", weight=3]; 532[label="primMinusNatS Zero (Succ wx370)",fontsize=16,color="black",shape="box"];532 -> 546[label="",style="solid", color="black", weight=3]; 533[label="primMinusNatS Zero Zero",fontsize=16,color="black",shape="box"];533 -> 547[label="",style="solid", color="black", weight=3]; 664[label="Succ (Succ wx48)",fontsize=16,color="green",shape="box"];665[label="Succ wx47",fontsize=16,color="green",shape="box"];544 -> 475[label="",style="dashed", color="red", weight=0]; 544[label="primMinusNatS wx360 wx370",fontsize=16,color="magenta"];544 -> 591[label="",style="dashed", color="magenta", weight=3]; 544 -> 592[label="",style="dashed", color="magenta", weight=3]; 545[label="Succ wx360",fontsize=16,color="green",shape="box"];546[label="Zero",fontsize=16,color="green",shape="box"];547[label="Zero",fontsize=16,color="green",shape="box"];591[label="wx370",fontsize=16,color="green",shape="box"];592[label="wx360",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS0(wx47, wx48, Main.Zero, Main.Zero) -> new_primModNatS00(wx47, wx48) new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Zero) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) new_primModNatS00(wx47, wx48) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS0(wx300000), Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Succ(wx310000))) -> new_primModNatS0(Main.Succ(wx300000), wx310000, wx300000, wx310000) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS0(x0) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (9) Complex Obligation (AND) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS0(wx300000), Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS0(x0) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS0(wx300000), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: (new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero))) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS0(x0) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS0(x0) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primMinusNatS0(x0) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: (new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero))) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primMinusNatS1 ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: (new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero))) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: (new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Zero, Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Zero, Main.Zero), Main.Succ(Main.Zero))) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primMinusNatS3(x0, x1) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: (new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) The TRS R consists of the following rules: new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) R is empty. The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (40) YES ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS00(wx47, wx48) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Succ(wx310000))) -> new_primModNatS0(Main.Succ(wx300000), wx310000, wx300000, wx310000) new_primModNatS0(wx47, wx48, Main.Zero, Main.Zero) -> new_primModNatS00(wx47, wx48) new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Zero) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS0(x0) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Succ(wx310000))) -> new_primModNatS0(Main.Succ(wx300000), wx310000, wx300000, wx310000) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(Main.Succ(x_1)) = 1 + x_1 POL(Main.Zero) = 0 POL(new_primMinusNatS2(x_1, x_2)) = x_1 POL(new_primModNatS(x_1, x_2)) = x_1 POL(new_primModNatS0(x_1, x_2, x_3, x_4)) = 1 + x_1 POL(new_primModNatS00(x_1, x_2)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS00(wx47, wx48) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) new_primModNatS0(wx47, wx48, Main.Zero, Main.Zero) -> new_primModNatS00(wx47, wx48) new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Zero) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS0(x0) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) The TRS R consists of the following rules: new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS0(x0) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS1 new_primMinusNatS3(x0, x1) new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 4 ---------------------------------------- (47) YES ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) new_primDivNatS00(wx42, wx43) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) new_primDivNatS(Main.Succ(Main.Zero), Main.Zero) -> new_primDivNatS(new_primMinusNatS5, Main.Zero) new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Zero) -> new_primDivNatS(new_primMinusNatS4(wx30000), Main.Zero) new_primDivNatS0(wx42, wx43, Main.Zero, Main.Zero) -> new_primDivNatS00(wx42, wx43) new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Succ(wx31000)) -> new_primDivNatS0(wx30000, wx31000, wx30000, wx31000) new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Zero) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) The TRS R consists of the following rules: new_primMinusNatS5 -> Main.Zero new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS4(x0) new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS5 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (50) Complex Obligation (AND) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Zero) -> new_primDivNatS(new_primMinusNatS4(wx30000), Main.Zero) The TRS R consists of the following rules: new_primMinusNatS5 -> Main.Zero new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS4(x0) new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS5 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Zero) -> new_primDivNatS(new_primMinusNatS4(wx30000), Main.Zero) Strictly oriented rules of the TRS R: new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero Used ordering: Polynomial interpretation [POLO]: POL(Main.Succ(x_1)) = 1 + 2*x_1 POL(Main.Zero) = 2 POL(new_primDivNatS(x_1, x_2)) = x_1 + x_2 POL(new_primMinusNatS2(x_1, x_2)) = x_1 + 2*x_2 POL(new_primMinusNatS4(x_1)) = 2 + 2*x_1 POL(new_primMinusNatS5) = 2 ---------------------------------------- (53) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: new_primMinusNatS5 -> Main.Zero The set Q consists of the following terms: new_primMinusNatS4(x0) new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS5 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (55) YES ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: new_primDivNatS0(wx42, wx43, Main.Zero, Main.Zero) -> new_primDivNatS00(wx42, wx43) new_primDivNatS00(wx42, wx43) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Succ(wx31000)) -> new_primDivNatS0(wx30000, wx31000, wx30000, wx31000) new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Zero) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) The TRS R consists of the following rules: new_primMinusNatS5 -> Main.Zero new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS4(x0) new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS5 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Succ(wx31000)) -> new_primDivNatS0(wx30000, wx31000, wx30000, wx31000) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(Main.Succ(x_1)) = 1 + x_1 POL(Main.Zero) = 1 POL(new_primDivNatS(x_1, x_2)) = x_1 POL(new_primDivNatS0(x_1, x_2, x_3, x_4)) = 1 + x_1 POL(new_primDivNatS00(x_1, x_2)) = 1 + x_1 POL(new_primMinusNatS2(x_1, x_2)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: new_primDivNatS0(wx42, wx43, Main.Zero, Main.Zero) -> new_primDivNatS00(wx42, wx43) new_primDivNatS00(wx42, wx43) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Zero) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) The TRS R consists of the following rules: new_primMinusNatS5 -> Main.Zero new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS4(x0) new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS5 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) The TRS R consists of the following rules: new_primMinusNatS5 -> Main.Zero new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero The set Q consists of the following terms: new_primMinusNatS4(x0) new_primMinusNatS2(Main.Zero, Main.Succ(x0)) new_primMinusNatS2(Main.Zero, Main.Zero) new_primMinusNatS2(Main.Succ(x0), Main.Zero) new_primMinusNatS5 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 4 ---------------------------------------- (62) YES ---------------------------------------- (63) Obligation: Q DP problem: The TRS P consists of the following rules: new_primMinusNatS(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS(wx360, wx370) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primMinusNatS(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS(wx360, wx370) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (65) YES