/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) AND (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) TransformationProof [EQUIVALENT, 0 ms] (14) QDP (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } foldFM_LE :: Ord a => (a -> c -> b -> b) -> b -> a -> FiniteMap a c -> b; foldFM_LE k z fr EmptyFM = z; foldFM_LE k z fr (Branch key elt _ fm_l fm_r) | key <= fr = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r | otherwise = foldFM_LE k z fr fm_l; keysFM_LE :: Ord a => FiniteMap a b -> a -> [a]; keysFM_LE fm fr = foldFM_LE (\key elt rest ->key : rest) [] fr fm; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\keyeltrest->key : rest" is transformed to "keysFM_LE0 key elt rest = key : rest; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } foldFM_LE :: Ord b => (b -> c -> a -> a) -> a -> b -> FiniteMap b c -> a; foldFM_LE k z fr EmptyFM = z; foldFM_LE k z fr (Branch key elt _ fm_l fm_r) | key <= fr = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r | otherwise = foldFM_LE k z fr fm_l; keysFM_LE :: Ord b => FiniteMap b a -> b -> [b]; keysFM_LE fm fr = foldFM_LE keysFM_LE0 [] fr fm; keysFM_LE0 key elt rest = key : rest; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } foldFM_LE :: Ord b => (b -> c -> a -> a) -> a -> b -> FiniteMap b c -> a; foldFM_LE k z fr EmptyFM = z; foldFM_LE k z fr (Branch key elt vy fm_l fm_r) | key <= fr = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r | otherwise = foldFM_LE k z fr fm_l; keysFM_LE :: Ord a => FiniteMap a b -> a -> [a]; keysFM_LE fm fr = foldFM_LE keysFM_LE0 [] fr fm; keysFM_LE0 key elt rest = key : rest; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "foldFM_LE k z fr EmptyFM = z; foldFM_LE k z fr (Branch key elt vy fm_l fm_r)|key <= frfoldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r|otherwisefoldFM_LE k z fr fm_l; " is transformed to "foldFM_LE k z fr EmptyFM = foldFM_LE3 k z fr EmptyFM; foldFM_LE k z fr (Branch key elt vy fm_l fm_r) = foldFM_LE2 k z fr (Branch key elt vy fm_l fm_r); " "foldFM_LE0 k z fr key elt vy fm_l fm_r True = foldFM_LE k z fr fm_l; " "foldFM_LE1 k z fr key elt vy fm_l fm_r True = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r; foldFM_LE1 k z fr key elt vy fm_l fm_r False = foldFM_LE0 k z fr key elt vy fm_l fm_r otherwise; " "foldFM_LE2 k z fr (Branch key elt vy fm_l fm_r) = foldFM_LE1 k z fr key elt vy fm_l fm_r (key <= fr); " "foldFM_LE3 k z fr EmptyFM = z; foldFM_LE3 wv ww wx wy = foldFM_LE2 wv ww wx wy; " ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } foldFM_LE :: Ord a => (a -> b -> c -> c) -> c -> a -> FiniteMap a b -> c; foldFM_LE k z fr EmptyFM = foldFM_LE3 k z fr EmptyFM; foldFM_LE k z fr (Branch key elt vy fm_l fm_r) = foldFM_LE2 k z fr (Branch key elt vy fm_l fm_r); foldFM_LE0 k z fr key elt vy fm_l fm_r True = foldFM_LE k z fr fm_l; foldFM_LE1 k z fr key elt vy fm_l fm_r True = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r; foldFM_LE1 k z fr key elt vy fm_l fm_r False = foldFM_LE0 k z fr key elt vy fm_l fm_r otherwise; foldFM_LE2 k z fr (Branch key elt vy fm_l fm_r) = foldFM_LE1 k z fr key elt vy fm_l fm_r (key <= fr); foldFM_LE3 k z fr EmptyFM = z; foldFM_LE3 wv ww wx wy = foldFM_LE2 wv ww wx wy; keysFM_LE :: Ord a => FiniteMap a b -> a -> [a]; keysFM_LE fm fr = foldFM_LE keysFM_LE0 [] fr fm; keysFM_LE0 key elt rest = key : rest; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.keysFM_LE",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.keysFM_LE wz3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="FiniteMap.keysFM_LE wz3 wz4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 [] wz4 wz3",fontsize=16,color="burlywood",shape="triangle"];54[label="wz3/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5 -> 54[label="",style="solid", color="burlywood", weight=9]; 54 -> 6[label="",style="solid", color="burlywood", weight=3]; 55[label="wz3/FiniteMap.Branch wz30 wz31 wz32 wz33 wz34",fontsize=10,color="white",style="solid",shape="box"];5 -> 55[label="",style="solid", color="burlywood", weight=9]; 55 -> 7[label="",style="solid", color="burlywood", weight=3]; 6[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 [] wz4 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 [] wz4 (FiniteMap.Branch wz30 wz31 wz32 wz33 wz34)",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="FiniteMap.foldFM_LE3 FiniteMap.keysFM_LE0 [] wz4 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="FiniteMap.foldFM_LE2 FiniteMap.keysFM_LE0 [] wz4 (FiniteMap.Branch wz30 wz31 wz32 wz33 wz34)",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10[label="[]",fontsize=16,color="green",shape="box"];11[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] wz4 wz30 wz31 wz32 wz33 wz34 (wz30 <= wz4)",fontsize=16,color="black",shape="box"];11 -> 12[label="",style="solid", color="black", weight=3]; 12[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] wz4 wz30 wz31 wz32 wz33 wz34 (compare wz30 wz4 /= GT)",fontsize=16,color="black",shape="box"];12 -> 13[label="",style="solid", color="black", weight=3]; 13[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] wz4 wz30 wz31 wz32 wz33 wz34 (not (compare wz30 wz4 == GT))",fontsize=16,color="burlywood",shape="box"];56[label="wz30/()",fontsize=10,color="white",style="solid",shape="box"];13 -> 56[label="",style="solid", color="burlywood", weight=9]; 56 -> 14[label="",style="solid", color="burlywood", weight=3]; 14[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] wz4 () wz31 wz32 wz33 wz34 (not (compare () wz4 == GT))",fontsize=16,color="burlywood",shape="box"];57[label="wz4/()",fontsize=10,color="white",style="solid",shape="box"];14 -> 57[label="",style="solid", color="burlywood", weight=9]; 57 -> 15[label="",style="solid", color="burlywood", weight=3]; 15[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] () () wz31 wz32 wz33 wz34 (not (compare () () == GT))",fontsize=16,color="black",shape="box"];15 -> 16[label="",style="solid", color="black", weight=3]; 16[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] () () wz31 wz32 wz33 wz34 (not (EQ == GT))",fontsize=16,color="black",shape="box"];16 -> 17[label="",style="solid", color="black", weight=3]; 17[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] () () wz31 wz32 wz33 wz34 (not False)",fontsize=16,color="black",shape="box"];17 -> 18[label="",style="solid", color="black", weight=3]; 18[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 [] () () wz31 wz32 wz33 wz34 True",fontsize=16,color="black",shape="box"];18 -> 19[label="",style="solid", color="black", weight=3]; 19 -> 20[label="",style="dashed", color="red", weight=0]; 19[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz31 (FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 [] () wz33)) () wz34",fontsize=16,color="magenta"];19 -> 21[label="",style="dashed", color="magenta", weight=3]; 21 -> 5[label="",style="dashed", color="red", weight=0]; 21[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 [] () wz33",fontsize=16,color="magenta"];21 -> 22[label="",style="dashed", color="magenta", weight=3]; 21 -> 23[label="",style="dashed", color="magenta", weight=3]; 20[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz31 wz5) () wz34",fontsize=16,color="burlywood",shape="triangle"];58[label="wz34/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];20 -> 58[label="",style="solid", color="burlywood", weight=9]; 58 -> 24[label="",style="solid", color="burlywood", weight=3]; 59[label="wz34/FiniteMap.Branch wz340 wz341 wz342 wz343 wz344",fontsize=10,color="white",style="solid",shape="box"];20 -> 59[label="",style="solid", color="burlywood", weight=9]; 59 -> 25[label="",style="solid", color="burlywood", weight=3]; 22[label="wz33",fontsize=16,color="green",shape="box"];23[label="()",fontsize=16,color="green",shape="box"];24[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz31 wz5) () FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];24 -> 26[label="",style="solid", color="black", weight=3]; 25[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz31 wz5) () (FiniteMap.Branch wz340 wz341 wz342 wz343 wz344)",fontsize=16,color="black",shape="box"];25 -> 27[label="",style="solid", color="black", weight=3]; 26[label="FiniteMap.foldFM_LE3 FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz31 wz5) () FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];26 -> 28[label="",style="solid", color="black", weight=3]; 27[label="FiniteMap.foldFM_LE2 FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz31 wz5) () (FiniteMap.Branch wz340 wz341 wz342 wz343 wz344)",fontsize=16,color="black",shape="box"];27 -> 29[label="",style="solid", color="black", weight=3]; 28[label="FiniteMap.keysFM_LE0 () wz31 wz5",fontsize=16,color="black",shape="triangle"];28 -> 30[label="",style="solid", color="black", weight=3]; 29 -> 31[label="",style="dashed", color="red", weight=0]; 29[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz31 wz5) () wz340 wz341 wz342 wz343 wz344 (wz340 <= ())",fontsize=16,color="magenta"];29 -> 32[label="",style="dashed", color="magenta", weight=3]; 30[label="() : wz5",fontsize=16,color="green",shape="box"];32 -> 28[label="",style="dashed", color="red", weight=0]; 32[label="FiniteMap.keysFM_LE0 () wz31 wz5",fontsize=16,color="magenta"];31[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () wz340 wz341 wz342 wz343 wz344 (wz340 <= ())",fontsize=16,color="black",shape="triangle"];31 -> 33[label="",style="solid", color="black", weight=3]; 33[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () wz340 wz341 wz342 wz343 wz344 (compare wz340 () /= GT)",fontsize=16,color="black",shape="box"];33 -> 34[label="",style="solid", color="black", weight=3]; 34[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () wz340 wz341 wz342 wz343 wz344 (not (compare wz340 () == GT))",fontsize=16,color="burlywood",shape="box"];60[label="wz340/()",fontsize=10,color="white",style="solid",shape="box"];34 -> 60[label="",style="solid", color="burlywood", weight=9]; 60 -> 35[label="",style="solid", color="burlywood", weight=3]; 35[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () () wz341 wz342 wz343 wz344 (not (compare () () == GT))",fontsize=16,color="black",shape="box"];35 -> 36[label="",style="solid", color="black", weight=3]; 36[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () () wz341 wz342 wz343 wz344 (not (EQ == GT))",fontsize=16,color="black",shape="box"];36 -> 37[label="",style="solid", color="black", weight=3]; 37[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () () wz341 wz342 wz343 wz344 (not False)",fontsize=16,color="black",shape="box"];37 -> 38[label="",style="solid", color="black", weight=3]; 38[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () () wz341 wz342 wz343 wz344 True",fontsize=16,color="black",shape="box"];38 -> 39[label="",style="solid", color="black", weight=3]; 39 -> 20[label="",style="dashed", color="red", weight=0]; 39[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 (FiniteMap.keysFM_LE0 () wz341 (FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 wz6 () wz343)) () wz344",fontsize=16,color="magenta"];39 -> 40[label="",style="dashed", color="magenta", weight=3]; 39 -> 41[label="",style="dashed", color="magenta", weight=3]; 39 -> 42[label="",style="dashed", color="magenta", weight=3]; 40[label="wz341",fontsize=16,color="green",shape="box"];41[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 wz6 () wz343",fontsize=16,color="burlywood",shape="box"];61[label="wz343/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];41 -> 61[label="",style="solid", color="burlywood", weight=9]; 61 -> 43[label="",style="solid", color="burlywood", weight=3]; 62[label="wz343/FiniteMap.Branch wz3430 wz3431 wz3432 wz3433 wz3434",fontsize=10,color="white",style="solid",shape="box"];41 -> 62[label="",style="solid", color="burlywood", weight=9]; 62 -> 44[label="",style="solid", color="burlywood", weight=3]; 42[label="wz344",fontsize=16,color="green",shape="box"];43[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 wz6 () FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];43 -> 45[label="",style="solid", color="black", weight=3]; 44[label="FiniteMap.foldFM_LE FiniteMap.keysFM_LE0 wz6 () (FiniteMap.Branch wz3430 wz3431 wz3432 wz3433 wz3434)",fontsize=16,color="black",shape="box"];44 -> 46[label="",style="solid", color="black", weight=3]; 45[label="FiniteMap.foldFM_LE3 FiniteMap.keysFM_LE0 wz6 () FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];45 -> 47[label="",style="solid", color="black", weight=3]; 46[label="FiniteMap.foldFM_LE2 FiniteMap.keysFM_LE0 wz6 () (FiniteMap.Branch wz3430 wz3431 wz3432 wz3433 wz3434)",fontsize=16,color="black",shape="box"];46 -> 48[label="",style="solid", color="black", weight=3]; 47[label="wz6",fontsize=16,color="green",shape="box"];48 -> 31[label="",style="dashed", color="red", weight=0]; 48[label="FiniteMap.foldFM_LE1 FiniteMap.keysFM_LE0 wz6 () wz3430 wz3431 wz3432 wz3433 wz3434 (wz3430 <= ())",fontsize=16,color="magenta"];48 -> 49[label="",style="dashed", color="magenta", weight=3]; 48 -> 50[label="",style="dashed", color="magenta", weight=3]; 48 -> 51[label="",style="dashed", color="magenta", weight=3]; 48 -> 52[label="",style="dashed", color="magenta", weight=3]; 48 -> 53[label="",style="dashed", color="magenta", weight=3]; 49[label="wz3430",fontsize=16,color="green",shape="box"];50[label="wz3434",fontsize=16,color="green",shape="box"];51[label="wz3433",fontsize=16,color="green",shape="box"];52[label="wz3432",fontsize=16,color="green",shape="box"];53[label="wz3431",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldFM_LE3(@0, Branch(@0, wz31, wz32, wz33, wz34), h) -> new_foldFM_LE3(@0, wz33, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldFM_LE3(@0, Branch(@0, wz31, wz32, wz33, wz34), h) -> new_foldFM_LE3(@0, wz33, h) The graph contains the following edges 1 >= 1, 2 > 1, 2 > 2, 3 >= 3 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldFM_LE1(wz6, @0, wz341, wz342, wz343, wz344, h) -> new_foldFM_LE(wz341, new_foldFM_LE0(wz6, wz343, h), wz344, h) new_foldFM_LE(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE1(new_keysFM_LE0(wz31, wz5, h), wz340, wz341, wz342, wz343, wz344, h) new_foldFM_LE1(wz6, @0, wz341, wz342, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), wz344, h) -> new_foldFM_LE1(wz6, wz3430, wz3431, wz3432, wz3433, wz3434, h) The TRS R consists of the following rules: new_foldFM_LE2(wz31, wz5, EmptyFM, h) -> new_keysFM_LE0(wz31, wz5, h) new_foldFM_LE0(wz6, EmptyFM, h) -> wz6 new_foldFM_LE2(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE10(new_keysFM_LE0(wz31, wz5, h), wz340, wz341, wz342, wz343, wz344, h) new_keysFM_LE0(wz31, wz5, h) -> :(@0, wz5) new_foldFM_LE0(wz6, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), h) -> new_foldFM_LE10(wz6, wz3430, wz3431, wz3432, wz3433, wz3434, h) new_foldFM_LE10(wz6, @0, wz341, wz342, wz343, wz344, h) -> new_foldFM_LE2(wz341, new_foldFM_LE0(wz6, wz343, h), wz344, h) The set Q consists of the following terms: new_foldFM_LE0(x0, Branch(x1, x2, x3, x4, x5), x6) new_foldFM_LE2(x0, x1, Branch(x2, x3, x4, x5, x6), x7) new_foldFM_LE2(x0, x1, EmptyFM, x2) new_keysFM_LE0(x0, x1, x2) new_foldFM_LE0(x0, EmptyFM, x1) new_foldFM_LE10(x0, @0, x1, x2, x3, x4, x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_foldFM_LE(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE1(new_keysFM_LE0(wz31, wz5, h), wz340, wz341, wz342, wz343, wz344, h) at position [0] we obtained the following new rules [LPAR04]: (new_foldFM_LE(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE1(:(@0, wz5), wz340, wz341, wz342, wz343, wz344, h),new_foldFM_LE(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE1(:(@0, wz5), wz340, wz341, wz342, wz343, wz344, h)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldFM_LE1(wz6, @0, wz341, wz342, wz343, wz344, h) -> new_foldFM_LE(wz341, new_foldFM_LE0(wz6, wz343, h), wz344, h) new_foldFM_LE1(wz6, @0, wz341, wz342, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), wz344, h) -> new_foldFM_LE1(wz6, wz3430, wz3431, wz3432, wz3433, wz3434, h) new_foldFM_LE(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE1(:(@0, wz5), wz340, wz341, wz342, wz343, wz344, h) The TRS R consists of the following rules: new_foldFM_LE2(wz31, wz5, EmptyFM, h) -> new_keysFM_LE0(wz31, wz5, h) new_foldFM_LE0(wz6, EmptyFM, h) -> wz6 new_foldFM_LE2(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE10(new_keysFM_LE0(wz31, wz5, h), wz340, wz341, wz342, wz343, wz344, h) new_keysFM_LE0(wz31, wz5, h) -> :(@0, wz5) new_foldFM_LE0(wz6, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), h) -> new_foldFM_LE10(wz6, wz3430, wz3431, wz3432, wz3433, wz3434, h) new_foldFM_LE10(wz6, @0, wz341, wz342, wz343, wz344, h) -> new_foldFM_LE2(wz341, new_foldFM_LE0(wz6, wz343, h), wz344, h) The set Q consists of the following terms: new_foldFM_LE0(x0, Branch(x1, x2, x3, x4, x5), x6) new_foldFM_LE2(x0, x1, Branch(x2, x3, x4, x5, x6), x7) new_foldFM_LE2(x0, x1, EmptyFM, x2) new_keysFM_LE0(x0, x1, x2) new_foldFM_LE0(x0, EmptyFM, x1) new_foldFM_LE10(x0, @0, x1, x2, x3, x4, x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldFM_LE(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) -> new_foldFM_LE1(:(@0, wz5), wz340, wz341, wz342, wz343, wz344, h) The graph contains the following edges 3 > 2, 3 > 3, 3 > 4, 3 > 5, 3 > 6, 4 >= 7 *new_foldFM_LE1(wz6, @0, wz341, wz342, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), wz344, h) -> new_foldFM_LE1(wz6, wz3430, wz3431, wz3432, wz3433, wz3434, h) The graph contains the following edges 1 >= 1, 5 > 2, 5 > 3, 5 > 4, 5 > 5, 5 > 6, 7 >= 7 *new_foldFM_LE1(wz6, @0, wz341, wz342, wz343, wz344, h) -> new_foldFM_LE(wz341, new_foldFM_LE0(wz6, wz343, h), wz344, h) The graph contains the following edges 3 >= 1, 6 >= 3, 7 >= 4 ---------------------------------------- (16) YES