/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) TransformationProof [EQUIVALENT, 0 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ordering = LT | EQ | GT ; data Tup2 a b = Tup2 a b ; compareMyInt :: MyInt -> MyInt -> Ordering; compareMyInt = primCmpInt; esEsOrdering :: Ordering -> Ordering -> MyBool; esEsOrdering LT LT = MyTrue; esEsOrdering LT EQ = MyFalse; esEsOrdering LT GT = MyFalse; esEsOrdering EQ LT = MyFalse; esEsOrdering EQ EQ = MyTrue; esEsOrdering EQ GT = MyFalse; esEsOrdering GT LT = MyFalse; esEsOrdering GT EQ = MyFalse; esEsOrdering GT GT = MyTrue; fsEsOrdering :: Ordering -> Ordering -> MyBool; fsEsOrdering x y = not (esEsOrdering x y); ltEsMyInt :: MyInt -> MyInt -> MyBool; ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; msMyInt :: MyInt -> MyInt -> MyInt; msMyInt = primMinusInt; not :: MyBool -> MyBool; not MyTrue = MyFalse; not MyFalse = MyTrue; primCmpInt :: MyInt -> MyInt -> Ordering; primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; primCmpInt (Main.Pos x) (Main.Neg y) = GT; primCmpInt (Main.Neg x) (Main.Pos y) = LT; primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; primCmpNat :: Main.Nat -> Main.Nat -> Ordering; primCmpNat Main.Zero Main.Zero = EQ; primCmpNat Main.Zero (Main.Succ y) = LT; primCmpNat (Main.Succ x) Main.Zero = GT; primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; primMinusInt :: MyInt -> MyInt -> MyInt; primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); splitAt :: MyInt -> List a -> Tup2 (List a) (List a); splitAt n xs = splitAt3 n xs; splitAt vv Nil = splitAt1 vv Nil; splitAt n (Cons x xs) = splitAt0 n (Cons x xs); splitAt0 n (Cons x xs) = Tup2 (Cons x (splitAt0Xs' n xs)) (splitAt0Xs'' n xs); splitAt0Vu42 wy wz = splitAt (msMyInt wy (Main.Pos (Main.Succ Main.Zero))) wz; splitAt0Xs' wy wz = splitAt0Xs'0 wy wz (splitAt0Vu42 wy wz); splitAt0Xs'' wy wz = splitAt0Xs''0 wy wz (splitAt0Vu42 wy wz); splitAt0Xs''0 wy wz (Tup2 vw xs'') = xs''; splitAt0Xs'0 wy wz (Tup2 xs' vx) = xs'; splitAt1 vv Nil = Tup2 Nil Nil; splitAt1 wu wv = splitAt0 wu wv; splitAt2 n xs MyTrue = Tup2 Nil xs; splitAt2 n xs MyFalse = splitAt1 n xs; splitAt3 n xs = splitAt2 n xs (ltEsMyInt n (Main.Pos Main.Zero)); splitAt3 ww wx = splitAt1 ww wx; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ordering = LT | EQ | GT ; data Tup2 b a = Tup2 b a ; compareMyInt :: MyInt -> MyInt -> Ordering; compareMyInt = primCmpInt; esEsOrdering :: Ordering -> Ordering -> MyBool; esEsOrdering LT LT = MyTrue; esEsOrdering LT EQ = MyFalse; esEsOrdering LT GT = MyFalse; esEsOrdering EQ LT = MyFalse; esEsOrdering EQ EQ = MyTrue; esEsOrdering EQ GT = MyFalse; esEsOrdering GT LT = MyFalse; esEsOrdering GT EQ = MyFalse; esEsOrdering GT GT = MyTrue; fsEsOrdering :: Ordering -> Ordering -> MyBool; fsEsOrdering x y = not (esEsOrdering x y); ltEsMyInt :: MyInt -> MyInt -> MyBool; ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; msMyInt :: MyInt -> MyInt -> MyInt; msMyInt = primMinusInt; not :: MyBool -> MyBool; not MyTrue = MyFalse; not MyFalse = MyTrue; primCmpInt :: MyInt -> MyInt -> Ordering; primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; primCmpInt (Main.Pos x) (Main.Neg y) = GT; primCmpInt (Main.Neg x) (Main.Pos y) = LT; primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; primCmpNat :: Main.Nat -> Main.Nat -> Ordering; primCmpNat Main.Zero Main.Zero = EQ; primCmpNat Main.Zero (Main.Succ y) = LT; primCmpNat (Main.Succ x) Main.Zero = GT; primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; primMinusInt :: MyInt -> MyInt -> MyInt; primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); splitAt :: MyInt -> List a -> Tup2 (List a) (List a); splitAt n xs = splitAt3 n xs; splitAt vv Nil = splitAt1 vv Nil; splitAt n (Cons x xs) = splitAt0 n (Cons x xs); splitAt0 n (Cons x xs) = Tup2 (Cons x (splitAt0Xs' n xs)) (splitAt0Xs'' n xs); splitAt0Vu42 wy wz = splitAt (msMyInt wy (Main.Pos (Main.Succ Main.Zero))) wz; splitAt0Xs' wy wz = splitAt0Xs'0 wy wz (splitAt0Vu42 wy wz); splitAt0Xs'' wy wz = splitAt0Xs''0 wy wz (splitAt0Vu42 wy wz); splitAt0Xs''0 wy wz (Tup2 vw xs'') = xs''; splitAt0Xs'0 wy wz (Tup2 xs' vx) = xs'; splitAt1 vv Nil = Tup2 Nil Nil; splitAt1 wu wv = splitAt0 wu wv; splitAt2 n xs MyTrue = Tup2 Nil xs; splitAt2 n xs MyFalse = splitAt1 n xs; splitAt3 n xs = splitAt2 n xs (ltEsMyInt n (Main.Pos Main.Zero)); splitAt3 ww wx = splitAt1 ww wx; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; data List a = Cons a (List a) | Nil ; data MyBool = MyTrue | MyFalse ; data MyInt = Pos Main.Nat | Neg Main.Nat ; data Main.Nat = Succ Main.Nat | Zero ; data Ordering = LT | EQ | GT ; data Tup2 b a = Tup2 b a ; compareMyInt :: MyInt -> MyInt -> Ordering; compareMyInt = primCmpInt; esEsOrdering :: Ordering -> Ordering -> MyBool; esEsOrdering LT LT = MyTrue; esEsOrdering LT EQ = MyFalse; esEsOrdering LT GT = MyFalse; esEsOrdering EQ LT = MyFalse; esEsOrdering EQ EQ = MyTrue; esEsOrdering EQ GT = MyFalse; esEsOrdering GT LT = MyFalse; esEsOrdering GT EQ = MyFalse; esEsOrdering GT GT = MyTrue; fsEsOrdering :: Ordering -> Ordering -> MyBool; fsEsOrdering x y = not (esEsOrdering x y); ltEsMyInt :: MyInt -> MyInt -> MyBool; ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; msMyInt :: MyInt -> MyInt -> MyInt; msMyInt = primMinusInt; not :: MyBool -> MyBool; not MyTrue = MyFalse; not MyFalse = MyTrue; primCmpInt :: MyInt -> MyInt -> Ordering; primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; primCmpInt (Main.Pos x) (Main.Neg y) = GT; primCmpInt (Main.Neg x) (Main.Pos y) = LT; primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; primCmpNat :: Main.Nat -> Main.Nat -> Ordering; primCmpNat Main.Zero Main.Zero = EQ; primCmpNat Main.Zero (Main.Succ y) = LT; primCmpNat (Main.Succ x) Main.Zero = GT; primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; primMinusInt :: MyInt -> MyInt -> MyInt; primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; primMinusNat :: Main.Nat -> Main.Nat -> MyInt; primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; primPlusNat Main.Zero Main.Zero = Main.Zero; primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); splitAt :: MyInt -> List a -> Tup2 (List a) (List a); splitAt n xs = splitAt3 n xs; splitAt vv Nil = splitAt1 vv Nil; splitAt n (Cons x xs) = splitAt0 n (Cons x xs); splitAt0 n (Cons x xs) = Tup2 (Cons x (splitAt0Xs' n xs)) (splitAt0Xs'' n xs); splitAt0Vu42 wy wz = splitAt (msMyInt wy (Main.Pos (Main.Succ Main.Zero))) wz; splitAt0Xs' wy wz = splitAt0Xs'0 wy wz (splitAt0Vu42 wy wz); splitAt0Xs'' wy wz = splitAt0Xs''0 wy wz (splitAt0Vu42 wy wz); splitAt0Xs''0 wy wz (Tup2 vw xs'') = xs''; splitAt0Xs'0 wy wz (Tup2 xs' vx) = xs'; splitAt1 vv Nil = Tup2 Nil Nil; splitAt1 wu wv = splitAt0 wu wv; splitAt2 n xs MyTrue = Tup2 Nil xs; splitAt2 n xs MyFalse = splitAt1 n xs; splitAt3 n xs = splitAt2 n xs (ltEsMyInt n (Main.Pos Main.Zero)); splitAt3 ww wx = splitAt1 ww wx; } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="splitAt",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="splitAt xu3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="splitAt xu3 xu4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="splitAt3 xu3 xu4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="splitAt2 xu3 xu4 (ltEsMyInt xu3 (Pos Zero))",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="splitAt2 xu3 xu4 (fsEsOrdering (compareMyInt xu3 (Pos Zero)) GT)",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 8[label="splitAt2 xu3 xu4 (not (esEsOrdering (compareMyInt xu3 (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="splitAt2 xu3 xu4 (not (esEsOrdering (primCmpInt xu3 (Pos Zero)) GT))",fontsize=16,color="burlywood",shape="box"];64[label="xu3/Pos xu30",fontsize=10,color="white",style="solid",shape="box"];9 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 10[label="",style="solid", color="burlywood", weight=3]; 65[label="xu3/Neg xu30",fontsize=10,color="white",style="solid",shape="box"];9 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 11[label="",style="solid", color="burlywood", weight=3]; 10[label="splitAt2 (Pos xu30) xu4 (not (esEsOrdering (primCmpInt (Pos xu30) (Pos Zero)) GT))",fontsize=16,color="burlywood",shape="box"];66[label="xu30/Succ xu300",fontsize=10,color="white",style="solid",shape="box"];10 -> 66[label="",style="solid", color="burlywood", weight=9]; 66 -> 12[label="",style="solid", color="burlywood", weight=3]; 67[label="xu30/Zero",fontsize=10,color="white",style="solid",shape="box"];10 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 13[label="",style="solid", color="burlywood", weight=3]; 11[label="splitAt2 (Neg xu30) xu4 (not (esEsOrdering (primCmpInt (Neg xu30) (Pos Zero)) GT))",fontsize=16,color="burlywood",shape="box"];68[label="xu30/Succ xu300",fontsize=10,color="white",style="solid",shape="box"];11 -> 68[label="",style="solid", color="burlywood", weight=9]; 68 -> 14[label="",style="solid", color="burlywood", weight=3]; 69[label="xu30/Zero",fontsize=10,color="white",style="solid",shape="box"];11 -> 69[label="",style="solid", color="burlywood", weight=9]; 69 -> 15[label="",style="solid", color="burlywood", weight=3]; 12[label="splitAt2 (Pos (Succ xu300)) xu4 (not (esEsOrdering (primCmpInt (Pos (Succ xu300)) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];12 -> 16[label="",style="solid", color="black", weight=3]; 13[label="splitAt2 (Pos Zero) xu4 (not (esEsOrdering (primCmpInt (Pos Zero) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];13 -> 17[label="",style="solid", color="black", weight=3]; 14[label="splitAt2 (Neg (Succ xu300)) xu4 (not (esEsOrdering (primCmpInt (Neg (Succ xu300)) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];14 -> 18[label="",style="solid", color="black", weight=3]; 15[label="splitAt2 (Neg Zero) xu4 (not (esEsOrdering (primCmpInt (Neg Zero) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];15 -> 19[label="",style="solid", color="black", weight=3]; 16[label="splitAt2 (Pos (Succ xu300)) xu4 (not (esEsOrdering (primCmpNat (Succ xu300) Zero) GT))",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 17[label="splitAt2 (Pos Zero) xu4 (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];17 -> 21[label="",style="solid", color="black", weight=3]; 18[label="splitAt2 (Neg (Succ xu300)) xu4 (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];18 -> 22[label="",style="solid", color="black", weight=3]; 19[label="splitAt2 (Neg Zero) xu4 (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];19 -> 23[label="",style="solid", color="black", weight=3]; 20[label="splitAt2 (Pos (Succ xu300)) xu4 (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];20 -> 24[label="",style="solid", color="black", weight=3]; 21[label="splitAt2 (Pos Zero) xu4 (not MyFalse)",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 22[label="splitAt2 (Neg (Succ xu300)) xu4 (not MyFalse)",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 23[label="splitAt2 (Neg Zero) xu4 (not MyFalse)",fontsize=16,color="black",shape="box"];23 -> 27[label="",style="solid", color="black", weight=3]; 24[label="splitAt2 (Pos (Succ xu300)) xu4 (not MyTrue)",fontsize=16,color="black",shape="box"];24 -> 28[label="",style="solid", color="black", weight=3]; 25[label="splitAt2 (Pos Zero) xu4 MyTrue",fontsize=16,color="black",shape="box"];25 -> 29[label="",style="solid", color="black", weight=3]; 26[label="splitAt2 (Neg (Succ xu300)) xu4 MyTrue",fontsize=16,color="black",shape="box"];26 -> 30[label="",style="solid", color="black", weight=3]; 27[label="splitAt2 (Neg Zero) xu4 MyTrue",fontsize=16,color="black",shape="box"];27 -> 31[label="",style="solid", color="black", weight=3]; 28[label="splitAt2 (Pos (Succ xu300)) xu4 MyFalse",fontsize=16,color="black",shape="box"];28 -> 32[label="",style="solid", color="black", weight=3]; 29[label="Tup2 Nil xu4",fontsize=16,color="green",shape="box"];30[label="Tup2 Nil xu4",fontsize=16,color="green",shape="box"];31[label="Tup2 Nil xu4",fontsize=16,color="green",shape="box"];32[label="splitAt1 (Pos (Succ xu300)) xu4",fontsize=16,color="burlywood",shape="box"];70[label="xu4/Cons xu40 xu41",fontsize=10,color="white",style="solid",shape="box"];32 -> 70[label="",style="solid", color="burlywood", weight=9]; 70 -> 33[label="",style="solid", color="burlywood", weight=3]; 71[label="xu4/Nil",fontsize=10,color="white",style="solid",shape="box"];32 -> 71[label="",style="solid", color="burlywood", weight=9]; 71 -> 34[label="",style="solid", color="burlywood", weight=3]; 33[label="splitAt1 (Pos (Succ xu300)) (Cons xu40 xu41)",fontsize=16,color="black",shape="box"];33 -> 35[label="",style="solid", color="black", weight=3]; 34[label="splitAt1 (Pos (Succ xu300)) Nil",fontsize=16,color="black",shape="box"];34 -> 36[label="",style="solid", color="black", weight=3]; 35[label="splitAt0 (Pos (Succ xu300)) (Cons xu40 xu41)",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 36[label="Tup2 Nil Nil",fontsize=16,color="green",shape="box"];37[label="Tup2 (Cons xu40 (splitAt0Xs' (Pos (Succ xu300)) xu41)) (splitAt0Xs'' (Pos (Succ xu300)) xu41)",fontsize=16,color="green",shape="box"];37 -> 38[label="",style="dashed", color="green", weight=3]; 37 -> 39[label="",style="dashed", color="green", weight=3]; 38[label="splitAt0Xs' (Pos (Succ xu300)) xu41",fontsize=16,color="black",shape="box"];38 -> 40[label="",style="solid", color="black", weight=3]; 39[label="splitAt0Xs'' (Pos (Succ xu300)) xu41",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 40 -> 44[label="",style="dashed", color="red", weight=0]; 40[label="splitAt0Xs'0 (Pos (Succ xu300)) xu41 (splitAt0Vu42 (Pos (Succ xu300)) xu41)",fontsize=16,color="magenta"];40 -> 45[label="",style="dashed", color="magenta", weight=3]; 41 -> 49[label="",style="dashed", color="red", weight=0]; 41[label="splitAt0Xs''0 (Pos (Succ xu300)) xu41 (splitAt0Vu42 (Pos (Succ xu300)) xu41)",fontsize=16,color="magenta"];41 -> 50[label="",style="dashed", color="magenta", weight=3]; 45[label="splitAt0Vu42 (Pos (Succ xu300)) xu41",fontsize=16,color="black",shape="triangle"];45 -> 47[label="",style="solid", color="black", weight=3]; 44[label="splitAt0Xs'0 (Pos (Succ xu300)) xu41 xu5",fontsize=16,color="burlywood",shape="triangle"];72[label="xu5/Tup2 xu50 xu51",fontsize=10,color="white",style="solid",shape="box"];44 -> 72[label="",style="solid", color="burlywood", weight=9]; 72 -> 48[label="",style="solid", color="burlywood", weight=3]; 50 -> 45[label="",style="dashed", color="red", weight=0]; 50[label="splitAt0Vu42 (Pos (Succ xu300)) xu41",fontsize=16,color="magenta"];49[label="splitAt0Xs''0 (Pos (Succ xu300)) xu41 xu6",fontsize=16,color="burlywood",shape="triangle"];73[label="xu6/Tup2 xu60 xu61",fontsize=10,color="white",style="solid",shape="box"];49 -> 73[label="",style="solid", color="burlywood", weight=9]; 73 -> 52[label="",style="solid", color="burlywood", weight=3]; 47 -> 4[label="",style="dashed", color="red", weight=0]; 47[label="splitAt (msMyInt (Pos (Succ xu300)) (Pos (Succ Zero))) xu41",fontsize=16,color="magenta"];47 -> 53[label="",style="dashed", color="magenta", weight=3]; 47 -> 54[label="",style="dashed", color="magenta", weight=3]; 48[label="splitAt0Xs'0 (Pos (Succ xu300)) xu41 (Tup2 xu50 xu51)",fontsize=16,color="black",shape="box"];48 -> 55[label="",style="solid", color="black", weight=3]; 52[label="splitAt0Xs''0 (Pos (Succ xu300)) xu41 (Tup2 xu60 xu61)",fontsize=16,color="black",shape="box"];52 -> 56[label="",style="solid", color="black", weight=3]; 53[label="msMyInt (Pos (Succ xu300)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];53 -> 57[label="",style="solid", color="black", weight=3]; 54[label="xu41",fontsize=16,color="green",shape="box"];55[label="xu50",fontsize=16,color="green",shape="box"];56[label="xu61",fontsize=16,color="green",shape="box"];57[label="primMinusInt (Pos (Succ xu300)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];57 -> 58[label="",style="solid", color="black", weight=3]; 58[label="primMinusNat (Succ xu300) (Succ Zero)",fontsize=16,color="black",shape="box"];58 -> 59[label="",style="solid", color="black", weight=3]; 59[label="primMinusNat xu300 Zero",fontsize=16,color="burlywood",shape="box"];74[label="xu300/Succ xu3000",fontsize=10,color="white",style="solid",shape="box"];59 -> 74[label="",style="solid", color="burlywood", weight=9]; 74 -> 60[label="",style="solid", color="burlywood", weight=3]; 75[label="xu300/Zero",fontsize=10,color="white",style="solid",shape="box"];59 -> 75[label="",style="solid", color="burlywood", weight=9]; 75 -> 61[label="",style="solid", color="burlywood", weight=3]; 60[label="primMinusNat (Succ xu3000) Zero",fontsize=16,color="black",shape="box"];60 -> 62[label="",style="solid", color="black", weight=3]; 61[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];61 -> 63[label="",style="solid", color="black", weight=3]; 62[label="Pos (Succ xu3000)",fontsize=16,color="green",shape="box"];63[label="Pos Zero",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) new_splitAt0Vu42(xu300, xu41, h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) The TRS R consists of the following rules: new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) The set Q consists of the following terms: new_primMinusNat(Main.Zero) new_primMinusNat(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule new_splitAt0Vu42(xu300, xu41, h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) at position [0] we obtained the following new rules [LPAR04]: (new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2),new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2)) (new_splitAt0Vu42(Main.Zero, y1, y2) -> new_splitAt(Main.Pos(Main.Zero), y1, y2),new_splitAt0Vu42(Main.Zero, y1, y2) -> new_splitAt(Main.Pos(Main.Zero), y1, y2)) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) new_splitAt0Vu42(Main.Zero, y1, y2) -> new_splitAt(Main.Pos(Main.Zero), y1, y2) The TRS R consists of the following rules: new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) The set Q consists of the following terms: new_primMinusNat(Main.Zero) new_primMinusNat(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) The TRS R consists of the following rules: new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) The set Q consists of the following terms: new_primMinusNat(Main.Zero) new_primMinusNat(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) at position [0] we obtained the following new rules [LPAR04]: (new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3),new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3)) (new_splitAt(Main.Pos(Main.Succ(Main.Zero)), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Zero), y2, y3),new_splitAt(Main.Pos(Main.Succ(Main.Zero)), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Zero), y2, y3)) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) new_splitAt(Main.Pos(Main.Succ(Main.Zero)), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Zero), y2, y3) The TRS R consists of the following rules: new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) The set Q consists of the following terms: new_primMinusNat(Main.Zero) new_primMinusNat(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) The TRS R consists of the following rules: new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) The set Q consists of the following terms: new_primMinusNat(Main.Zero) new_primMinusNat(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) R is empty. The set Q consists of the following terms: new_primMinusNat(Main.Zero) new_primMinusNat(Main.Succ(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primMinusNat(Main.Zero) new_primMinusNat(Main.Succ(x0)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) The graph contains the following edges 2 >= 2, 3 >= 3 *new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) The graph contains the following edges 2 > 2, 3 >= 3 *new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 ---------------------------------------- (20) YES