/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) AND (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data Main.Char = Char MyInt ; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; any :: (a -> MyBool) -> List a -> MyBool; any p = pt or (map p); elemChar :: Main.Char -> List Main.Char -> MyBool; elemChar = pt any esEsChar; esEsChar :: Main.Char -> Main.Char -> MyBool; esEsChar = primEqChar; foldr :: (a -> b -> b) -> b -> List a -> b; foldr f z Nil = z; foldr f z (Cons x xs) = f x (foldr f z xs); map :: (a -> b) -> List a -> List b; map f Nil = Nil; map f (Cons x xs) = Cons (f x) (map f xs); or :: List MyBool -> MyBool; or = foldr pePe MyFalse; pePe :: MyBool -> MyBool -> MyBool; pePe MyFalse x = x; pePe MyTrue x = MyTrue; primEqChar :: Main.Char -> Main.Char -> MyBool; primEqChar (Main.Char x) (Main.Char y) = primEqInt x y; primEqInt :: MyInt -> MyInt -> MyBool; primEqInt (Main.Pos (Main.Succ x)) (Main.Pos (Main.Succ y)) = primEqNat x y; primEqInt (Main.Neg (Main.Succ x)) (Main.Neg (Main.Succ y)) = primEqNat x y; primEqInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt vv vw = MyFalse; primEqNat :: Main.Nat -> Main.Nat -> MyBool; primEqNat Main.Zero Main.Zero = MyTrue; primEqNat Main.Zero (Main.Succ y) = MyFalse; primEqNat (Main.Succ x) Main.Zero = MyFalse; primEqNat (Main.Succ x) (Main.Succ y) = primEqNat x y; pt :: (c -> a) -> (b -> c) -> b -> a; pt f g x = f (g x); } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data Main.Char = Char MyInt ; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; any :: (a -> MyBool) -> List a -> MyBool; any p = pt or (map p); elemChar :: Main.Char -> List Main.Char -> MyBool; elemChar = pt any esEsChar; esEsChar :: Main.Char -> Main.Char -> MyBool; esEsChar = primEqChar; foldr :: (b -> a -> a) -> a -> List b -> a; foldr f z Nil = z; foldr f z (Cons x xs) = f x (foldr f z xs); map :: (b -> a) -> List b -> List a; map f Nil = Nil; map f (Cons x xs) = Cons (f x) (map f xs); or :: List MyBool -> MyBool; or = foldr pePe MyFalse; pePe :: MyBool -> MyBool -> MyBool; pePe MyFalse x = x; pePe MyTrue x = MyTrue; primEqChar :: Main.Char -> Main.Char -> MyBool; primEqChar (Main.Char x) (Main.Char y) = primEqInt x y; primEqInt :: MyInt -> MyInt -> MyBool; primEqInt (Main.Pos (Main.Succ x)) (Main.Pos (Main.Succ y)) = primEqNat x y; primEqInt (Main.Neg (Main.Succ x)) (Main.Neg (Main.Succ y)) = primEqNat x y; primEqInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt vv vw = MyFalse; primEqNat :: Main.Nat -> Main.Nat -> MyBool; primEqNat Main.Zero Main.Zero = MyTrue; primEqNat Main.Zero (Main.Succ y) = MyFalse; primEqNat (Main.Succ x) Main.Zero = MyFalse; primEqNat (Main.Succ x) (Main.Succ y) = primEqNat x y; pt :: (c -> b) -> (a -> c) -> a -> b; pt f g x = f (g x); } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data Main.Char = Char MyInt ; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; any :: (a -> MyBool) -> List a -> MyBool; any p = pt or (map p); elemChar :: Main.Char -> List Main.Char -> MyBool; elemChar = pt any esEsChar; esEsChar :: Main.Char -> Main.Char -> MyBool; esEsChar = primEqChar; foldr :: (a -> b -> b) -> b -> List a -> b; foldr f z Nil = z; foldr f z (Cons x xs) = f x (foldr f z xs); map :: (a -> b) -> List a -> List b; map f Nil = Nil; map f (Cons x xs) = Cons (f x) (map f xs); or :: List MyBool -> MyBool; or = foldr pePe MyFalse; pePe :: MyBool -> MyBool -> MyBool; pePe MyFalse x = x; pePe MyTrue x = MyTrue; primEqChar :: Main.Char -> Main.Char -> MyBool; primEqChar (Main.Char x) (Main.Char y) = primEqInt x y; primEqInt :: MyInt -> MyInt -> MyBool; primEqInt (Main.Pos (Main.Succ x)) (Main.Pos (Main.Succ y)) = primEqNat x y; primEqInt (Main.Neg (Main.Succ x)) (Main.Neg (Main.Succ y)) = primEqNat x y; primEqInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = MyTrue; primEqInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = MyTrue; primEqInt vv vw = MyFalse; primEqNat :: Main.Nat -> Main.Nat -> MyBool; primEqNat Main.Zero Main.Zero = MyTrue; primEqNat Main.Zero (Main.Succ y) = MyFalse; primEqNat (Main.Succ x) Main.Zero = MyFalse; primEqNat (Main.Succ x) (Main.Succ y) = primEqNat x y; pt :: (b -> c) -> (a -> b) -> a -> c; pt f g x = f (g x); } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="elemChar",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="elemChar vz3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="elemChar vz3 vz4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="pt any esEsChar vz3 vz4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="any (esEsChar vz3) vz4",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="pt or (map (esEsChar vz3)) vz4",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 8[label="or (map (esEsChar vz3) vz4)",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="foldr pePe MyFalse (map (esEsChar vz3) vz4)",fontsize=16,color="burlywood",shape="triangle"];79[label="vz4/Cons vz40 vz41",fontsize=10,color="white",style="solid",shape="box"];9 -> 79[label="",style="solid", color="burlywood", weight=9]; 79 -> 10[label="",style="solid", color="burlywood", weight=3]; 80[label="vz4/Nil",fontsize=10,color="white",style="solid",shape="box"];9 -> 80[label="",style="solid", color="burlywood", weight=9]; 80 -> 11[label="",style="solid", color="burlywood", weight=3]; 10[label="foldr pePe MyFalse (map (esEsChar vz3) (Cons vz40 vz41))",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 11[label="foldr pePe MyFalse (map (esEsChar vz3) Nil)",fontsize=16,color="black",shape="box"];11 -> 13[label="",style="solid", color="black", weight=3]; 12[label="foldr pePe MyFalse (Cons (esEsChar vz3 vz40) (map (esEsChar vz3) vz41))",fontsize=16,color="black",shape="box"];12 -> 14[label="",style="solid", color="black", weight=3]; 13[label="foldr pePe MyFalse Nil",fontsize=16,color="black",shape="box"];13 -> 15[label="",style="solid", color="black", weight=3]; 14 -> 16[label="",style="dashed", color="red", weight=0]; 14[label="pePe (esEsChar vz3 vz40) (foldr pePe MyFalse (map (esEsChar vz3) vz41))",fontsize=16,color="magenta"];14 -> 17[label="",style="dashed", color="magenta", weight=3]; 15[label="MyFalse",fontsize=16,color="green",shape="box"];17 -> 9[label="",style="dashed", color="red", weight=0]; 17[label="foldr pePe MyFalse (map (esEsChar vz3) vz41)",fontsize=16,color="magenta"];17 -> 18[label="",style="dashed", color="magenta", weight=3]; 16[label="pePe (esEsChar vz3 vz40) vz5",fontsize=16,color="black",shape="triangle"];16 -> 19[label="",style="solid", color="black", weight=3]; 18[label="vz41",fontsize=16,color="green",shape="box"];19[label="pePe (primEqChar vz3 vz40) vz5",fontsize=16,color="burlywood",shape="box"];81[label="vz3/Char vz30",fontsize=10,color="white",style="solid",shape="box"];19 -> 81[label="",style="solid", color="burlywood", weight=9]; 81 -> 20[label="",style="solid", color="burlywood", weight=3]; 20[label="pePe (primEqChar (Char vz30) vz40) vz5",fontsize=16,color="burlywood",shape="box"];82[label="vz40/Char vz400",fontsize=10,color="white",style="solid",shape="box"];20 -> 82[label="",style="solid", color="burlywood", weight=9]; 82 -> 21[label="",style="solid", color="burlywood", weight=3]; 21[label="pePe (primEqChar (Char vz30) (Char vz400)) vz5",fontsize=16,color="black",shape="box"];21 -> 22[label="",style="solid", color="black", weight=3]; 22[label="pePe (primEqInt vz30 vz400) vz5",fontsize=16,color="burlywood",shape="box"];83[label="vz30/Pos vz300",fontsize=10,color="white",style="solid",shape="box"];22 -> 83[label="",style="solid", color="burlywood", weight=9]; 83 -> 23[label="",style="solid", color="burlywood", weight=3]; 84[label="vz30/Neg vz300",fontsize=10,color="white",style="solid",shape="box"];22 -> 84[label="",style="solid", color="burlywood", weight=9]; 84 -> 24[label="",style="solid", color="burlywood", weight=3]; 23[label="pePe (primEqInt (Pos vz300) vz400) vz5",fontsize=16,color="burlywood",shape="box"];85[label="vz300/Succ vz3000",fontsize=10,color="white",style="solid",shape="box"];23 -> 85[label="",style="solid", color="burlywood", weight=9]; 85 -> 25[label="",style="solid", color="burlywood", weight=3]; 86[label="vz300/Zero",fontsize=10,color="white",style="solid",shape="box"];23 -> 86[label="",style="solid", color="burlywood", weight=9]; 86 -> 26[label="",style="solid", color="burlywood", weight=3]; 24[label="pePe (primEqInt (Neg vz300) vz400) vz5",fontsize=16,color="burlywood",shape="box"];87[label="vz300/Succ vz3000",fontsize=10,color="white",style="solid",shape="box"];24 -> 87[label="",style="solid", color="burlywood", weight=9]; 87 -> 27[label="",style="solid", color="burlywood", weight=3]; 88[label="vz300/Zero",fontsize=10,color="white",style="solid",shape="box"];24 -> 88[label="",style="solid", color="burlywood", weight=9]; 88 -> 28[label="",style="solid", color="burlywood", weight=3]; 25[label="pePe (primEqInt (Pos (Succ vz3000)) vz400) vz5",fontsize=16,color="burlywood",shape="box"];89[label="vz400/Pos vz4000",fontsize=10,color="white",style="solid",shape="box"];25 -> 89[label="",style="solid", color="burlywood", weight=9]; 89 -> 29[label="",style="solid", color="burlywood", weight=3]; 90[label="vz400/Neg vz4000",fontsize=10,color="white",style="solid",shape="box"];25 -> 90[label="",style="solid", color="burlywood", weight=9]; 90 -> 30[label="",style="solid", color="burlywood", weight=3]; 26[label="pePe (primEqInt (Pos Zero) vz400) vz5",fontsize=16,color="burlywood",shape="box"];91[label="vz400/Pos vz4000",fontsize=10,color="white",style="solid",shape="box"];26 -> 91[label="",style="solid", color="burlywood", weight=9]; 91 -> 31[label="",style="solid", color="burlywood", weight=3]; 92[label="vz400/Neg vz4000",fontsize=10,color="white",style="solid",shape="box"];26 -> 92[label="",style="solid", color="burlywood", weight=9]; 92 -> 32[label="",style="solid", color="burlywood", weight=3]; 27[label="pePe (primEqInt (Neg (Succ vz3000)) vz400) vz5",fontsize=16,color="burlywood",shape="box"];93[label="vz400/Pos vz4000",fontsize=10,color="white",style="solid",shape="box"];27 -> 93[label="",style="solid", color="burlywood", weight=9]; 93 -> 33[label="",style="solid", color="burlywood", weight=3]; 94[label="vz400/Neg vz4000",fontsize=10,color="white",style="solid",shape="box"];27 -> 94[label="",style="solid", color="burlywood", weight=9]; 94 -> 34[label="",style="solid", color="burlywood", weight=3]; 28[label="pePe (primEqInt (Neg Zero) vz400) vz5",fontsize=16,color="burlywood",shape="box"];95[label="vz400/Pos vz4000",fontsize=10,color="white",style="solid",shape="box"];28 -> 95[label="",style="solid", color="burlywood", weight=9]; 95 -> 35[label="",style="solid", color="burlywood", weight=3]; 96[label="vz400/Neg vz4000",fontsize=10,color="white",style="solid",shape="box"];28 -> 96[label="",style="solid", color="burlywood", weight=9]; 96 -> 36[label="",style="solid", color="burlywood", weight=3]; 29[label="pePe (primEqInt (Pos (Succ vz3000)) (Pos vz4000)) vz5",fontsize=16,color="burlywood",shape="box"];97[label="vz4000/Succ vz40000",fontsize=10,color="white",style="solid",shape="box"];29 -> 97[label="",style="solid", color="burlywood", weight=9]; 97 -> 37[label="",style="solid", color="burlywood", weight=3]; 98[label="vz4000/Zero",fontsize=10,color="white",style="solid",shape="box"];29 -> 98[label="",style="solid", color="burlywood", weight=9]; 98 -> 38[label="",style="solid", color="burlywood", weight=3]; 30[label="pePe (primEqInt (Pos (Succ vz3000)) (Neg vz4000)) vz5",fontsize=16,color="black",shape="box"];30 -> 39[label="",style="solid", color="black", weight=3]; 31[label="pePe (primEqInt (Pos Zero) (Pos vz4000)) vz5",fontsize=16,color="burlywood",shape="box"];99[label="vz4000/Succ vz40000",fontsize=10,color="white",style="solid",shape="box"];31 -> 99[label="",style="solid", color="burlywood", weight=9]; 99 -> 40[label="",style="solid", color="burlywood", weight=3]; 100[label="vz4000/Zero",fontsize=10,color="white",style="solid",shape="box"];31 -> 100[label="",style="solid", color="burlywood", weight=9]; 100 -> 41[label="",style="solid", color="burlywood", weight=3]; 32[label="pePe (primEqInt (Pos Zero) (Neg vz4000)) vz5",fontsize=16,color="burlywood",shape="box"];101[label="vz4000/Succ vz40000",fontsize=10,color="white",style="solid",shape="box"];32 -> 101[label="",style="solid", color="burlywood", weight=9]; 101 -> 42[label="",style="solid", color="burlywood", weight=3]; 102[label="vz4000/Zero",fontsize=10,color="white",style="solid",shape="box"];32 -> 102[label="",style="solid", color="burlywood", weight=9]; 102 -> 43[label="",style="solid", color="burlywood", weight=3]; 33[label="pePe (primEqInt (Neg (Succ vz3000)) (Pos vz4000)) vz5",fontsize=16,color="black",shape="box"];33 -> 44[label="",style="solid", color="black", weight=3]; 34[label="pePe (primEqInt (Neg (Succ vz3000)) (Neg vz4000)) vz5",fontsize=16,color="burlywood",shape="box"];103[label="vz4000/Succ vz40000",fontsize=10,color="white",style="solid",shape="box"];34 -> 103[label="",style="solid", color="burlywood", weight=9]; 103 -> 45[label="",style="solid", color="burlywood", weight=3]; 104[label="vz4000/Zero",fontsize=10,color="white",style="solid",shape="box"];34 -> 104[label="",style="solid", color="burlywood", weight=9]; 104 -> 46[label="",style="solid", color="burlywood", weight=3]; 35[label="pePe (primEqInt (Neg Zero) (Pos vz4000)) vz5",fontsize=16,color="burlywood",shape="box"];105[label="vz4000/Succ vz40000",fontsize=10,color="white",style="solid",shape="box"];35 -> 105[label="",style="solid", color="burlywood", weight=9]; 105 -> 47[label="",style="solid", color="burlywood", weight=3]; 106[label="vz4000/Zero",fontsize=10,color="white",style="solid",shape="box"];35 -> 106[label="",style="solid", color="burlywood", weight=9]; 106 -> 48[label="",style="solid", color="burlywood", weight=3]; 36[label="pePe (primEqInt (Neg Zero) (Neg vz4000)) vz5",fontsize=16,color="burlywood",shape="box"];107[label="vz4000/Succ vz40000",fontsize=10,color="white",style="solid",shape="box"];36 -> 107[label="",style="solid", color="burlywood", weight=9]; 107 -> 49[label="",style="solid", color="burlywood", weight=3]; 108[label="vz4000/Zero",fontsize=10,color="white",style="solid",shape="box"];36 -> 108[label="",style="solid", color="burlywood", weight=9]; 108 -> 50[label="",style="solid", color="burlywood", weight=3]; 37[label="pePe (primEqInt (Pos (Succ vz3000)) (Pos (Succ vz40000))) vz5",fontsize=16,color="black",shape="box"];37 -> 51[label="",style="solid", color="black", weight=3]; 38[label="pePe (primEqInt (Pos (Succ vz3000)) (Pos Zero)) vz5",fontsize=16,color="black",shape="box"];38 -> 52[label="",style="solid", color="black", weight=3]; 39[label="pePe MyFalse vz5",fontsize=16,color="black",shape="triangle"];39 -> 53[label="",style="solid", color="black", weight=3]; 40[label="pePe (primEqInt (Pos Zero) (Pos (Succ vz40000))) vz5",fontsize=16,color="black",shape="box"];40 -> 54[label="",style="solid", color="black", weight=3]; 41[label="pePe (primEqInt (Pos Zero) (Pos Zero)) vz5",fontsize=16,color="black",shape="box"];41 -> 55[label="",style="solid", color="black", weight=3]; 42[label="pePe (primEqInt (Pos Zero) (Neg (Succ vz40000))) vz5",fontsize=16,color="black",shape="box"];42 -> 56[label="",style="solid", color="black", weight=3]; 43[label="pePe (primEqInt (Pos Zero) (Neg Zero)) vz5",fontsize=16,color="black",shape="box"];43 -> 57[label="",style="solid", color="black", weight=3]; 44 -> 39[label="",style="dashed", color="red", weight=0]; 44[label="pePe MyFalse vz5",fontsize=16,color="magenta"];45[label="pePe (primEqInt (Neg (Succ vz3000)) (Neg (Succ vz40000))) vz5",fontsize=16,color="black",shape="box"];45 -> 58[label="",style="solid", color="black", weight=3]; 46[label="pePe (primEqInt (Neg (Succ vz3000)) (Neg Zero)) vz5",fontsize=16,color="black",shape="box"];46 -> 59[label="",style="solid", color="black", weight=3]; 47[label="pePe (primEqInt (Neg Zero) (Pos (Succ vz40000))) vz5",fontsize=16,color="black",shape="box"];47 -> 60[label="",style="solid", color="black", weight=3]; 48[label="pePe (primEqInt (Neg Zero) (Pos Zero)) vz5",fontsize=16,color="black",shape="box"];48 -> 61[label="",style="solid", color="black", weight=3]; 49[label="pePe (primEqInt (Neg Zero) (Neg (Succ vz40000))) vz5",fontsize=16,color="black",shape="box"];49 -> 62[label="",style="solid", color="black", weight=3]; 50[label="pePe (primEqInt (Neg Zero) (Neg Zero)) vz5",fontsize=16,color="black",shape="box"];50 -> 63[label="",style="solid", color="black", weight=3]; 51[label="pePe (primEqNat vz3000 vz40000) vz5",fontsize=16,color="burlywood",shape="triangle"];109[label="vz3000/Succ vz30000",fontsize=10,color="white",style="solid",shape="box"];51 -> 109[label="",style="solid", color="burlywood", weight=9]; 109 -> 64[label="",style="solid", color="burlywood", weight=3]; 110[label="vz3000/Zero",fontsize=10,color="white",style="solid",shape="box"];51 -> 110[label="",style="solid", color="burlywood", weight=9]; 110 -> 65[label="",style="solid", color="burlywood", weight=3]; 52 -> 39[label="",style="dashed", color="red", weight=0]; 52[label="pePe MyFalse vz5",fontsize=16,color="magenta"];53[label="vz5",fontsize=16,color="green",shape="box"];54 -> 39[label="",style="dashed", color="red", weight=0]; 54[label="pePe MyFalse vz5",fontsize=16,color="magenta"];55[label="pePe MyTrue vz5",fontsize=16,color="black",shape="triangle"];55 -> 66[label="",style="solid", color="black", weight=3]; 56 -> 39[label="",style="dashed", color="red", weight=0]; 56[label="pePe MyFalse vz5",fontsize=16,color="magenta"];57 -> 55[label="",style="dashed", color="red", weight=0]; 57[label="pePe MyTrue vz5",fontsize=16,color="magenta"];58 -> 51[label="",style="dashed", color="red", weight=0]; 58[label="pePe (primEqNat vz3000 vz40000) vz5",fontsize=16,color="magenta"];58 -> 67[label="",style="dashed", color="magenta", weight=3]; 58 -> 68[label="",style="dashed", color="magenta", weight=3]; 59 -> 39[label="",style="dashed", color="red", weight=0]; 59[label="pePe MyFalse vz5",fontsize=16,color="magenta"];60 -> 39[label="",style="dashed", color="red", weight=0]; 60[label="pePe MyFalse vz5",fontsize=16,color="magenta"];61 -> 55[label="",style="dashed", color="red", weight=0]; 61[label="pePe MyTrue vz5",fontsize=16,color="magenta"];62 -> 39[label="",style="dashed", color="red", weight=0]; 62[label="pePe MyFalse vz5",fontsize=16,color="magenta"];63 -> 55[label="",style="dashed", color="red", weight=0]; 63[label="pePe MyTrue vz5",fontsize=16,color="magenta"];64[label="pePe (primEqNat (Succ vz30000) vz40000) vz5",fontsize=16,color="burlywood",shape="box"];111[label="vz40000/Succ vz400000",fontsize=10,color="white",style="solid",shape="box"];64 -> 111[label="",style="solid", color="burlywood", weight=9]; 111 -> 69[label="",style="solid", color="burlywood", weight=3]; 112[label="vz40000/Zero",fontsize=10,color="white",style="solid",shape="box"];64 -> 112[label="",style="solid", color="burlywood", weight=9]; 112 -> 70[label="",style="solid", color="burlywood", weight=3]; 65[label="pePe (primEqNat Zero vz40000) vz5",fontsize=16,color="burlywood",shape="box"];113[label="vz40000/Succ vz400000",fontsize=10,color="white",style="solid",shape="box"];65 -> 113[label="",style="solid", color="burlywood", weight=9]; 113 -> 71[label="",style="solid", color="burlywood", weight=3]; 114[label="vz40000/Zero",fontsize=10,color="white",style="solid",shape="box"];65 -> 114[label="",style="solid", color="burlywood", weight=9]; 114 -> 72[label="",style="solid", color="burlywood", weight=3]; 66[label="MyTrue",fontsize=16,color="green",shape="box"];67[label="vz3000",fontsize=16,color="green",shape="box"];68[label="vz40000",fontsize=16,color="green",shape="box"];69[label="pePe (primEqNat (Succ vz30000) (Succ vz400000)) vz5",fontsize=16,color="black",shape="box"];69 -> 73[label="",style="solid", color="black", weight=3]; 70[label="pePe (primEqNat (Succ vz30000) Zero) vz5",fontsize=16,color="black",shape="box"];70 -> 74[label="",style="solid", color="black", weight=3]; 71[label="pePe (primEqNat Zero (Succ vz400000)) vz5",fontsize=16,color="black",shape="box"];71 -> 75[label="",style="solid", color="black", weight=3]; 72[label="pePe (primEqNat Zero Zero) vz5",fontsize=16,color="black",shape="box"];72 -> 76[label="",style="solid", color="black", weight=3]; 73 -> 51[label="",style="dashed", color="red", weight=0]; 73[label="pePe (primEqNat vz30000 vz400000) vz5",fontsize=16,color="magenta"];73 -> 77[label="",style="dashed", color="magenta", weight=3]; 73 -> 78[label="",style="dashed", color="magenta", weight=3]; 74 -> 39[label="",style="dashed", color="red", weight=0]; 74[label="pePe MyFalse vz5",fontsize=16,color="magenta"];75 -> 39[label="",style="dashed", color="red", weight=0]; 75[label="pePe MyFalse vz5",fontsize=16,color="magenta"];76 -> 55[label="",style="dashed", color="red", weight=0]; 76[label="pePe MyTrue vz5",fontsize=16,color="magenta"];77[label="vz30000",fontsize=16,color="green",shape="box"];78[label="vz400000",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldr(vz3, Cons(vz40, vz41)) -> new_foldr(vz3, vz41) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldr(vz3, Cons(vz40, vz41)) -> new_foldr(vz3, vz41) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_pePe(Main.Succ(vz30000), Main.Succ(vz400000), vz5) -> new_pePe(vz30000, vz400000, vz5) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_pePe(Main.Succ(vz30000), Main.Succ(vz400000), vz5) -> new_pePe(vz30000, vz400000, vz5) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 ---------------------------------------- (12) YES