/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) AND (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data Main.Char = Char MyInt ; data List a = Cons a (List a) | Nil ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; psPs :: List a -> List a -> List a; psPs Nil ys = ys; psPs (Cons x xs) ys = Cons x (psPs xs ys); unlines :: List (List Main.Char) -> List Main.Char; unlines Nil = Nil; unlines (Cons l ls) = psPs l (Cons (Main.Char (Main.Pos (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ Main.Zero)))))))))))) (unlines ls)); } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data Main.Char = Char MyInt ; data List a = Cons a (List a) | Nil ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; psPs :: List a -> List a -> List a; psPs Nil ys = ys; psPs (Cons x xs) ys = Cons x (psPs xs ys); unlines :: List (List Main.Char) -> List Main.Char; unlines Nil = Nil; unlines (Cons l ls) = psPs l (Cons (Main.Char (Main.Pos (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ Main.Zero)))))))))))) (unlines ls)); } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data Main.Char = Char MyInt ; data List a = Cons a (List a) | Nil ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; psPs :: List a -> List a -> List a; psPs Nil ys = ys; psPs (Cons x xs) ys = Cons x (psPs xs ys); unlines :: List (List Main.Char) -> List Main.Char; unlines Nil = Nil; unlines (Cons l ls) = psPs l (Cons (Main.Char (Main.Pos (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ (Main.Succ Main.Zero)))))))))))) (unlines ls)); } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="unlines",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="unlines vx3",fontsize=16,color="burlywood",shape="triangle"];24[label="vx3/Cons vx30 vx31",fontsize=10,color="white",style="solid",shape="box"];3 -> 24[label="",style="solid", color="burlywood", weight=9]; 24 -> 4[label="",style="solid", color="burlywood", weight=3]; 25[label="vx3/Nil",fontsize=10,color="white",style="solid",shape="box"];3 -> 25[label="",style="solid", color="burlywood", weight=9]; 25 -> 5[label="",style="solid", color="burlywood", weight=3]; 4[label="unlines (Cons vx30 vx31)",fontsize=16,color="black",shape="box"];4 -> 6[label="",style="solid", color="black", weight=3]; 5[label="unlines Nil",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6 -> 12[label="",style="dashed", color="red", weight=0]; 6[label="psPs vx30 (Cons (Char (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) (unlines vx31))",fontsize=16,color="magenta"];6 -> 13[label="",style="dashed", color="magenta", weight=3]; 6 -> 14[label="",style="dashed", color="magenta", weight=3]; 6 -> 15[label="",style="dashed", color="magenta", weight=3]; 7[label="Nil",fontsize=16,color="green",shape="box"];13[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))",fontsize=16,color="green",shape="box"];14[label="vx30",fontsize=16,color="green",shape="box"];15 -> 3[label="",style="dashed", color="red", weight=0]; 15[label="unlines vx31",fontsize=16,color="magenta"];15 -> 17[label="",style="dashed", color="magenta", weight=3]; 12[label="psPs vx5 (Cons (Char (Pos (Succ vx6))) vx8)",fontsize=16,color="burlywood",shape="triangle"];26[label="vx5/Cons vx50 vx51",fontsize=10,color="white",style="solid",shape="box"];12 -> 26[label="",style="solid", color="burlywood", weight=9]; 26 -> 18[label="",style="solid", color="burlywood", weight=3]; 27[label="vx5/Nil",fontsize=10,color="white",style="solid",shape="box"];12 -> 27[label="",style="solid", color="burlywood", weight=9]; 27 -> 19[label="",style="solid", color="burlywood", weight=3]; 17[label="vx31",fontsize=16,color="green",shape="box"];18[label="psPs (Cons vx50 vx51) (Cons (Char (Pos (Succ vx6))) vx8)",fontsize=16,color="black",shape="box"];18 -> 20[label="",style="solid", color="black", weight=3]; 19[label="psPs Nil (Cons (Char (Pos (Succ vx6))) vx8)",fontsize=16,color="black",shape="box"];19 -> 21[label="",style="solid", color="black", weight=3]; 20[label="Cons vx50 (psPs vx51 (Cons (Char (Pos (Succ vx6))) vx8))",fontsize=16,color="green",shape="box"];20 -> 22[label="",style="dashed", color="green", weight=3]; 21[label="Cons (Char (Pos (Succ vx6))) vx8",fontsize=16,color="green",shape="box"];22 -> 12[label="",style="dashed", color="red", weight=0]; 22[label="psPs vx51 (Cons (Char (Pos (Succ vx6))) vx8)",fontsize=16,color="magenta"];22 -> 23[label="",style="dashed", color="magenta", weight=3]; 23[label="vx51",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(Cons(vx50, vx51), vx6, vx8) -> new_psPs(vx51, vx6, vx8) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(Cons(vx50, vx51), vx6, vx8) -> new_psPs(vx51, vx6, vx8) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_unlines(Cons(vx30, vx31)) -> new_unlines(vx31) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_unlines(Cons(vx30, vx31)) -> new_unlines(vx31) The graph contains the following edges 1 > 1 ---------------------------------------- (12) YES