/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could not be shown: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) CR [EQUIVALENT, 0 ms] (4) HASKELL (5) BR [EQUIVALENT, 0 ms] (6) HASKELL (7) COR [EQUIVALENT, 12 ms] (8) HASKELL (9) LetRed [EQUIVALENT, 0 ms] (10) HASKELL (11) NumRed [SOUND, 12 ms] (12) HASKELL ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C (\old new ->new) fm key elt; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; plusFM :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; plusFM EmptyFM fm2 = fm2; plusFM fm1 EmptyFM = fm1; plusFM fm1 (Branch split_key elt1 _ left right) = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; splitGT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt _ fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt _ fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\oldnew->new" is transformed to "addToFM0 old new = new; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; plusFM :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM EmptyFM fm2 = fm2; plusFM fm1 EmptyFM = fm1; plusFM fm1 (Branch split_key elt1 _ left right) = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt _ fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt _ fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) CR (EQUIVALENT) Case Reductions: The following Case expression "case fm_r of { EmptyFM -> True; Branch right_key _ _ _ _ -> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key} " is transformed to "right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; " The following Case expression "case fm_l of { EmptyFM -> True; Branch left_key _ _ _ _ -> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key} " is transformed to "left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; " The following Case expression "case fm_R of { Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} " is transformed to "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " The following Case expression "case fm_L of { Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} " is transformed to "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; plusFM :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; plusFM EmptyFM fm2 = fm2; plusFM fm1 EmptyFM = fm1; plusFM fm1 (Branch split_key elt1 _ left right) = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt _ fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt _ fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. Binding Reductions: The bind variable of the following binding Pattern "fm_l@(Branch wv ww wx wy wz)" is replaced by the following term "Branch wv ww wx wy wz" The bind variable of the following binding Pattern "fm_r@(Branch xv xw xx xy xz)" is replaced by the following term "Branch xv xw xx xy xz" ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt zy zz EmptyFM) = (key,elt); findMax (Branch key elt vuu vuv fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vxu EmptyFM vxv) = (key,elt); findMin (Branch key elt vxw fm_l vxx) = findMin fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key yw yx yy yz) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key zu zv zw zx) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) | sIZE_RATIO * size_l < size_r = mkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz | sIZE_RATIO * size_r < size_l = mkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz)) | otherwise = mkBranch 13 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) where { size_l = sizeFM (Branch wv ww wx wy wz); size_r = sizeFM (Branch xv xw xx xy xz); }; plusFM :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM EmptyFM fm2 = fm2; plusFM fm1 EmptyFM = fm1; plusFM fm1 (Branch split_key elt1 vz left right) = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vww vwx size vwy vwz) = size; splitGT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt yu fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt yv fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; " is transformed to "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; " "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); " "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; " "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; " "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); " "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vyu vyv vyw vyx = addToFM_C3 vyu vyv vyw vyx; " The following Function with conditions "mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz)|sIZE_RATIO * size_l < size_rmkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz|sIZE_RATIO * size_r < size_lmkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz))|otherwisemkBranch 13 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) where { size_l = sizeFM (Branch wv ww wx wy wz); ; size_r = sizeFM (Branch xv xw xx xy xz); } ; " is transformed to "mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); " "mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt wv ww wx wy wz xv xw xx xy xz True = mkBranch 13 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); ; mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz)); mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch0 key elt wv ww wx wy wz xv xw xx xy xz otherwise; ; mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz; mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch wv ww wx wy wz); ; size_r = sizeFM (Branch xv xw xx xy xz); } ; " "mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 vzv vzw vzx vzy = mkVBalBranch3 vzv vzw vzx vzy; " "mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 wuu wuv wuw wux = mkVBalBranch4 wuu wuv wuw wux; " The following Function with conditions "splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt yu fm_l fm_r) split_key|split_key > keysplitGT fm_r split_key|split_key < keymkVBalBranch key elt (splitGT fm_l split_key) fm_r|otherwisefm_r; " is transformed to "splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt yu fm_l fm_r) split_key = splitGT3 (Branch key elt yu fm_l fm_r) split_key; " "splitGT0 key elt yu fm_l fm_r split_key True = fm_r; " "splitGT1 key elt yu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt yu fm_l fm_r split_key False = splitGT0 key elt yu fm_l fm_r split_key otherwise; " "splitGT2 key elt yu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt yu fm_l fm_r split_key False = splitGT1 key elt yu fm_l fm_r split_key (split_key < key); " "splitGT3 (Branch key elt yu fm_l fm_r) split_key = splitGT2 key elt yu fm_l fm_r split_key (split_key > key); " "splitGT4 EmptyFM split_key = emptyFM; splitGT4 wvu wvv = splitGT3 wvu wvv; " The following Function with conditions "splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt yv fm_l fm_r) split_key|split_key < keysplitLT fm_l split_key|split_key > keymkVBalBranch key elt fm_l (splitLT fm_r split_key)|otherwisefm_l; " is transformed to "splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt yv fm_l fm_r) split_key = splitLT3 (Branch key elt yv fm_l fm_r) split_key; " "splitLT1 key elt yv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt yv fm_l fm_r split_key False = splitLT0 key elt yv fm_l fm_r split_key otherwise; " "splitLT0 key elt yv fm_l fm_r split_key True = fm_l; " "splitLT2 key elt yv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt yv fm_l fm_r split_key False = splitLT1 key elt yv fm_l fm_r split_key (split_key > key); " "splitLT3 (Branch key elt yv fm_l fm_r) split_key = splitLT2 key elt yv fm_l fm_r split_key (split_key < key); " "splitLT4 EmptyFM split_key = emptyFM; splitLT4 wvy wvz = splitLT3 wvy wvz; " The following Function with conditions "mkBalBranch1 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " is transformed to "mkBalBranch1 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr); " "mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = double_R fm_L fm_R; " "mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr otherwise; " "mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " The following Function with conditions "mkBalBranch0 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " is transformed to "mkBalBranch0 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr); " "mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = double_L fm_L fm_R; " "mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr otherwise; " "mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " The following Function with conditions "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; ; mkBalBranch1 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; ; single_L fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " is transformed to "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; " "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " ---------------------------------------- (8) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vyu vyv vyw vyx = addToFM_C3 vyu vyv vyw vyx; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt zy zz EmptyFM) = (key,elt); findMax (Branch key elt vuu vuv fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vxu EmptyFM vxv) = (key,elt); findMin (Branch key elt vxw fm_l vxx) = findMin fm_l; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr); mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = double_L fm_L fm_R; mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr otherwise; mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch1 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr); mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = double_R fm_L fm_R; mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr otherwise; mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); single_L fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key yw yx yy yz) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key zu zv zw zx) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt wv ww wx wy wz xv xw xx xy xz True = mkBranch 13 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz)); mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch0 key elt wv ww wx wy wz xv xw xx xy xz otherwise; mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz; mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * size_r < size_l); size_l = sizeFM (Branch wv ww wx wy wz); size_r = sizeFM (Branch xv xw xx xy xz); }; mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 vzv vzw vzx vzy = mkVBalBranch3 vzv vzw vzx vzy; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 wuu wuv wuw wux = mkVBalBranch4 wuu wuv wuw wux; plusFM :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; plusFM EmptyFM fm2 = fm2; plusFM fm1 EmptyFM = fm1; plusFM fm1 (Branch split_key elt1 vz left right) = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vww vwx size vwy vwz) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt yu fm_l fm_r) split_key = splitGT3 (Branch key elt yu fm_l fm_r) split_key; splitGT0 key elt yu fm_l fm_r split_key True = fm_r; splitGT1 key elt yu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt yu fm_l fm_r split_key False = splitGT0 key elt yu fm_l fm_r split_key otherwise; splitGT2 key elt yu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt yu fm_l fm_r split_key False = splitGT1 key elt yu fm_l fm_r split_key (split_key < key); splitGT3 (Branch key elt yu fm_l fm_r) split_key = splitGT2 key elt yu fm_l fm_r split_key (split_key > key); splitGT4 EmptyFM split_key = emptyFM; splitGT4 wvu wvv = splitGT3 wvu wvv; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt yv fm_l fm_r) split_key = splitLT3 (Branch key elt yv fm_l fm_r) split_key; splitLT0 key elt yv fm_l fm_r split_key True = fm_l; splitLT1 key elt yv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt yv fm_l fm_r split_key False = splitLT0 key elt yv fm_l fm_r split_key otherwise; splitLT2 key elt yv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt yv fm_l fm_r split_key False = splitLT1 key elt yv fm_l fm_r split_key (split_key > key); splitLT3 (Branch key elt yv fm_l fm_r) split_key = splitLT2 key elt yv fm_l fm_r split_key (split_key < key); splitLT4 EmptyFM split_key = emptyFM; splitLT4 wvy wvz = splitLT3 wvy wvz; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (9) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vvy vvz vwu fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vvy vvz vwu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vuz vvu vvv fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vuz vvu vvv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } " are unpacked to the following functions on top level "mkBalBranch6MkBalBranch5 www wwx wwy wwz key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R (mkBalBranch6Size_r www wwx wwy wwz > sIZE_RATIO * mkBalBranch6Size_l www wwx wwy wwz); " "mkBalBranch6MkBalBranch2 www wwx wwy wwz key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; " "mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 www wwx wwy wwz fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R (mkBalBranch6Size_l www wwx wwy wwz > sIZE_RATIO * mkBalBranch6Size_r www wwx wwy wwz); " "mkBalBranch6Double_L www wwx wwy wwz fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 www wwx fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); " "mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 www wwx wwy wwz fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 www wwx wwy wwz key elt fm_L fm_R otherwise; " "mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr True = mkBalBranch6Single_L www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr False = mkBalBranch6MkBalBranch00 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr otherwise; " "mkBalBranch6MkBalBranch10 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr True = mkBalBranch6Double_R www wwx wwy wwz fm_L fm_R; " "mkBalBranch6MkBalBranch0 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch6MkBalBranch02 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr); " "mkBalBranch6Single_R www wwx wwy wwz (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 www wwx fm_lr fm_r); " "mkBalBranch6MkBalBranch1 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch6MkBalBranch12 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr); " "mkBalBranch6Size_r www wwx wwy wwz = sizeFM wwy; " "mkBalBranch6Single_L www wwx wwy wwz fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 www wwx fm_l fm_rl) fm_rr; " "mkBalBranch6Double_R www wwx wwy wwz (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 www wwx fm_lrr fm_r); " "mkBalBranch6MkBalBranch02 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " "mkBalBranch6MkBalBranch00 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr True = mkBalBranch6Double_L www wwx wwy wwz fm_L fm_R; " "mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr True = mkBalBranch6Single_R www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr False = mkBalBranch6MkBalBranch10 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr otherwise; " "mkBalBranch6MkBalBranch12 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " "mkBalBranch6Size_l www wwx wwy wwz = sizeFM wwz; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; ; left_ok = left_ok0 fm_l key fm_l; ; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key yw yx yy yz) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; ; left_size = sizeFM fm_l; ; right_ok = right_ok0 fm_r key fm_r; ; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key zu zv zw zx) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; ; right_size = sizeFM fm_r; ; unbox x = x; } " are unpacked to the following functions on top level "mkBranchLeft_ok wxu wxv wxw = mkBranchLeft_ok0 wxu wxv wxw wxu wxv wxu; " "mkBranchBalance_ok wxu wxv wxw = True; " "mkBranchRight_ok wxu wxv wxw = mkBranchRight_ok0 wxu wxv wxw wxw wxv wxw; " "mkBranchLeft_ok0 wxu wxv wxw fm_l key EmptyFM = True; mkBranchLeft_ok0 wxu wxv wxw fm_l key (Branch left_key yw yx yy yz) = mkBranchLeft_ok0Biggest_left_key fm_l < key; " "mkBranchRight_size wxu wxv wxw = sizeFM wxw; " "mkBranchUnbox wxu wxv wxw x = x; " "mkBranchLeft_size wxu wxv wxw = sizeFM wxu; " "mkBranchRight_ok0 wxu wxv wxw fm_r key EmptyFM = True; mkBranchRight_ok0 wxu wxv wxw fm_r key (Branch right_key zu zv zw zx) = key < mkBranchRight_ok0Smallest_right_key fm_r; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result" are unpacked to the following functions on top level "mkBranchResult wxx wxy wxz wyu = Branch wxx wxy (mkBranchUnbox wxz wxx wyu (1 + mkBranchLeft_size wxz wxx wyu + mkBranchRight_size wxz wxx wyu)) wxz wyu; " The bindings of the following Let/Where expression "mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) where { gts = splitGT fm1 split_key; ; lts = splitLT fm1 split_key; } " are unpacked to the following functions on top level "plusFMLts wyv wyw = splitLT wyv wyw; " "plusFMGts wyv wyw = splitGT wyv wyw; " The bindings of the following Let/Where expression "mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt wv ww wx wy wz xv xw xx xy xz True = mkBranch 13 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); ; mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz)); mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch0 key elt wv ww wx wy wz xv xw xx xy xz otherwise; ; mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz; mkVBalBranch2 key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch1 key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch wv ww wx wy wz); ; size_r = sizeFM (Branch xv xw xx xy xz); } " are unpacked to the following functions on top level "mkVBalBranch3Size_r wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu = sizeFM (Branch wyx wyy wyz wzu wzv); " "mkVBalBranch3MkVBalBranch0 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBranch 13 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); " "mkVBalBranch3Size_l wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu = sizeFM (Branch wzw wzx wzy wzz xuu); " "mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz)); mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch3MkVBalBranch0 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz otherwise; " "mkVBalBranch3MkVBalBranch2 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz; mkVBalBranch3MkVBalBranch2 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * mkVBalBranch3Size_r wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu < mkVBalBranch3Size_l wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu); " The bindings of the following Let/Where expression "let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key" are unpacked to the following functions on top level "mkBranchLeft_ok0Biggest_left_key xuv = fst (findMax xuv); " The bindings of the following Let/Where expression "let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key" are unpacked to the following functions on top level "mkBranchRight_ok0Smallest_right_key xuw = fst (findMin xuw); " ---------------------------------------- (10) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vyu vyv vyw vyx = addToFM_C3 vyu vyv vyw vyx; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt zy zz EmptyFM) = (key,elt); findMax (Branch key elt vuu vuv fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt vxu EmptyFM vxv) = (key,elt); findMin (Branch key elt vxw fm_l vxx) = findMin fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_R fm_L key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_R fm_L + mkBalBranch6Size_r key elt fm_R fm_L < 2); mkBalBranch6Double_L www wwx wwy wwz fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 www wwx fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R www wwx wwy wwz (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 www wwx fm_lrr fm_r); mkBalBranch6MkBalBranch0 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch6MkBalBranch02 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr); mkBalBranch6MkBalBranch00 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr True = mkBalBranch6Double_L www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr True = mkBalBranch6Single_L www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr False = mkBalBranch6MkBalBranch00 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch6MkBalBranch1 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch6MkBalBranch12 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr); mkBalBranch6MkBalBranch10 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr True = mkBalBranch6Double_R www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr True = mkBalBranch6Single_R www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr False = mkBalBranch6MkBalBranch10 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch6MkBalBranch2 www wwx wwy wwz key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 www wwx wwy wwz fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 www wwx wwy wwz key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 www wwx wwy wwz fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R (mkBalBranch6Size_l www wwx wwy wwz > sIZE_RATIO * mkBalBranch6Size_r www wwx wwy wwz); mkBalBranch6MkBalBranch5 www wwx wwy wwz key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R (mkBalBranch6Size_r www wwx wwy wwz > sIZE_RATIO * mkBalBranch6Size_l www wwx wwy wwz); mkBalBranch6Single_L www wwx wwy wwz fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 www wwx fm_l fm_rl) fm_rr; mkBalBranch6Single_R www wwx wwy wwz (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 www wwx fm_lr fm_r); mkBalBranch6Size_l www wwx wwy wwz = sizeFM wwz; mkBalBranch6Size_r www wwx wwy wwz = sizeFM wwy; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok wxu wxv wxw = True; mkBranchLeft_ok wxu wxv wxw = mkBranchLeft_ok0 wxu wxv wxw wxu wxv wxu; mkBranchLeft_ok0 wxu wxv wxw fm_l key EmptyFM = True; mkBranchLeft_ok0 wxu wxv wxw fm_l key (Branch left_key yw yx yy yz) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key xuv = fst (findMax xuv); mkBranchLeft_size wxu wxv wxw = sizeFM wxu; mkBranchResult wxx wxy wxz wyu = Branch wxx wxy (mkBranchUnbox wxz wxx wyu (1 + mkBranchLeft_size wxz wxx wyu + mkBranchRight_size wxz wxx wyu)) wxz wyu; mkBranchRight_ok wxu wxv wxw = mkBranchRight_ok0 wxu wxv wxw wxw wxv wxw; mkBranchRight_ok0 wxu wxv wxw fm_r key EmptyFM = True; mkBranchRight_ok0 wxu wxv wxw fm_r key (Branch right_key zu zv zw zx) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key xuw = fst (findMin xuw); mkBranchRight_size wxu wxv wxw = sizeFM wxw; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox wxu wxv wxw x = x; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch3MkVBalBranch2 xv xw xx xy xz wv ww wx wy wz key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * mkVBalBranch3Size_l xv xw xx xy xz wv ww wx wy wz < mkVBalBranch3Size_r xv xw xx xy xz wv ww wx wy wz); mkVBalBranch3MkVBalBranch0 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBranch 13 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz)); mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch3MkVBalBranch0 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz otherwise; mkVBalBranch3MkVBalBranch2 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz; mkVBalBranch3MkVBalBranch2 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * mkVBalBranch3Size_r wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu < mkVBalBranch3Size_l wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu); mkVBalBranch3Size_l wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu = sizeFM (Branch wzw wzx wzy wzz xuu); mkVBalBranch3Size_r wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu = sizeFM (Branch wyx wyy wyz wzu wzv); mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 vzv vzw vzx vzy = mkVBalBranch3 vzv vzw vzx vzy; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 wuu wuv wuw wux = mkVBalBranch4 wuu wuv wuw wux; plusFM :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM EmptyFM fm2 = fm2; plusFM fm1 EmptyFM = fm1; plusFM fm1 (Branch split_key elt1 vz left right) = mkVBalBranch split_key elt1 (plusFM (plusFMLts fm1 split_key) left) (plusFM (plusFMGts fm1 split_key) right); plusFMGts wyv wyw = splitGT wyv wyw; plusFMLts wyv wyw = splitLT wyv wyw; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vww vwx size vwy vwz) = size; splitGT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt yu fm_l fm_r) split_key = splitGT3 (Branch key elt yu fm_l fm_r) split_key; splitGT0 key elt yu fm_l fm_r split_key True = fm_r; splitGT1 key elt yu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt yu fm_l fm_r split_key False = splitGT0 key elt yu fm_l fm_r split_key otherwise; splitGT2 key elt yu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt yu fm_l fm_r split_key False = splitGT1 key elt yu fm_l fm_r split_key (split_key < key); splitGT3 (Branch key elt yu fm_l fm_r) split_key = splitGT2 key elt yu fm_l fm_r split_key (split_key > key); splitGT4 EmptyFM split_key = emptyFM; splitGT4 wvu wvv = splitGT3 wvu wvv; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt yv fm_l fm_r) split_key = splitLT3 (Branch key elt yv fm_l fm_r) split_key; splitLT0 key elt yv fm_l fm_r split_key True = fm_l; splitLT1 key elt yv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt yv fm_l fm_r split_key False = splitLT0 key elt yv fm_l fm_r split_key otherwise; splitLT2 key elt yv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt yv fm_l fm_r split_key False = splitLT1 key elt yv fm_l fm_r split_key (split_key > key); splitLT3 (Branch key elt yv fm_l fm_r) split_key = splitLT2 key elt yv fm_l fm_r split_key (split_key < key); splitLT4 EmptyFM split_key = emptyFM; splitLT4 wvy wvz = splitLT3 wvy wvz; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (11) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (12) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vyu vyv vyw vyx = addToFM_C3 vyu vyv vyw vyx; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt zy zz EmptyFM) = (key,elt); findMax (Branch key elt vuu vuv fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vxu EmptyFM vxv) = (key,elt); findMin (Branch key elt vxw fm_l vxx) = findMin fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_R fm_L key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_R fm_L + mkBalBranch6Size_r key elt fm_R fm_L < Pos (Succ (Succ Zero))); mkBalBranch6Double_L www wwx wwy wwz fm_l (Branch key_r elt_r vvw (Branch key_rl elt_rl vvx fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) www wwx fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R www wwx wwy wwz (Branch key_l elt_l vux fm_ll (Branch key_lr elt_lr vuy fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) www wwx fm_lrr fm_r); mkBalBranch6MkBalBranch0 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch6MkBalBranch02 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr); mkBalBranch6MkBalBranch00 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr True = mkBalBranch6Double_L www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr True = mkBalBranch6Single_L www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr False = mkBalBranch6MkBalBranch00 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 www wwx wwy wwz fm_L fm_R (Branch vvy vvz vwu fm_rl fm_rr) = mkBalBranch6MkBalBranch01 www wwx wwy wwz fm_L fm_R vvy vvz vwu fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); mkBalBranch6MkBalBranch1 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch6MkBalBranch12 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr); mkBalBranch6MkBalBranch10 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr True = mkBalBranch6Double_R www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr True = mkBalBranch6Single_R www wwx wwy wwz fm_L fm_R; mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr False = mkBalBranch6MkBalBranch10 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 www wwx wwy wwz fm_L fm_R (Branch vuz vvu vvv fm_ll fm_lr) = mkBalBranch6MkBalBranch11 www wwx wwy wwz fm_L fm_R vuz vvu vvv fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); mkBalBranch6MkBalBranch2 www wwx wwy wwz key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 www wwx wwy wwz fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 www wwx wwy wwz key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 www wwx wwy wwz fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 www wwx wwy wwz key elt fm_L fm_R (mkBalBranch6Size_l www wwx wwy wwz > sIZE_RATIO * mkBalBranch6Size_r www wwx wwy wwz); mkBalBranch6MkBalBranch5 www wwx wwy wwz key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; mkBalBranch6MkBalBranch5 www wwx wwy wwz key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 www wwx wwy wwz key elt fm_L fm_R (mkBalBranch6Size_r www wwx wwy wwz > sIZE_RATIO * mkBalBranch6Size_l www wwx wwy wwz); mkBalBranch6Single_L www wwx wwy wwz fm_l (Branch key_r elt_r vwv fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) www wwx fm_l fm_rl) fm_rr; mkBalBranch6Single_R www wwx wwy wwz (Branch key_l elt_l vuw fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) www wwx fm_lr fm_r); mkBalBranch6Size_l www wwx wwy wwz = sizeFM wwz; mkBalBranch6Size_r www wwx wwy wwz = sizeFM wwy; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok wxu wxv wxw = True; mkBranchLeft_ok wxu wxv wxw = mkBranchLeft_ok0 wxu wxv wxw wxu wxv wxu; mkBranchLeft_ok0 wxu wxv wxw fm_l key EmptyFM = True; mkBranchLeft_ok0 wxu wxv wxw fm_l key (Branch left_key yw yx yy yz) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key xuv = fst (findMax xuv); mkBranchLeft_size wxu wxv wxw = sizeFM wxu; mkBranchResult wxx wxy wxz wyu = Branch wxx wxy (mkBranchUnbox wxz wxx wyu (Pos (Succ Zero) + mkBranchLeft_size wxz wxx wyu + mkBranchRight_size wxz wxx wyu)) wxz wyu; mkBranchRight_ok wxu wxv wxw = mkBranchRight_ok0 wxu wxv wxw wxw wxv wxw; mkBranchRight_ok0 wxu wxv wxw fm_r key EmptyFM = True; mkBranchRight_ok0 wxu wxv wxw fm_r key (Branch right_key zu zv zw zx) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key xuw = fst (findMin xuw); mkBranchRight_size wxu wxv wxw = sizeFM wxw; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox wxu wxv wxw x = x; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); mkVBalBranch3 key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz) = mkVBalBranch3MkVBalBranch2 xv xw xx xy xz wv ww wx wy wz key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * mkVBalBranch3Size_l xv xw xx xy xz wv ww wx wy wz < mkVBalBranch3Size_r xv xw xx xy xz wv ww wx wy wz); mkVBalBranch3MkVBalBranch0 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))))) key elt (Branch wv ww wx wy wz) (Branch xv xw xx xy xz); mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch wv ww wy (mkVBalBranch key elt wz (Branch xv xw xx xy xz)); mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch3MkVBalBranch0 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz otherwise; mkVBalBranch3MkVBalBranch2 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz True = mkBalBranch xv xw (mkVBalBranch key elt (Branch wv ww wx wy wz) xy) xz; mkVBalBranch3MkVBalBranch2 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz False = mkVBalBranch3MkVBalBranch1 wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu key elt wv ww wx wy wz xv xw xx xy xz (sIZE_RATIO * mkVBalBranch3Size_r wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu < mkVBalBranch3Size_l wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu); mkVBalBranch3Size_l wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu = sizeFM (Branch wzw wzx wzy wzz xuu); mkVBalBranch3Size_r wyx wyy wyz wzu wzv wzw wzx wzy wzz xuu = sizeFM (Branch wyx wyy wyz wzu wzv); mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 vzv vzw vzx vzy = mkVBalBranch3 vzv vzw vzx vzy; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 wuu wuv wuw wux = mkVBalBranch4 wuu wuv wuw wux; plusFM :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; plusFM EmptyFM fm2 = fm2; plusFM fm1 EmptyFM = fm1; plusFM fm1 (Branch split_key elt1 vz left right) = mkVBalBranch split_key elt1 (plusFM (plusFMLts fm1 split_key) left) (plusFM (plusFMGts fm1 split_key) right); plusFMGts wyv wyw = splitGT wyv wyw; plusFMLts wyv wyw = splitLT wyv wyw; sIZE_RATIO :: Int; sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = Pos Zero; sizeFM (Branch vww vwx size vwy vwz) = size; splitGT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt yu fm_l fm_r) split_key = splitGT3 (Branch key elt yu fm_l fm_r) split_key; splitGT0 key elt yu fm_l fm_r split_key True = fm_r; splitGT1 key elt yu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt yu fm_l fm_r split_key False = splitGT0 key elt yu fm_l fm_r split_key otherwise; splitGT2 key elt yu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt yu fm_l fm_r split_key False = splitGT1 key elt yu fm_l fm_r split_key (split_key < key); splitGT3 (Branch key elt yu fm_l fm_r) split_key = splitGT2 key elt yu fm_l fm_r split_key (split_key > key); splitGT4 EmptyFM split_key = emptyFM; splitGT4 wvu wvv = splitGT3 wvu wvv; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt yv fm_l fm_r) split_key = splitLT3 (Branch key elt yv fm_l fm_r) split_key; splitLT0 key elt yv fm_l fm_r split_key True = fm_l; splitLT1 key elt yv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt yv fm_l fm_r split_key False = splitLT0 key elt yv fm_l fm_r split_key otherwise; splitLT2 key elt yv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt yv fm_l fm_r split_key False = splitLT1 key elt yv fm_l fm_r split_key (split_key > key); splitLT3 (Branch key elt yv fm_l fm_r) split_key = splitLT2 key elt yv fm_l fm_r split_key (split_key < key); splitLT4 EmptyFM split_key = emptyFM; splitLT4 wvy wvz = splitLT3 wvy wvz; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; }