/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [EQUIVALENT, 0 ms] (6) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data Float = Float MyInt MyInt ; data Integer = Integer MyInt ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ratio a = CnPc a a ; fromRationalFloat :: Ratio Integer -> Float; fromRationalFloat = primRationalToFloat; primRationalToFloat :: Ratio Integer -> Float; primRationalToFloat = rationalToFloat; pt :: (b -> a) -> (c -> b) -> c -> a; pt f g x = f (g x); rationalToFloat :: Ratio Integer -> Float; rationalToFloat (CnPc (Integer x) (Integer y)) = Float x y; realToFrac = pt fromRationalFloat toRational; toIntegerMyInt :: MyInt -> Integer; toIntegerMyInt x = Integer x; toRational (CnPc x y) = CnPc (toIntegerMyInt x) (toIntegerMyInt y); } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data Float = Float MyInt MyInt ; data Integer = Integer MyInt ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ratio a = CnPc a a ; fromRationalFloat :: Ratio Integer -> Float; fromRationalFloat = primRationalToFloat; primRationalToFloat :: Ratio Integer -> Float; primRationalToFloat = rationalToFloat; pt :: (b -> a) -> (c -> b) -> c -> a; pt f g x = f (g x); rationalToFloat :: Ratio Integer -> Float; rationalToFloat (CnPc (Integer x) (Integer y)) = Float x y; realToFrac = pt fromRationalFloat toRational; toIntegerMyInt :: MyInt -> Integer; toIntegerMyInt x = Integer x; toRational (CnPc x y) = CnPc (toIntegerMyInt x) (toIntegerMyInt y); } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data Float = Float MyInt MyInt ; data Integer = Integer MyInt ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ratio a = CnPc a a ; fromRationalFloat :: Ratio Integer -> Float; fromRationalFloat = primRationalToFloat; primRationalToFloat :: Ratio Integer -> Float; primRationalToFloat = rationalToFloat; pt :: (a -> b) -> (c -> a) -> c -> b; pt f g x = f (g x); rationalToFloat :: Ratio Integer -> Float; rationalToFloat (CnPc (Integer x) (Integer y)) = Float x y; realToFrac = pt fromRationalFloat toRational; toIntegerMyInt :: MyInt -> Integer; toIntegerMyInt x = Integer x; toRational (CnPc x y) = CnPc (toIntegerMyInt x) (toIntegerMyInt y); } ---------------------------------------- (5) Narrow (EQUIVALENT) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="realToFrac",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="realToFrac vx3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 4[label="pt fromRationalFloat toRational vx3",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="fromRationalFloat (toRational vx3)",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="primRationalToFloat (toRational vx3)",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="rationalToFloat (toRational vx3)",fontsize=16,color="burlywood",shape="box"];13[label="vx3/CnPc vx30 vx31",fontsize=10,color="white",style="solid",shape="box"];7 -> 13[label="",style="solid", color="burlywood", weight=9]; 13 -> 8[label="",style="solid", color="burlywood", weight=3]; 8[label="rationalToFloat (toRational (CnPc vx30 vx31))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="rationalToFloat (CnPc (toIntegerMyInt vx30) (toIntegerMyInt vx31))",fontsize=16,color="black",shape="box"];9 -> 10[label="",style="solid", color="black", weight=3]; 10[label="rationalToFloat (CnPc (Integer vx30) (toIntegerMyInt vx31))",fontsize=16,color="black",shape="box"];10 -> 11[label="",style="solid", color="black", weight=3]; 11[label="rationalToFloat (CnPc (Integer vx30) (Integer vx31))",fontsize=16,color="black",shape="box"];11 -> 12[label="",style="solid", color="black", weight=3]; 12[label="Float vx30 vx31",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) YES