/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) UsableRulesProof [EQUIVALENT, 0 ms] (10) QDP (11) QReductionProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="reverse",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="reverse vx3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 4[label="foldl (flip (:)) [] vx3",fontsize=16,color="burlywood",shape="box"];35[label="vx3/vx30 : vx31",fontsize=10,color="white",style="solid",shape="box"];4 -> 35[label="",style="solid", color="burlywood", weight=9]; 35 -> 5[label="",style="solid", color="burlywood", weight=3]; 36[label="vx3/[]",fontsize=10,color="white",style="solid",shape="box"];4 -> 36[label="",style="solid", color="burlywood", weight=9]; 36 -> 6[label="",style="solid", color="burlywood", weight=3]; 5[label="foldl (flip (:)) [] (vx30 : vx31)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="foldl (flip (:)) [] []",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7[label="foldl (flip (:)) (flip (:) [] vx30) vx31",fontsize=16,color="burlywood",shape="box"];37[label="vx31/vx310 : vx311",fontsize=10,color="white",style="solid",shape="box"];7 -> 37[label="",style="solid", color="burlywood", weight=9]; 37 -> 9[label="",style="solid", color="burlywood", weight=3]; 38[label="vx31/[]",fontsize=10,color="white",style="solid",shape="box"];7 -> 38[label="",style="solid", color="burlywood", weight=9]; 38 -> 10[label="",style="solid", color="burlywood", weight=3]; 8[label="[]",fontsize=16,color="green",shape="box"];9[label="foldl (flip (:)) (flip (:) [] vx30) (vx310 : vx311)",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10[label="foldl (flip (:)) (flip (:) [] vx30) []",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 11 -> 18[label="",style="dashed", color="red", weight=0]; 11[label="foldl (flip (:)) (flip (:) (flip (:) [] vx30) vx310) vx311",fontsize=16,color="magenta"];11 -> 19[label="",style="dashed", color="magenta", weight=3]; 11 -> 20[label="",style="dashed", color="magenta", weight=3]; 11 -> 21[label="",style="dashed", color="magenta", weight=3]; 11 -> 22[label="",style="dashed", color="magenta", weight=3]; 12[label="flip (:) [] vx30",fontsize=16,color="black",shape="box"];12 -> 15[label="",style="solid", color="black", weight=3]; 19[label="[]",fontsize=16,color="green",shape="box"];20[label="vx311",fontsize=16,color="green",shape="box"];21[label="vx30",fontsize=16,color="green",shape="box"];22[label="vx310",fontsize=16,color="green",shape="box"];18[label="foldl (flip (:)) (flip (:) (flip (:) vx4 vx310) vx3110) vx3111",fontsize=16,color="burlywood",shape="triangle"];39[label="vx3111/vx31110 : vx31111",fontsize=10,color="white",style="solid",shape="box"];18 -> 39[label="",style="solid", color="burlywood", weight=9]; 39 -> 24[label="",style="solid", color="burlywood", weight=3]; 40[label="vx3111/[]",fontsize=10,color="white",style="solid",shape="box"];18 -> 40[label="",style="solid", color="burlywood", weight=9]; 40 -> 25[label="",style="solid", color="burlywood", weight=3]; 15[label="(:) vx30 []",fontsize=16,color="green",shape="box"];24[label="foldl (flip (:)) (flip (:) (flip (:) vx4 vx310) vx3110) (vx31110 : vx31111)",fontsize=16,color="black",shape="box"];24 -> 26[label="",style="solid", color="black", weight=3]; 25[label="foldl (flip (:)) (flip (:) (flip (:) vx4 vx310) vx3110) []",fontsize=16,color="black",shape="box"];25 -> 27[label="",style="solid", color="black", weight=3]; 26 -> 18[label="",style="dashed", color="red", weight=0]; 26[label="foldl (flip (:)) (flip (:) (flip (:) (flip (:) vx4 vx310) vx3110) vx31110) vx31111",fontsize=16,color="magenta"];26 -> 28[label="",style="dashed", color="magenta", weight=3]; 26 -> 29[label="",style="dashed", color="magenta", weight=3]; 26 -> 30[label="",style="dashed", color="magenta", weight=3]; 26 -> 31[label="",style="dashed", color="magenta", weight=3]; 27[label="flip (:) (flip (:) vx4 vx310) vx3110",fontsize=16,color="black",shape="box"];27 -> 32[label="",style="solid", color="black", weight=3]; 28[label="flip (:) vx4 vx310",fontsize=16,color="black",shape="triangle"];28 -> 33[label="",style="solid", color="black", weight=3]; 29[label="vx31111",fontsize=16,color="green",shape="box"];30[label="vx3110",fontsize=16,color="green",shape="box"];31[label="vx31110",fontsize=16,color="green",shape="box"];32[label="(:) vx3110 flip (:) vx4 vx310",fontsize=16,color="green",shape="box"];32 -> 34[label="",style="dashed", color="green", weight=3]; 33[label="(:) vx310 vx4",fontsize=16,color="green",shape="box"];34 -> 28[label="",style="dashed", color="red", weight=0]; 34[label="flip (:) vx4 vx310",fontsize=16,color="magenta"];} ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(new_flip(vx4, vx310, h), vx3110, vx31110, vx31111, h) The TRS R consists of the following rules: new_flip(vx4, vx310, h) -> :(vx310, vx4) The set Q consists of the following terms: new_flip(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(new_flip(vx4, vx310, h), vx3110, vx31110, vx31111, h) at position [0] we obtained the following new rules [LPAR04]: (new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(:(vx310, vx4), vx3110, vx31110, vx31111, h),new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(:(vx310, vx4), vx3110, vx31110, vx31111, h)) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(:(vx310, vx4), vx3110, vx31110, vx31111, h) The TRS R consists of the following rules: new_flip(vx4, vx310, h) -> :(vx310, vx4) The set Q consists of the following terms: new_flip(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(:(vx310, vx4), vx3110, vx31110, vx31111, h) R is empty. The set Q consists of the following terms: new_flip(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_flip(x0, x1, x2) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(:(vx310, vx4), vx3110, vx31110, vx31111, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldl(vx4, vx310, vx3110, :(vx31110, vx31111), h) -> new_foldl(:(vx310, vx4), vx3110, vx31110, vx31111, h) The graph contains the following edges 3 >= 2, 4 > 3, 4 > 4, 5 >= 5 ---------------------------------------- (14) YES