/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) CR [EQUIVALENT, 0 ms] (4) HASKELL (5) IFR [EQUIVALENT, 0 ms] (6) HASKELL (7) BR [EQUIVALENT, 3 ms] (8) HASKELL (9) COR [EQUIVALENT, 0 ms] (10) HASKELL (11) LetRed [EQUIVALENT, 2 ms] (12) HASKELL (13) NumRed [SOUND, 0 ms] (14) HASKELL (15) Narrow [SOUND, 0 ms] (16) AND (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) TransformationProof [EQUIVALENT, 1305 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) QDPSizeChangeProof [EQUIVALENT, 4 ms] (30) YES (31) QDP (32) QDPSizeChangeProof [EQUIVALENT, 0 ms] (33) YES (34) QDP (35) QDPSizeChangeProof [EQUIVALENT, 61 ms] (36) YES (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) QDPSizeChangeProof [EQUIVALENT, 0 ms] (42) YES (43) QDP (44) QDPSizeChangeProof [EQUIVALENT, 0 ms] (45) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM fm key_elt_pairs = addListToFM_C (\old new ->new) fm key_elt_pairs; addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM (\key elt rest ->(key,elt) : rest) [] fm; foldFM :: (a -> c -> b -> b) -> b -> FiniteMap a c -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\oldnew->new" is transformed to "addListToFM0 old new = new; " The following Lambda expression "\keyeltrest->(key,elt) : rest" is transformed to "fmToList0 key elt rest = (key,elt) : rest; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> c -> b -> b) -> b -> FiniteMap a c -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) CR (EQUIVALENT) Case Reductions: The following Case expression "case compare x y of { EQ -> o; LT -> LT; GT -> GT} " is transformed to "primCompAux0 o EQ = o; primCompAux0 o LT = LT; primCompAux0 o GT = GT; " The following Case expression "case fm_r of { EmptyFM -> True; Branch right_key _ _ _ _ -> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key} " is transformed to "right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; " The following Case expression "case fm_l of { EmptyFM -> True; Branch left_key _ _ _ _ -> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key} " is transformed to "left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; " The following Case expression "case fm_R of { Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} " is transformed to "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " The following Case expression "case fm_L of { Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} " is transformed to "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> c -> b -> b) -> b -> FiniteMap a c -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) IFR (EQUIVALENT) If Reductions: The following If expression "if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero" is transformed to "primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y)); primDivNatS0 x y False = Zero; " The following If expression "if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x" is transformed to "primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y); primModNatS0 x y False = Succ x; " ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (8) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt vvv vvw EmptyFM) = (key,elt); findMax (Branch key elt vvx vvy fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vyy EmptyFM vyz) = (key,elt); findMin (Branch key elt vzu fm_l vzv) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> a -> b -> b) -> b -> FiniteMap c a -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vxz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key zz vuu vuv vuw) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vux vuy vuz vvu) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vyu vyv size vyw vyx) = size; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (9) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "compare x y|x == yEQ|x <= yLT|otherwiseGT; " is transformed to "compare x y = compare3 x y; " "compare2 x y True = EQ; compare2 x y False = compare1 x y (x <= y); " "compare1 x y True = LT; compare1 x y False = compare0 x y otherwise; " "compare0 x y True = GT; " "compare3 x y = compare2 x y (x == y); " The following Function with conditions "absReal x|x >= 0x|otherwise`negate` x; " is transformed to "absReal x = absReal2 x; " "absReal0 x True = `negate` x; " "absReal1 x True = x; absReal1 x False = absReal0 x otherwise; " "absReal2 x = absReal1 x (x >= 0); " The following Function with conditions "gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); " is transformed to "gcd' x vzw = gcd'2 x vzw; gcd' x y = gcd'0 x y; " "gcd'0 x y = gcd' y (x `rem` y); " "gcd'1 True x vzw = x; gcd'1 vzx vzy vzz = gcd'0 vzy vzz; " "gcd'2 x vzw = gcd'1 (vzw == 0) x vzw; gcd'2 wuu wuv = gcd'0 wuu wuv; " The following Function with conditions "gcd 0 0 = error []; gcd x y = gcd' (abs x) (abs y) where { gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); } ; " is transformed to "gcd wuw wux = gcd3 wuw wux; gcd x y = gcd0 x y; " "gcd0 x y = gcd' (abs x) (abs y) where { gcd' x vzw = gcd'2 x vzw; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x vzw = x; gcd'1 vzx vzy vzz = gcd'0 vzy vzz; ; gcd'2 x vzw = gcd'1 (vzw == 0) x vzw; gcd'2 wuu wuv = gcd'0 wuu wuv; } ; " "gcd1 True wuw wux = error []; gcd1 wuy wuz wvu = gcd0 wuz wvu; " "gcd2 True wuw wux = gcd1 (wux == 0) wuw wux; gcd2 wvv wvw wvx = gcd0 wvw wvx; " "gcd3 wuw wux = gcd2 (wuw == 0) wuw wux; gcd3 wvy wvz = gcd0 wvy wvz; " The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "reduce x y|y == 0error []|otherwisex `quot` d :% (y `quot` d) where { d = gcd x y; } ; " is transformed to "reduce x y = reduce2 x y; " "reduce2 x y = reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } ; " The following Function with conditions "addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; " is transformed to "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; " "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; " "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); " "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; " "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); " "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 www wwx wwy wwz = addToFM_C3 www wwx wwy wwz; " The following Function with conditions "mkBalBranch1 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " is transformed to "mkBalBranch1 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr); " "mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr True = double_R fm_L fm_R; " "mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr otherwise; " "mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " The following Function with conditions "mkBalBranch0 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " is transformed to "mkBalBranch0 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr); " "mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = double_L fm_L fm_R; " "mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr otherwise; " "mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " The following Function with conditions "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; ; mkBalBranch1 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; ; single_L fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " is transformed to "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; " "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " ---------------------------------------- (10) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 www wwx wwy wwz = addToFM_C3 www wwx wwy wwz; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vvv vvw EmptyFM) = (key,elt); findMax (Branch key elt vvx vvy fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vyy EmptyFM vyz) = (key,elt); findMin (Branch key elt vzu fm_l vzv) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vxz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr); mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = double_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr otherwise; mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch1 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr); mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr True = double_R fm_L fm_R; mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr otherwise; mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); single_L fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key zz vuu vuv vuw) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vux vuy vuz vvu) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vyu vyv size vyw vyx) = size; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (11) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "gcd' (abs x) (abs y) where { gcd' x vzw = gcd'2 x vzw; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x vzw = x; gcd'1 vzx vzy vzz = gcd'0 vzy vzz; ; gcd'2 x vzw = gcd'1 (vzw == 0) x vzw; gcd'2 wuu wuv = gcd'0 wuu wuv; } " are unpacked to the following functions on top level "gcd0Gcd'1 True x vzw = x; gcd0Gcd'1 vzx vzy vzz = gcd0Gcd'0 vzy vzz; " "gcd0Gcd' x vzw = gcd0Gcd'2 x vzw; gcd0Gcd' x y = gcd0Gcd'0 x y; " "gcd0Gcd'0 x y = gcd0Gcd' y (x `rem` y); " "gcd0Gcd'2 x vzw = gcd0Gcd'1 (vzw == 0) x vzw; gcd0Gcd'2 wuu wuv = gcd0Gcd'0 wuu wuv; " The bindings of the following Let/Where expression "reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } " are unpacked to the following functions on top level "reduce2Reduce0 wxw wxx x y True = x `quot` reduce2D wxw wxx :% (y `quot` reduce2D wxw wxx); " "reduce2Reduce1 wxw wxx x y True = error []; reduce2Reduce1 wxw wxx x y False = reduce2Reduce0 wxw wxx x y otherwise; " "reduce2D wxw wxx = gcd wxw wxx; " The bindings of the following Let/Where expression "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxv vxw vxx fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxv vxw vxx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vww vwx vwy fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vww vwx vwy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } " are unpacked to the following functions on top level "mkBalBranch6MkBalBranch00 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr True = mkBalBranch6Double_L wxy wxz wyu wyv fm_L fm_R; " "mkBalBranch6MkBalBranch10 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr True = mkBalBranch6Double_R wxy wxz wyu wyv fm_L fm_R; " "mkBalBranch6Double_R wxy wxz wyu wyv (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 wxy wxz fm_lrr fm_r); " "mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 wxy wxz wyu wyv fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R (mkBalBranch6Size_l wxy wxz wyu wyv > sIZE_RATIO * mkBalBranch6Size_r wxy wxz wyu wyv); " "mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 wxy wxz wyu wyv fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 wxy wxz wyu wyv key elt fm_L fm_R otherwise; " "mkBalBranch6MkBalBranch02 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " "mkBalBranch6MkBalBranch5 wxy wxz wyu wyv key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R (mkBalBranch6Size_r wxy wxz wyu wyv > sIZE_RATIO * mkBalBranch6Size_l wxy wxz wyu wyv); " "mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr True = mkBalBranch6Single_R wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr otherwise; " "mkBalBranch6Size_l wxy wxz wyu wyv = sizeFM wyu; " "mkBalBranch6MkBalBranch1 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr); " "mkBalBranch6MkBalBranch12 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " "mkBalBranch6MkBalBranch2 wxy wxz wyu wyv key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; " "mkBalBranch6MkBalBranch0 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr); " "mkBalBranch6Double_L wxy wxz wyu wyv fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 wxy wxz fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); " "mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr True = mkBalBranch6Single_L wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr otherwise; " "mkBalBranch6Size_r wxy wxz wyu wyv = sizeFM wyv; " "mkBalBranch6Single_L wxy wxz wyu wyv fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 wxy wxz fm_l fm_rl) fm_rr; " "mkBalBranch6Single_R wxy wxz wyu wyv (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 wxy wxz fm_lr fm_r); " The bindings of the following Let/Where expression "foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; } " are unpacked to the following functions on top level "addListToFM_CAdd wyw fmap (key,elt) = addToFM_C wyw fmap key elt; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; ; left_ok = left_ok0 fm_l key fm_l; ; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key zz vuu vuv vuw) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; ; left_size = sizeFM fm_l; ; right_ok = right_ok0 fm_r key fm_r; ; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vux vuy vuz vvu) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; ; right_size = sizeFM fm_r; ; unbox x = x; } " are unpacked to the following functions on top level "mkBranchLeft_ok wyx wyy wyz = mkBranchLeft_ok0 wyx wyy wyz wyx wyy wyx; " "mkBranchLeft_size wyx wyy wyz = sizeFM wyx; " "mkBranchLeft_ok0 wyx wyy wyz fm_l key EmptyFM = True; mkBranchLeft_ok0 wyx wyy wyz fm_l key (Branch left_key zz vuu vuv vuw) = mkBranchLeft_ok0Biggest_left_key fm_l < key; " "mkBranchBalance_ok wyx wyy wyz = True; " "mkBranchUnbox wyx wyy wyz x = x; " "mkBranchRight_ok wyx wyy wyz = mkBranchRight_ok0 wyx wyy wyz wyz wyy wyz; " "mkBranchRight_size wyx wyy wyz = sizeFM wyz; " "mkBranchRight_ok0 wyx wyy wyz fm_r key EmptyFM = True; mkBranchRight_ok0 wyx wyy wyz fm_r key (Branch right_key vux vuy vuz vvu) = key < mkBranchRight_ok0Smallest_right_key fm_r; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result" are unpacked to the following functions on top level "mkBranchResult wzu wzv wzw wzx = Branch wzu wzv (mkBranchUnbox wzw wzu wzx (1 + mkBranchLeft_size wzw wzu wzx + mkBranchRight_size wzw wzu wzx)) wzw wzx; " The bindings of the following Let/Where expression "let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key" are unpacked to the following functions on top level "mkBranchLeft_ok0Biggest_left_key wzy = fst (findMax wzy); " The bindings of the following Let/Where expression "let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key" are unpacked to the following functions on top level "mkBranchRight_ok0Smallest_right_key wzz = fst (findMin wzz); " ---------------------------------------- (12) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; addListToFM_CAdd wyw fmap (key,elt) = addToFM_C wyw fmap key elt; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 www wwx wwy wwz = addToFM_C3 www wwx wwy wwz; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vvv vvw EmptyFM) = (key,elt); findMax (Branch key elt vvx vvy fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt vyy EmptyFM vyz) = (key,elt); findMin (Branch key elt vzu fm_l vzv) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> b -> c -> c) -> c -> FiniteMap a b -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vxz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < 2); mkBalBranch6Double_L wxy wxz wyu wyv fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 wxy wxz fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R wxy wxz wyu wyv (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 wxy wxz fm_lrr fm_r); mkBalBranch6MkBalBranch0 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr); mkBalBranch6MkBalBranch00 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr True = mkBalBranch6Double_L wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr True = mkBalBranch6Single_L wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch6MkBalBranch1 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr); mkBalBranch6MkBalBranch10 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr True = mkBalBranch6Double_R wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr True = mkBalBranch6Single_R wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch6MkBalBranch2 wxy wxz wyu wyv key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 wxy wxz wyu wyv fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 wxy wxz wyu wyv key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 wxy wxz wyu wyv fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R (mkBalBranch6Size_l wxy wxz wyu wyv > sIZE_RATIO * mkBalBranch6Size_r wxy wxz wyu wyv); mkBalBranch6MkBalBranch5 wxy wxz wyu wyv key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R (mkBalBranch6Size_r wxy wxz wyu wyv > sIZE_RATIO * mkBalBranch6Size_l wxy wxz wyu wyv); mkBalBranch6Single_L wxy wxz wyu wyv fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 wxy wxz fm_l fm_rl) fm_rr; mkBalBranch6Single_R wxy wxz wyu wyv (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 wxy wxz fm_lr fm_r); mkBalBranch6Size_l wxy wxz wyu wyv = sizeFM wyu; mkBalBranch6Size_r wxy wxz wyu wyv = sizeFM wyv; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok wyx wyy wyz = True; mkBranchLeft_ok wyx wyy wyz = mkBranchLeft_ok0 wyx wyy wyz wyx wyy wyx; mkBranchLeft_ok0 wyx wyy wyz fm_l key EmptyFM = True; mkBranchLeft_ok0 wyx wyy wyz fm_l key (Branch left_key zz vuu vuv vuw) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key wzy = fst (findMax wzy); mkBranchLeft_size wyx wyy wyz = sizeFM wyx; mkBranchResult wzu wzv wzw wzx = Branch wzu wzv (mkBranchUnbox wzw wzu wzx (1 + mkBranchLeft_size wzw wzu wzx + mkBranchRight_size wzw wzu wzx)) wzw wzx; mkBranchRight_ok wyx wyy wyz = mkBranchRight_ok0 wyx wyy wyz wyz wyy wyz; mkBranchRight_ok0 wyx wyy wyz fm_r key EmptyFM = True; mkBranchRight_ok0 wyx wyy wyz fm_r key (Branch right_key vux vuy vuz vvu) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key wzz = fst (findMin wzz); mkBranchRight_size wyx wyy wyz = sizeFM wyz; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox wyx wyy wyz x = x; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vyu vyv size vyw vyx) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (13) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (14) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; addListToFM_CAdd wyw fmap (key,elt) = addToFM_C wyw fmap key elt; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 www wwx wwy wwz = addToFM_C3 www wwx wwy wwz; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vvv vvw EmptyFM) = (key,elt); findMax (Branch key elt vvx vvy fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt vyy EmptyFM vyz) = (key,elt); findMin (Branch key elt vzu fm_l vzv) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> b -> c -> c) -> c -> FiniteMap a b -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vxz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < Pos (Succ (Succ Zero))); mkBalBranch6Double_L wxy wxz wyu wyv fm_l (Branch key_r elt_r vwz (Branch key_rl elt_rl vxu fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) wxy wxz fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R wxy wxz wyu wyv (Branch key_l elt_l vwu fm_ll (Branch key_lr elt_lr vwv fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) wxy wxz fm_lrr fm_r); mkBalBranch6MkBalBranch0 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr); mkBalBranch6MkBalBranch00 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr True = mkBalBranch6Double_L wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr True = mkBalBranch6Single_L wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 wxy wxz wyu wyv fm_L fm_R (Branch vxv vxw vxx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 wxy wxz wyu wyv fm_L fm_R vxv vxw vxx fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); mkBalBranch6MkBalBranch1 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr); mkBalBranch6MkBalBranch10 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr True = mkBalBranch6Double_R wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr True = mkBalBranch6Single_R wxy wxz wyu wyv fm_L fm_R; mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 wxy wxz wyu wyv fm_L fm_R (Branch vww vwx vwy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 wxy wxz wyu wyv fm_L fm_R vww vwx vwy fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); mkBalBranch6MkBalBranch2 wxy wxz wyu wyv key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 wxy wxz wyu wyv fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 wxy wxz wyu wyv key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 wxy wxz wyu wyv fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 wxy wxz wyu wyv key elt fm_L fm_R (mkBalBranch6Size_l wxy wxz wyu wyv > sIZE_RATIO * mkBalBranch6Size_r wxy wxz wyu wyv); mkBalBranch6MkBalBranch5 wxy wxz wyu wyv key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; mkBalBranch6MkBalBranch5 wxy wxz wyu wyv key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 wxy wxz wyu wyv key elt fm_L fm_R (mkBalBranch6Size_r wxy wxz wyu wyv > sIZE_RATIO * mkBalBranch6Size_l wxy wxz wyu wyv); mkBalBranch6Single_L wxy wxz wyu wyv fm_l (Branch key_r elt_r vxy fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) wxy wxz fm_l fm_rl) fm_rr; mkBalBranch6Single_R wxy wxz wyu wyv (Branch key_l elt_l vvz fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) wxy wxz fm_lr fm_r); mkBalBranch6Size_l wxy wxz wyu wyv = sizeFM wyu; mkBalBranch6Size_r wxy wxz wyu wyv = sizeFM wyv; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok wyx wyy wyz = True; mkBranchLeft_ok wyx wyy wyz = mkBranchLeft_ok0 wyx wyy wyz wyx wyy wyx; mkBranchLeft_ok0 wyx wyy wyz fm_l key EmptyFM = True; mkBranchLeft_ok0 wyx wyy wyz fm_l key (Branch left_key zz vuu vuv vuw) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key wzy = fst (findMax wzy); mkBranchLeft_size wyx wyy wyz = sizeFM wyx; mkBranchResult wzu wzv wzw wzx = Branch wzu wzv (mkBranchUnbox wzw wzu wzx (Pos (Succ Zero) + mkBranchLeft_size wzw wzu wzx + mkBranchRight_size wzw wzu wzx)) wzw wzx; mkBranchRight_ok wyx wyy wyz = mkBranchRight_ok0 wyx wyy wyz wyz wyy wyz; mkBranchRight_ok0 wyx wyy wyz fm_r key EmptyFM = True; mkBranchRight_ok0 wyx wyy wyz fm_r key (Branch right_key vux vuy vuz vvu) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key wzz = fst (findMin wzz); mkBranchRight_size wyx wyy wyz = sizeFM wyz; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox wyx wyy wyz x = x; sIZE_RATIO :: Int; sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = Pos Zero; sizeFM (Branch vyu vyv size vyw vyx) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (15) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.addListToFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.addListToFM xuu3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="FiniteMap.addListToFM xuu3 xuu4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="FiniteMap.addListToFM_C FiniteMap.addListToFM0 xuu3 xuu4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) xuu3 xuu4",fontsize=16,color="burlywood",shape="triangle"];2785[label="xuu4/xuu40 : xuu41",fontsize=10,color="white",style="solid",shape="box"];6 -> 2785[label="",style="solid", color="burlywood", weight=9]; 2785 -> 7[label="",style="solid", color="burlywood", weight=3]; 2786[label="xuu4/[]",fontsize=10,color="white",style="solid",shape="box"];6 -> 2786[label="",style="solid", color="burlywood", weight=9]; 2786 -> 8[label="",style="solid", color="burlywood", weight=3]; 7[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) xuu3 (xuu40 : xuu41)",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) xuu3 []",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9 -> 6[label="",style="dashed", color="red", weight=0]; 9[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 xuu3 xuu40) xuu41",fontsize=16,color="magenta"];9 -> 11[label="",style="dashed", color="magenta", weight=3]; 9 -> 12[label="",style="dashed", color="magenta", weight=3]; 10[label="xuu3",fontsize=16,color="green",shape="box"];11[label="FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 xuu3 xuu40",fontsize=16,color="burlywood",shape="box"];2787[label="xuu40/(xuu400,xuu401)",fontsize=10,color="white",style="solid",shape="box"];11 -> 2787[label="",style="solid", color="burlywood", weight=9]; 2787 -> 13[label="",style="solid", color="burlywood", weight=3]; 12[label="xuu41",fontsize=16,color="green",shape="box"];13[label="FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 xuu3 (xuu400,xuu401)",fontsize=16,color="black",shape="box"];13 -> 14[label="",style="solid", color="black", weight=3]; 14[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 xuu3 xuu400 xuu401",fontsize=16,color="burlywood",shape="triangle"];2788[label="xuu3/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];14 -> 2788[label="",style="solid", color="burlywood", weight=9]; 2788 -> 15[label="",style="solid", color="burlywood", weight=3]; 2789[label="xuu3/FiniteMap.Branch xuu30 xuu31 xuu32 xuu33 xuu34",fontsize=10,color="white",style="solid",shape="box"];14 -> 2789[label="",style="solid", color="burlywood", weight=9]; 2789 -> 16[label="",style="solid", color="burlywood", weight=3]; 15[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 FiniteMap.EmptyFM xuu400 xuu401",fontsize=16,color="black",shape="box"];15 -> 17[label="",style="solid", color="black", weight=3]; 16[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 (FiniteMap.Branch xuu30 xuu31 xuu32 xuu33 xuu34) xuu400 xuu401",fontsize=16,color="black",shape="box"];16 -> 18[label="",style="solid", color="black", weight=3]; 17[label="FiniteMap.addToFM_C4 FiniteMap.addListToFM0 FiniteMap.EmptyFM xuu400 xuu401",fontsize=16,color="black",shape="box"];17 -> 19[label="",style="solid", color="black", weight=3]; 18[label="FiniteMap.addToFM_C3 FiniteMap.addListToFM0 (FiniteMap.Branch xuu30 xuu31 xuu32 xuu33 xuu34) xuu400 xuu401",fontsize=16,color="black",shape="box"];18 -> 20[label="",style="solid", color="black", weight=3]; 19[label="FiniteMap.unitFM xuu400 xuu401",fontsize=16,color="black",shape="box"];19 -> 21[label="",style="solid", color="black", weight=3]; 20[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 xuu30 xuu31 xuu32 xuu33 xuu34 xuu400 xuu401 (xuu400 < xuu30)",fontsize=16,color="black",shape="box"];20 -> 22[label="",style="solid", color="black", weight=3]; 21[label="FiniteMap.Branch xuu400 xuu401 (Pos (Succ Zero)) FiniteMap.emptyFM FiniteMap.emptyFM",fontsize=16,color="green",shape="box"];21 -> 23[label="",style="dashed", color="green", weight=3]; 21 -> 24[label="",style="dashed", color="green", weight=3]; 22[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 xuu30 xuu31 xuu32 xuu33 xuu34 xuu400 xuu401 (compare xuu400 xuu30 == LT)",fontsize=16,color="black",shape="box"];22 -> 25[label="",style="solid", color="black", weight=3]; 23[label="FiniteMap.emptyFM",fontsize=16,color="black",shape="triangle"];23 -> 26[label="",style="solid", color="black", weight=3]; 24 -> 23[label="",style="dashed", color="red", weight=0]; 24[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];25[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 xuu30 xuu31 xuu32 xuu33 xuu34 xuu400 xuu401 (compare3 xuu400 xuu30 == LT)",fontsize=16,color="black",shape="box"];25 -> 27[label="",style="solid", color="black", weight=3]; 26[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];27[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 xuu30 xuu31 xuu32 xuu33 xuu34 xuu400 xuu401 (compare2 xuu400 xuu30 (xuu400 == xuu30) == LT)",fontsize=16,color="burlywood",shape="box"];2790[label="xuu400/(xuu4000,xuu4001)",fontsize=10,color="white",style="solid",shape="box"];27 -> 2790[label="",style="solid", color="burlywood", weight=9]; 2790 -> 28[label="",style="solid", color="burlywood", weight=3]; 28[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 xuu30 xuu31 xuu32 xuu33 xuu34 (xuu4000,xuu4001) xuu401 (compare2 (xuu4000,xuu4001) xuu30 ((xuu4000,xuu4001) == xuu30) == LT)",fontsize=16,color="burlywood",shape="box"];2791[label="xuu30/(xuu300,xuu301)",fontsize=10,color="white",style="solid",shape="box"];28 -> 2791[label="",style="solid", color="burlywood", weight=9]; 2791 -> 29[label="",style="solid", color="burlywood", weight=3]; 29[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 (xuu300,xuu301) xuu31 xuu32 xuu33 xuu34 (xuu4000,xuu4001) xuu401 (compare2 (xuu4000,xuu4001) (xuu300,xuu301) ((xuu4000,xuu4001) == (xuu300,xuu301)) == LT)",fontsize=16,color="black",shape="box"];29 -> 30[label="",style="solid", color="black", weight=3]; 30 -> 115[label="",style="dashed", color="red", weight=0]; 30[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 (xuu300,xuu301) xuu31 xuu32 xuu33 xuu34 (xuu4000,xuu4001) xuu401 (compare2 (xuu4000,xuu4001) (xuu300,xuu301) (xuu4000 == xuu300 && xuu4001 == xuu301) == LT)",fontsize=16,color="magenta"];30 -> 116[label="",style="dashed", color="magenta", weight=3]; 30 -> 117[label="",style="dashed", color="magenta", weight=3]; 30 -> 118[label="",style="dashed", color="magenta", weight=3]; 30 -> 119[label="",style="dashed", color="magenta", weight=3]; 30 -> 120[label="",style="dashed", color="magenta", weight=3]; 30 -> 121[label="",style="dashed", color="magenta", weight=3]; 30 -> 122[label="",style="dashed", color="magenta", weight=3]; 30 -> 123[label="",style="dashed", color="magenta", weight=3]; 30 -> 124[label="",style="dashed", color="magenta", weight=3]; 30 -> 125[label="",style="dashed", color="magenta", weight=3]; 116[label="xuu401",fontsize=16,color="green",shape="box"];117 -> 129[label="",style="dashed", color="red", weight=0]; 117[label="compare2 (xuu4000,xuu4001) (xuu300,xuu301) (xuu4000 == xuu300 && xuu4001 == xuu301) == LT",fontsize=16,color="magenta"];117 -> 130[label="",style="dashed", color="magenta", weight=3]; 117 -> 131[label="",style="dashed", color="magenta", weight=3]; 117 -> 132[label="",style="dashed", color="magenta", weight=3]; 117 -> 133[label="",style="dashed", color="magenta", weight=3]; 117 -> 134[label="",style="dashed", color="magenta", weight=3]; 118[label="xuu300",fontsize=16,color="green",shape="box"];119[label="xuu301",fontsize=16,color="green",shape="box"];120[label="xuu32",fontsize=16,color="green",shape="box"];121[label="xuu31",fontsize=16,color="green",shape="box"];122[label="xuu34",fontsize=16,color="green",shape="box"];123[label="xuu33",fontsize=16,color="green",shape="box"];124[label="xuu4000",fontsize=16,color="green",shape="box"];125[label="xuu4001",fontsize=16,color="green",shape="box"];115[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 xuu26",fontsize=16,color="burlywood",shape="triangle"];2792[label="xuu26/False",fontsize=10,color="white",style="solid",shape="box"];115 -> 2792[label="",style="solid", color="burlywood", weight=9]; 2792 -> 135[label="",style="solid", color="burlywood", weight=3]; 2793[label="xuu26/True",fontsize=10,color="white",style="solid",shape="box"];115 -> 2793[label="",style="solid", color="burlywood", weight=9]; 2793 -> 136[label="",style="solid", color="burlywood", weight=3]; 130[label="xuu4001",fontsize=16,color="green",shape="box"];131[label="xuu300",fontsize=16,color="green",shape="box"];132[label="xuu301",fontsize=16,color="green",shape="box"];133[label="xuu4000 == xuu300",fontsize=16,color="blue",shape="box"];2794[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2794[label="",style="solid", color="blue", weight=9]; 2794 -> 137[label="",style="solid", color="blue", weight=3]; 2795[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2795[label="",style="solid", color="blue", weight=9]; 2795 -> 138[label="",style="solid", color="blue", weight=3]; 2796[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2796[label="",style="solid", color="blue", weight=9]; 2796 -> 139[label="",style="solid", color="blue", weight=3]; 2797[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2797[label="",style="solid", color="blue", weight=9]; 2797 -> 140[label="",style="solid", color="blue", weight=3]; 2798[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2798[label="",style="solid", color="blue", weight=9]; 2798 -> 141[label="",style="solid", color="blue", weight=3]; 2799[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2799[label="",style="solid", color="blue", weight=9]; 2799 -> 142[label="",style="solid", color="blue", weight=3]; 2800[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2800[label="",style="solid", color="blue", weight=9]; 2800 -> 143[label="",style="solid", color="blue", weight=3]; 2801[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2801[label="",style="solid", color="blue", weight=9]; 2801 -> 144[label="",style="solid", color="blue", weight=3]; 2802[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2802[label="",style="solid", color="blue", weight=9]; 2802 -> 145[label="",style="solid", color="blue", weight=3]; 2803[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2803[label="",style="solid", color="blue", weight=9]; 2803 -> 146[label="",style="solid", color="blue", weight=3]; 2804[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2804[label="",style="solid", color="blue", weight=9]; 2804 -> 147[label="",style="solid", color="blue", weight=3]; 2805[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2805[label="",style="solid", color="blue", weight=9]; 2805 -> 148[label="",style="solid", color="blue", weight=3]; 2806[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2806[label="",style="solid", color="blue", weight=9]; 2806 -> 149[label="",style="solid", color="blue", weight=3]; 2807[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];133 -> 2807[label="",style="solid", color="blue", weight=9]; 2807 -> 150[label="",style="solid", color="blue", weight=3]; 134[label="xuu4000",fontsize=16,color="green",shape="box"];129[label="compare2 (xuu33,xuu34) (xuu35,xuu36) (xuu37 && xuu34 == xuu36) == LT",fontsize=16,color="burlywood",shape="triangle"];2808[label="xuu37/False",fontsize=10,color="white",style="solid",shape="box"];129 -> 2808[label="",style="solid", color="burlywood", weight=9]; 2808 -> 151[label="",style="solid", color="burlywood", weight=3]; 2809[label="xuu37/True",fontsize=10,color="white",style="solid",shape="box"];129 -> 2809[label="",style="solid", color="burlywood", weight=9]; 2809 -> 152[label="",style="solid", color="burlywood", weight=3]; 135[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 False",fontsize=16,color="black",shape="box"];135 -> 153[label="",style="solid", color="black", weight=3]; 136[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 True",fontsize=16,color="black",shape="box"];136 -> 154[label="",style="solid", color="black", weight=3]; 137[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2810[label="xuu4000/(xuu40000,xuu40001)",fontsize=10,color="white",style="solid",shape="box"];137 -> 2810[label="",style="solid", color="burlywood", weight=9]; 2810 -> 155[label="",style="solid", color="burlywood", weight=3]; 138[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2811[label="xuu4000/(xuu40000,xuu40001,xuu40002)",fontsize=10,color="white",style="solid",shape="box"];138 -> 2811[label="",style="solid", color="burlywood", weight=9]; 2811 -> 156[label="",style="solid", color="burlywood", weight=3]; 139[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2812[label="xuu4000/LT",fontsize=10,color="white",style="solid",shape="box"];139 -> 2812[label="",style="solid", color="burlywood", weight=9]; 2812 -> 157[label="",style="solid", color="burlywood", weight=3]; 2813[label="xuu4000/EQ",fontsize=10,color="white",style="solid",shape="box"];139 -> 2813[label="",style="solid", color="burlywood", weight=9]; 2813 -> 158[label="",style="solid", color="burlywood", weight=3]; 2814[label="xuu4000/GT",fontsize=10,color="white",style="solid",shape="box"];139 -> 2814[label="",style="solid", color="burlywood", weight=9]; 2814 -> 159[label="",style="solid", color="burlywood", weight=3]; 140[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2815[label="xuu4000/()",fontsize=10,color="white",style="solid",shape="box"];140 -> 2815[label="",style="solid", color="burlywood", weight=9]; 2815 -> 160[label="",style="solid", color="burlywood", weight=3]; 141[label="xuu4000 == xuu300",fontsize=16,color="black",shape="triangle"];141 -> 161[label="",style="solid", color="black", weight=3]; 142[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2816[label="xuu4000/Nothing",fontsize=10,color="white",style="solid",shape="box"];142 -> 2816[label="",style="solid", color="burlywood", weight=9]; 2816 -> 162[label="",style="solid", color="burlywood", weight=3]; 2817[label="xuu4000/Just xuu40000",fontsize=10,color="white",style="solid",shape="box"];142 -> 2817[label="",style="solid", color="burlywood", weight=9]; 2817 -> 163[label="",style="solid", color="burlywood", weight=3]; 143[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2818[label="xuu4000/xuu40000 :% xuu40001",fontsize=10,color="white",style="solid",shape="box"];143 -> 2818[label="",style="solid", color="burlywood", weight=9]; 2818 -> 164[label="",style="solid", color="burlywood", weight=3]; 144[label="xuu4000 == xuu300",fontsize=16,color="black",shape="triangle"];144 -> 165[label="",style="solid", color="black", weight=3]; 145[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2819[label="xuu4000/False",fontsize=10,color="white",style="solid",shape="box"];145 -> 2819[label="",style="solid", color="burlywood", weight=9]; 2819 -> 166[label="",style="solid", color="burlywood", weight=3]; 2820[label="xuu4000/True",fontsize=10,color="white",style="solid",shape="box"];145 -> 2820[label="",style="solid", color="burlywood", weight=9]; 2820 -> 167[label="",style="solid", color="burlywood", weight=3]; 146[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2821[label="xuu4000/xuu40000 : xuu40001",fontsize=10,color="white",style="solid",shape="box"];146 -> 2821[label="",style="solid", color="burlywood", weight=9]; 2821 -> 168[label="",style="solid", color="burlywood", weight=3]; 2822[label="xuu4000/[]",fontsize=10,color="white",style="solid",shape="box"];146 -> 2822[label="",style="solid", color="burlywood", weight=9]; 2822 -> 169[label="",style="solid", color="burlywood", weight=3]; 147[label="xuu4000 == xuu300",fontsize=16,color="black",shape="triangle"];147 -> 170[label="",style="solid", color="black", weight=3]; 148[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2823[label="xuu4000/Integer xuu40000",fontsize=10,color="white",style="solid",shape="box"];148 -> 2823[label="",style="solid", color="burlywood", weight=9]; 2823 -> 171[label="",style="solid", color="burlywood", weight=3]; 149[label="xuu4000 == xuu300",fontsize=16,color="burlywood",shape="triangle"];2824[label="xuu4000/Left xuu40000",fontsize=10,color="white",style="solid",shape="box"];149 -> 2824[label="",style="solid", color="burlywood", weight=9]; 2824 -> 172[label="",style="solid", color="burlywood", weight=3]; 2825[label="xuu4000/Right xuu40000",fontsize=10,color="white",style="solid",shape="box"];149 -> 2825[label="",style="solid", color="burlywood", weight=9]; 2825 -> 173[label="",style="solid", color="burlywood", weight=3]; 150[label="xuu4000 == xuu300",fontsize=16,color="black",shape="triangle"];150 -> 174[label="",style="solid", color="black", weight=3]; 151[label="compare2 (xuu33,xuu34) (xuu35,xuu36) (False && xuu34 == xuu36) == LT",fontsize=16,color="black",shape="box"];151 -> 175[label="",style="solid", color="black", weight=3]; 152[label="compare2 (xuu33,xuu34) (xuu35,xuu36) (True && xuu34 == xuu36) == LT",fontsize=16,color="black",shape="box"];152 -> 176[label="",style="solid", color="black", weight=3]; 153 -> 219[label="",style="dashed", color="red", weight=0]; 153[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 ((xuu22,xuu23) > (xuu16,xuu17))",fontsize=16,color="magenta"];153 -> 220[label="",style="dashed", color="magenta", weight=3]; 154 -> 178[label="",style="dashed", color="red", weight=0]; 154[label="FiniteMap.mkBalBranch (xuu16,xuu17) xuu18 (FiniteMap.addToFM_C FiniteMap.addListToFM0 xuu20 (xuu22,xuu23) xuu24) xuu21",fontsize=16,color="magenta"];154 -> 179[label="",style="dashed", color="magenta", weight=3]; 155[label="(xuu40000,xuu40001) == xuu300",fontsize=16,color="burlywood",shape="box"];2826[label="xuu300/(xuu3000,xuu3001)",fontsize=10,color="white",style="solid",shape="box"];155 -> 2826[label="",style="solid", color="burlywood", weight=9]; 2826 -> 180[label="",style="solid", color="burlywood", weight=3]; 156[label="(xuu40000,xuu40001,xuu40002) == xuu300",fontsize=16,color="burlywood",shape="box"];2827[label="xuu300/(xuu3000,xuu3001,xuu3002)",fontsize=10,color="white",style="solid",shape="box"];156 -> 2827[label="",style="solid", color="burlywood", weight=9]; 2827 -> 181[label="",style="solid", color="burlywood", weight=3]; 157[label="LT == xuu300",fontsize=16,color="burlywood",shape="box"];2828[label="xuu300/LT",fontsize=10,color="white",style="solid",shape="box"];157 -> 2828[label="",style="solid", color="burlywood", weight=9]; 2828 -> 182[label="",style="solid", color="burlywood", weight=3]; 2829[label="xuu300/EQ",fontsize=10,color="white",style="solid",shape="box"];157 -> 2829[label="",style="solid", color="burlywood", weight=9]; 2829 -> 183[label="",style="solid", color="burlywood", weight=3]; 2830[label="xuu300/GT",fontsize=10,color="white",style="solid",shape="box"];157 -> 2830[label="",style="solid", color="burlywood", weight=9]; 2830 -> 184[label="",style="solid", color="burlywood", weight=3]; 158[label="EQ == xuu300",fontsize=16,color="burlywood",shape="box"];2831[label="xuu300/LT",fontsize=10,color="white",style="solid",shape="box"];158 -> 2831[label="",style="solid", color="burlywood", weight=9]; 2831 -> 185[label="",style="solid", color="burlywood", weight=3]; 2832[label="xuu300/EQ",fontsize=10,color="white",style="solid",shape="box"];158 -> 2832[label="",style="solid", color="burlywood", weight=9]; 2832 -> 186[label="",style="solid", color="burlywood", weight=3]; 2833[label="xuu300/GT",fontsize=10,color="white",style="solid",shape="box"];158 -> 2833[label="",style="solid", color="burlywood", weight=9]; 2833 -> 187[label="",style="solid", color="burlywood", weight=3]; 159[label="GT == xuu300",fontsize=16,color="burlywood",shape="box"];2834[label="xuu300/LT",fontsize=10,color="white",style="solid",shape="box"];159 -> 2834[label="",style="solid", color="burlywood", weight=9]; 2834 -> 188[label="",style="solid", color="burlywood", weight=3]; 2835[label="xuu300/EQ",fontsize=10,color="white",style="solid",shape="box"];159 -> 2835[label="",style="solid", color="burlywood", weight=9]; 2835 -> 189[label="",style="solid", color="burlywood", weight=3]; 2836[label="xuu300/GT",fontsize=10,color="white",style="solid",shape="box"];159 -> 2836[label="",style="solid", color="burlywood", weight=9]; 2836 -> 190[label="",style="solid", color="burlywood", weight=3]; 160[label="() == xuu300",fontsize=16,color="burlywood",shape="box"];2837[label="xuu300/()",fontsize=10,color="white",style="solid",shape="box"];160 -> 2837[label="",style="solid", color="burlywood", weight=9]; 2837 -> 191[label="",style="solid", color="burlywood", weight=3]; 161[label="primEqFloat xuu4000 xuu300",fontsize=16,color="burlywood",shape="box"];2838[label="xuu4000/Float xuu40000 xuu40001",fontsize=10,color="white",style="solid",shape="box"];161 -> 2838[label="",style="solid", color="burlywood", weight=9]; 2838 -> 192[label="",style="solid", color="burlywood", weight=3]; 162[label="Nothing == xuu300",fontsize=16,color="burlywood",shape="box"];2839[label="xuu300/Nothing",fontsize=10,color="white",style="solid",shape="box"];162 -> 2839[label="",style="solid", color="burlywood", weight=9]; 2839 -> 193[label="",style="solid", color="burlywood", weight=3]; 2840[label="xuu300/Just xuu3000",fontsize=10,color="white",style="solid",shape="box"];162 -> 2840[label="",style="solid", color="burlywood", weight=9]; 2840 -> 194[label="",style="solid", color="burlywood", weight=3]; 163[label="Just xuu40000 == xuu300",fontsize=16,color="burlywood",shape="box"];2841[label="xuu300/Nothing",fontsize=10,color="white",style="solid",shape="box"];163 -> 2841[label="",style="solid", color="burlywood", weight=9]; 2841 -> 195[label="",style="solid", color="burlywood", weight=3]; 2842[label="xuu300/Just xuu3000",fontsize=10,color="white",style="solid",shape="box"];163 -> 2842[label="",style="solid", color="burlywood", weight=9]; 2842 -> 196[label="",style="solid", color="burlywood", weight=3]; 164[label="xuu40000 :% xuu40001 == xuu300",fontsize=16,color="burlywood",shape="box"];2843[label="xuu300/xuu3000 :% xuu3001",fontsize=10,color="white",style="solid",shape="box"];164 -> 2843[label="",style="solid", color="burlywood", weight=9]; 2843 -> 197[label="",style="solid", color="burlywood", weight=3]; 165[label="primEqChar xuu4000 xuu300",fontsize=16,color="burlywood",shape="box"];2844[label="xuu4000/Char xuu40000",fontsize=10,color="white",style="solid",shape="box"];165 -> 2844[label="",style="solid", color="burlywood", weight=9]; 2844 -> 198[label="",style="solid", color="burlywood", weight=3]; 166[label="False == xuu300",fontsize=16,color="burlywood",shape="box"];2845[label="xuu300/False",fontsize=10,color="white",style="solid",shape="box"];166 -> 2845[label="",style="solid", color="burlywood", weight=9]; 2845 -> 199[label="",style="solid", color="burlywood", weight=3]; 2846[label="xuu300/True",fontsize=10,color="white",style="solid",shape="box"];166 -> 2846[label="",style="solid", color="burlywood", weight=9]; 2846 -> 200[label="",style="solid", color="burlywood", weight=3]; 167[label="True == xuu300",fontsize=16,color="burlywood",shape="box"];2847[label="xuu300/False",fontsize=10,color="white",style="solid",shape="box"];167 -> 2847[label="",style="solid", color="burlywood", weight=9]; 2847 -> 201[label="",style="solid", color="burlywood", weight=3]; 2848[label="xuu300/True",fontsize=10,color="white",style="solid",shape="box"];167 -> 2848[label="",style="solid", color="burlywood", weight=9]; 2848 -> 202[label="",style="solid", color="burlywood", weight=3]; 168[label="xuu40000 : xuu40001 == xuu300",fontsize=16,color="burlywood",shape="box"];2849[label="xuu300/xuu3000 : xuu3001",fontsize=10,color="white",style="solid",shape="box"];168 -> 2849[label="",style="solid", color="burlywood", weight=9]; 2849 -> 203[label="",style="solid", color="burlywood", weight=3]; 2850[label="xuu300/[]",fontsize=10,color="white",style="solid",shape="box"];168 -> 2850[label="",style="solid", color="burlywood", weight=9]; 2850 -> 204[label="",style="solid", color="burlywood", weight=3]; 169[label="[] == xuu300",fontsize=16,color="burlywood",shape="box"];2851[label="xuu300/xuu3000 : xuu3001",fontsize=10,color="white",style="solid",shape="box"];169 -> 2851[label="",style="solid", color="burlywood", weight=9]; 2851 -> 205[label="",style="solid", color="burlywood", weight=3]; 2852[label="xuu300/[]",fontsize=10,color="white",style="solid",shape="box"];169 -> 2852[label="",style="solid", color="burlywood", weight=9]; 2852 -> 206[label="",style="solid", color="burlywood", weight=3]; 170[label="primEqDouble xuu4000 xuu300",fontsize=16,color="burlywood",shape="box"];2853[label="xuu4000/Double xuu40000 xuu40001",fontsize=10,color="white",style="solid",shape="box"];170 -> 2853[label="",style="solid", color="burlywood", weight=9]; 2853 -> 207[label="",style="solid", color="burlywood", weight=3]; 171[label="Integer xuu40000 == xuu300",fontsize=16,color="burlywood",shape="box"];2854[label="xuu300/Integer xuu3000",fontsize=10,color="white",style="solid",shape="box"];171 -> 2854[label="",style="solid", color="burlywood", weight=9]; 2854 -> 208[label="",style="solid", color="burlywood", weight=3]; 172[label="Left xuu40000 == xuu300",fontsize=16,color="burlywood",shape="box"];2855[label="xuu300/Left xuu3000",fontsize=10,color="white",style="solid",shape="box"];172 -> 2855[label="",style="solid", color="burlywood", weight=9]; 2855 -> 209[label="",style="solid", color="burlywood", weight=3]; 2856[label="xuu300/Right xuu3000",fontsize=10,color="white",style="solid",shape="box"];172 -> 2856[label="",style="solid", color="burlywood", weight=9]; 2856 -> 210[label="",style="solid", color="burlywood", weight=3]; 173[label="Right xuu40000 == xuu300",fontsize=16,color="burlywood",shape="box"];2857[label="xuu300/Left xuu3000",fontsize=10,color="white",style="solid",shape="box"];173 -> 2857[label="",style="solid", color="burlywood", weight=9]; 2857 -> 211[label="",style="solid", color="burlywood", weight=3]; 2858[label="xuu300/Right xuu3000",fontsize=10,color="white",style="solid",shape="box"];173 -> 2858[label="",style="solid", color="burlywood", weight=9]; 2858 -> 212[label="",style="solid", color="burlywood", weight=3]; 174[label="primEqInt xuu4000 xuu300",fontsize=16,color="burlywood",shape="triangle"];2859[label="xuu4000/Pos xuu40000",fontsize=10,color="white",style="solid",shape="box"];174 -> 2859[label="",style="solid", color="burlywood", weight=9]; 2859 -> 213[label="",style="solid", color="burlywood", weight=3]; 2860[label="xuu4000/Neg xuu40000",fontsize=10,color="white",style="solid",shape="box"];174 -> 2860[label="",style="solid", color="burlywood", weight=9]; 2860 -> 214[label="",style="solid", color="burlywood", weight=3]; 175 -> 139[label="",style="dashed", color="red", weight=0]; 175[label="compare2 (xuu33,xuu34) (xuu35,xuu36) False == LT",fontsize=16,color="magenta"];175 -> 215[label="",style="dashed", color="magenta", weight=3]; 175 -> 216[label="",style="dashed", color="magenta", weight=3]; 176 -> 139[label="",style="dashed", color="red", weight=0]; 176[label="compare2 (xuu33,xuu34) (xuu35,xuu36) (xuu34 == xuu36) == LT",fontsize=16,color="magenta"];176 -> 217[label="",style="dashed", color="magenta", weight=3]; 176 -> 218[label="",style="dashed", color="magenta", weight=3]; 220[label="(xuu22,xuu23) > (xuu16,xuu17)",fontsize=16,color="black",shape="box"];220 -> 222[label="",style="solid", color="black", weight=3]; 219[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 xuu39",fontsize=16,color="burlywood",shape="triangle"];2861[label="xuu39/False",fontsize=10,color="white",style="solid",shape="box"];219 -> 2861[label="",style="solid", color="burlywood", weight=9]; 2861 -> 223[label="",style="solid", color="burlywood", weight=3]; 2862[label="xuu39/True",fontsize=10,color="white",style="solid",shape="box"];219 -> 2862[label="",style="solid", color="burlywood", weight=9]; 2862 -> 224[label="",style="solid", color="burlywood", weight=3]; 179 -> 14[label="",style="dashed", color="red", weight=0]; 179[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 xuu20 (xuu22,xuu23) xuu24",fontsize=16,color="magenta"];179 -> 225[label="",style="dashed", color="magenta", weight=3]; 179 -> 226[label="",style="dashed", color="magenta", weight=3]; 179 -> 227[label="",style="dashed", color="magenta", weight=3]; 178[label="FiniteMap.mkBalBranch (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="black",shape="triangle"];178 -> 228[label="",style="solid", color="black", weight=3]; 180[label="(xuu40000,xuu40001) == (xuu3000,xuu3001)",fontsize=16,color="black",shape="box"];180 -> 229[label="",style="solid", color="black", weight=3]; 181[label="(xuu40000,xuu40001,xuu40002) == (xuu3000,xuu3001,xuu3002)",fontsize=16,color="black",shape="box"];181 -> 230[label="",style="solid", color="black", weight=3]; 182[label="LT == LT",fontsize=16,color="black",shape="box"];182 -> 231[label="",style="solid", color="black", weight=3]; 183[label="LT == EQ",fontsize=16,color="black",shape="box"];183 -> 232[label="",style="solid", color="black", weight=3]; 184[label="LT == GT",fontsize=16,color="black",shape="box"];184 -> 233[label="",style="solid", color="black", weight=3]; 185[label="EQ == LT",fontsize=16,color="black",shape="box"];185 -> 234[label="",style="solid", color="black", weight=3]; 186[label="EQ == EQ",fontsize=16,color="black",shape="box"];186 -> 235[label="",style="solid", color="black", weight=3]; 187[label="EQ == GT",fontsize=16,color="black",shape="box"];187 -> 236[label="",style="solid", color="black", weight=3]; 188[label="GT == LT",fontsize=16,color="black",shape="box"];188 -> 237[label="",style="solid", color="black", weight=3]; 189[label="GT == EQ",fontsize=16,color="black",shape="box"];189 -> 238[label="",style="solid", color="black", weight=3]; 190[label="GT == GT",fontsize=16,color="black",shape="box"];190 -> 239[label="",style="solid", color="black", weight=3]; 191[label="() == ()",fontsize=16,color="black",shape="box"];191 -> 240[label="",style="solid", color="black", weight=3]; 192[label="primEqFloat (Float xuu40000 xuu40001) xuu300",fontsize=16,color="burlywood",shape="box"];2863[label="xuu300/Float xuu3000 xuu3001",fontsize=10,color="white",style="solid",shape="box"];192 -> 2863[label="",style="solid", color="burlywood", weight=9]; 2863 -> 241[label="",style="solid", color="burlywood", weight=3]; 193[label="Nothing == Nothing",fontsize=16,color="black",shape="box"];193 -> 242[label="",style="solid", color="black", weight=3]; 194[label="Nothing == Just xuu3000",fontsize=16,color="black",shape="box"];194 -> 243[label="",style="solid", color="black", weight=3]; 195[label="Just xuu40000 == Nothing",fontsize=16,color="black",shape="box"];195 -> 244[label="",style="solid", color="black", weight=3]; 196[label="Just xuu40000 == Just xuu3000",fontsize=16,color="black",shape="box"];196 -> 245[label="",style="solid", color="black", weight=3]; 197[label="xuu40000 :% xuu40001 == xuu3000 :% xuu3001",fontsize=16,color="black",shape="box"];197 -> 246[label="",style="solid", color="black", weight=3]; 198[label="primEqChar (Char xuu40000) xuu300",fontsize=16,color="burlywood",shape="box"];2864[label="xuu300/Char xuu3000",fontsize=10,color="white",style="solid",shape="box"];198 -> 2864[label="",style="solid", color="burlywood", weight=9]; 2864 -> 247[label="",style="solid", color="burlywood", weight=3]; 199[label="False == False",fontsize=16,color="black",shape="box"];199 -> 248[label="",style="solid", color="black", weight=3]; 200[label="False == True",fontsize=16,color="black",shape="box"];200 -> 249[label="",style="solid", color="black", weight=3]; 201[label="True == False",fontsize=16,color="black",shape="box"];201 -> 250[label="",style="solid", color="black", weight=3]; 202[label="True == True",fontsize=16,color="black",shape="box"];202 -> 251[label="",style="solid", color="black", weight=3]; 203[label="xuu40000 : xuu40001 == xuu3000 : xuu3001",fontsize=16,color="black",shape="box"];203 -> 252[label="",style="solid", color="black", weight=3]; 204[label="xuu40000 : xuu40001 == []",fontsize=16,color="black",shape="box"];204 -> 253[label="",style="solid", color="black", weight=3]; 205[label="[] == xuu3000 : xuu3001",fontsize=16,color="black",shape="box"];205 -> 254[label="",style="solid", color="black", weight=3]; 206[label="[] == []",fontsize=16,color="black",shape="box"];206 -> 255[label="",style="solid", color="black", weight=3]; 207[label="primEqDouble (Double xuu40000 xuu40001) xuu300",fontsize=16,color="burlywood",shape="box"];2865[label="xuu300/Double xuu3000 xuu3001",fontsize=10,color="white",style="solid",shape="box"];207 -> 2865[label="",style="solid", color="burlywood", weight=9]; 2865 -> 256[label="",style="solid", color="burlywood", weight=3]; 208[label="Integer xuu40000 == Integer xuu3000",fontsize=16,color="black",shape="box"];208 -> 257[label="",style="solid", color="black", weight=3]; 209[label="Left xuu40000 == Left xuu3000",fontsize=16,color="black",shape="box"];209 -> 258[label="",style="solid", color="black", weight=3]; 210[label="Left xuu40000 == Right xuu3000",fontsize=16,color="black",shape="box"];210 -> 259[label="",style="solid", color="black", weight=3]; 211[label="Right xuu40000 == Left xuu3000",fontsize=16,color="black",shape="box"];211 -> 260[label="",style="solid", color="black", weight=3]; 212[label="Right xuu40000 == Right xuu3000",fontsize=16,color="black",shape="box"];212 -> 261[label="",style="solid", color="black", weight=3]; 213[label="primEqInt (Pos xuu40000) xuu300",fontsize=16,color="burlywood",shape="box"];2866[label="xuu40000/Succ xuu400000",fontsize=10,color="white",style="solid",shape="box"];213 -> 2866[label="",style="solid", color="burlywood", weight=9]; 2866 -> 262[label="",style="solid", color="burlywood", weight=3]; 2867[label="xuu40000/Zero",fontsize=10,color="white",style="solid",shape="box"];213 -> 2867[label="",style="solid", color="burlywood", weight=9]; 2867 -> 263[label="",style="solid", color="burlywood", weight=3]; 214[label="primEqInt (Neg xuu40000) xuu300",fontsize=16,color="burlywood",shape="box"];2868[label="xuu40000/Succ xuu400000",fontsize=10,color="white",style="solid",shape="box"];214 -> 2868[label="",style="solid", color="burlywood", weight=9]; 2868 -> 264[label="",style="solid", color="burlywood", weight=3]; 2869[label="xuu40000/Zero",fontsize=10,color="white",style="solid",shape="box"];214 -> 2869[label="",style="solid", color="burlywood", weight=9]; 2869 -> 265[label="",style="solid", color="burlywood", weight=3]; 215[label="LT",fontsize=16,color="green",shape="box"];216 -> 1243[label="",style="dashed", color="red", weight=0]; 216[label="compare2 (xuu33,xuu34) (xuu35,xuu36) False",fontsize=16,color="magenta"];216 -> 1244[label="",style="dashed", color="magenta", weight=3]; 216 -> 1245[label="",style="dashed", color="magenta", weight=3]; 216 -> 1246[label="",style="dashed", color="magenta", weight=3]; 217[label="LT",fontsize=16,color="green",shape="box"];218 -> 1243[label="",style="dashed", color="red", weight=0]; 218[label="compare2 (xuu33,xuu34) (xuu35,xuu36) (xuu34 == xuu36)",fontsize=16,color="magenta"];218 -> 1247[label="",style="dashed", color="magenta", weight=3]; 218 -> 1248[label="",style="dashed", color="magenta", weight=3]; 218 -> 1249[label="",style="dashed", color="magenta", weight=3]; 222 -> 139[label="",style="dashed", color="red", weight=0]; 222[label="compare (xuu22,xuu23) (xuu16,xuu17) == GT",fontsize=16,color="magenta"];222 -> 278[label="",style="dashed", color="magenta", weight=3]; 222 -> 279[label="",style="dashed", color="magenta", weight=3]; 223[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 False",fontsize=16,color="black",shape="box"];223 -> 280[label="",style="solid", color="black", weight=3]; 224[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 True",fontsize=16,color="black",shape="box"];224 -> 281[label="",style="solid", color="black", weight=3]; 225[label="xuu20",fontsize=16,color="green",shape="box"];226[label="xuu24",fontsize=16,color="green",shape="box"];227[label="(xuu22,xuu23)",fontsize=16,color="green",shape="box"];228[label="FiniteMap.mkBalBranch6 (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="black",shape="box"];228 -> 282[label="",style="solid", color="black", weight=3]; 229 -> 394[label="",style="dashed", color="red", weight=0]; 229[label="xuu40000 == xuu3000 && xuu40001 == xuu3001",fontsize=16,color="magenta"];229 -> 395[label="",style="dashed", color="magenta", weight=3]; 229 -> 396[label="",style="dashed", color="magenta", weight=3]; 230 -> 394[label="",style="dashed", color="red", weight=0]; 230[label="xuu40000 == xuu3000 && xuu40001 == xuu3001 && xuu40002 == xuu3002",fontsize=16,color="magenta"];230 -> 397[label="",style="dashed", color="magenta", weight=3]; 230 -> 398[label="",style="dashed", color="magenta", weight=3]; 231[label="True",fontsize=16,color="green",shape="box"];232[label="False",fontsize=16,color="green",shape="box"];233[label="False",fontsize=16,color="green",shape="box"];234[label="False",fontsize=16,color="green",shape="box"];235[label="True",fontsize=16,color="green",shape="box"];236[label="False",fontsize=16,color="green",shape="box"];237[label="False",fontsize=16,color="green",shape="box"];238[label="False",fontsize=16,color="green",shape="box"];239[label="True",fontsize=16,color="green",shape="box"];240[label="True",fontsize=16,color="green",shape="box"];241[label="primEqFloat (Float xuu40000 xuu40001) (Float xuu3000 xuu3001)",fontsize=16,color="black",shape="box"];241 -> 304[label="",style="solid", color="black", weight=3]; 242[label="True",fontsize=16,color="green",shape="box"];243[label="False",fontsize=16,color="green",shape="box"];244[label="False",fontsize=16,color="green",shape="box"];245[label="xuu40000 == xuu3000",fontsize=16,color="blue",shape="box"];2870[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2870[label="",style="solid", color="blue", weight=9]; 2870 -> 305[label="",style="solid", color="blue", weight=3]; 2871[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2871[label="",style="solid", color="blue", weight=9]; 2871 -> 306[label="",style="solid", color="blue", weight=3]; 2872[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2872[label="",style="solid", color="blue", weight=9]; 2872 -> 307[label="",style="solid", color="blue", weight=3]; 2873[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2873[label="",style="solid", color="blue", weight=9]; 2873 -> 308[label="",style="solid", color="blue", weight=3]; 2874[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2874[label="",style="solid", color="blue", weight=9]; 2874 -> 309[label="",style="solid", color="blue", weight=3]; 2875[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2875[label="",style="solid", color="blue", weight=9]; 2875 -> 310[label="",style="solid", color="blue", weight=3]; 2876[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2876[label="",style="solid", color="blue", weight=9]; 2876 -> 311[label="",style="solid", color="blue", weight=3]; 2877[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2877[label="",style="solid", color="blue", weight=9]; 2877 -> 312[label="",style="solid", color="blue", weight=3]; 2878[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2878[label="",style="solid", color="blue", weight=9]; 2878 -> 313[label="",style="solid", color="blue", weight=3]; 2879[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2879[label="",style="solid", color="blue", weight=9]; 2879 -> 314[label="",style="solid", color="blue", weight=3]; 2880[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2880[label="",style="solid", color="blue", weight=9]; 2880 -> 315[label="",style="solid", color="blue", weight=3]; 2881[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2881[label="",style="solid", color="blue", weight=9]; 2881 -> 316[label="",style="solid", color="blue", weight=3]; 2882[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2882[label="",style="solid", color="blue", weight=9]; 2882 -> 317[label="",style="solid", color="blue", weight=3]; 2883[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];245 -> 2883[label="",style="solid", color="blue", weight=9]; 2883 -> 318[label="",style="solid", color="blue", weight=3]; 246 -> 394[label="",style="dashed", color="red", weight=0]; 246[label="xuu40000 == xuu3000 && xuu40001 == xuu3001",fontsize=16,color="magenta"];246 -> 399[label="",style="dashed", color="magenta", weight=3]; 246 -> 400[label="",style="dashed", color="magenta", weight=3]; 247[label="primEqChar (Char xuu40000) (Char xuu3000)",fontsize=16,color="black",shape="box"];247 -> 319[label="",style="solid", color="black", weight=3]; 248[label="True",fontsize=16,color="green",shape="box"];249[label="False",fontsize=16,color="green",shape="box"];250[label="False",fontsize=16,color="green",shape="box"];251[label="True",fontsize=16,color="green",shape="box"];252 -> 394[label="",style="dashed", color="red", weight=0]; 252[label="xuu40000 == xuu3000 && xuu40001 == xuu3001",fontsize=16,color="magenta"];252 -> 401[label="",style="dashed", color="magenta", weight=3]; 252 -> 402[label="",style="dashed", color="magenta", weight=3]; 253[label="False",fontsize=16,color="green",shape="box"];254[label="False",fontsize=16,color="green",shape="box"];255[label="True",fontsize=16,color="green",shape="box"];256[label="primEqDouble (Double xuu40000 xuu40001) (Double xuu3000 xuu3001)",fontsize=16,color="black",shape="box"];256 -> 320[label="",style="solid", color="black", weight=3]; 257 -> 174[label="",style="dashed", color="red", weight=0]; 257[label="primEqInt xuu40000 xuu3000",fontsize=16,color="magenta"];257 -> 321[label="",style="dashed", color="magenta", weight=3]; 257 -> 322[label="",style="dashed", color="magenta", weight=3]; 258[label="xuu40000 == xuu3000",fontsize=16,color="blue",shape="box"];2884[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2884[label="",style="solid", color="blue", weight=9]; 2884 -> 323[label="",style="solid", color="blue", weight=3]; 2885[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2885[label="",style="solid", color="blue", weight=9]; 2885 -> 324[label="",style="solid", color="blue", weight=3]; 2886[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2886[label="",style="solid", color="blue", weight=9]; 2886 -> 325[label="",style="solid", color="blue", weight=3]; 2887[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2887[label="",style="solid", color="blue", weight=9]; 2887 -> 326[label="",style="solid", color="blue", weight=3]; 2888[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2888[label="",style="solid", color="blue", weight=9]; 2888 -> 327[label="",style="solid", color="blue", weight=3]; 2889[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2889[label="",style="solid", color="blue", weight=9]; 2889 -> 328[label="",style="solid", color="blue", weight=3]; 2890[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2890[label="",style="solid", color="blue", weight=9]; 2890 -> 329[label="",style="solid", color="blue", weight=3]; 2891[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2891[label="",style="solid", color="blue", weight=9]; 2891 -> 330[label="",style="solid", color="blue", weight=3]; 2892[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2892[label="",style="solid", color="blue", weight=9]; 2892 -> 331[label="",style="solid", color="blue", weight=3]; 2893[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2893[label="",style="solid", color="blue", weight=9]; 2893 -> 332[label="",style="solid", color="blue", weight=3]; 2894[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2894[label="",style="solid", color="blue", weight=9]; 2894 -> 333[label="",style="solid", color="blue", weight=3]; 2895[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2895[label="",style="solid", color="blue", weight=9]; 2895 -> 334[label="",style="solid", color="blue", weight=3]; 2896[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2896[label="",style="solid", color="blue", weight=9]; 2896 -> 335[label="",style="solid", color="blue", weight=3]; 2897[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];258 -> 2897[label="",style="solid", color="blue", weight=9]; 2897 -> 336[label="",style="solid", color="blue", weight=3]; 259[label="False",fontsize=16,color="green",shape="box"];260[label="False",fontsize=16,color="green",shape="box"];261[label="xuu40000 == xuu3000",fontsize=16,color="blue",shape="box"];2898[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2898[label="",style="solid", color="blue", weight=9]; 2898 -> 337[label="",style="solid", color="blue", weight=3]; 2899[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2899[label="",style="solid", color="blue", weight=9]; 2899 -> 338[label="",style="solid", color="blue", weight=3]; 2900[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2900[label="",style="solid", color="blue", weight=9]; 2900 -> 339[label="",style="solid", color="blue", weight=3]; 2901[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2901[label="",style="solid", color="blue", weight=9]; 2901 -> 340[label="",style="solid", color="blue", weight=3]; 2902[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2902[label="",style="solid", color="blue", weight=9]; 2902 -> 341[label="",style="solid", color="blue", weight=3]; 2903[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2903[label="",style="solid", color="blue", weight=9]; 2903 -> 342[label="",style="solid", color="blue", weight=3]; 2904[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2904[label="",style="solid", color="blue", weight=9]; 2904 -> 343[label="",style="solid", color="blue", weight=3]; 2905[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2905[label="",style="solid", color="blue", weight=9]; 2905 -> 344[label="",style="solid", color="blue", weight=3]; 2906[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2906[label="",style="solid", color="blue", weight=9]; 2906 -> 345[label="",style="solid", color="blue", weight=3]; 2907[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2907[label="",style="solid", color="blue", weight=9]; 2907 -> 346[label="",style="solid", color="blue", weight=3]; 2908[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2908[label="",style="solid", color="blue", weight=9]; 2908 -> 347[label="",style="solid", color="blue", weight=3]; 2909[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2909[label="",style="solid", color="blue", weight=9]; 2909 -> 348[label="",style="solid", color="blue", weight=3]; 2910[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2910[label="",style="solid", color="blue", weight=9]; 2910 -> 349[label="",style="solid", color="blue", weight=3]; 2911[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];261 -> 2911[label="",style="solid", color="blue", weight=9]; 2911 -> 350[label="",style="solid", color="blue", weight=3]; 262[label="primEqInt (Pos (Succ xuu400000)) xuu300",fontsize=16,color="burlywood",shape="box"];2912[label="xuu300/Pos xuu3000",fontsize=10,color="white",style="solid",shape="box"];262 -> 2912[label="",style="solid", color="burlywood", weight=9]; 2912 -> 351[label="",style="solid", color="burlywood", weight=3]; 2913[label="xuu300/Neg xuu3000",fontsize=10,color="white",style="solid",shape="box"];262 -> 2913[label="",style="solid", color="burlywood", weight=9]; 2913 -> 352[label="",style="solid", color="burlywood", weight=3]; 263[label="primEqInt (Pos Zero) xuu300",fontsize=16,color="burlywood",shape="box"];2914[label="xuu300/Pos xuu3000",fontsize=10,color="white",style="solid",shape="box"];263 -> 2914[label="",style="solid", color="burlywood", weight=9]; 2914 -> 353[label="",style="solid", color="burlywood", weight=3]; 2915[label="xuu300/Neg xuu3000",fontsize=10,color="white",style="solid",shape="box"];263 -> 2915[label="",style="solid", color="burlywood", weight=9]; 2915 -> 354[label="",style="solid", color="burlywood", weight=3]; 264[label="primEqInt (Neg (Succ xuu400000)) xuu300",fontsize=16,color="burlywood",shape="box"];2916[label="xuu300/Pos xuu3000",fontsize=10,color="white",style="solid",shape="box"];264 -> 2916[label="",style="solid", color="burlywood", weight=9]; 2916 -> 355[label="",style="solid", color="burlywood", weight=3]; 2917[label="xuu300/Neg xuu3000",fontsize=10,color="white",style="solid",shape="box"];264 -> 2917[label="",style="solid", color="burlywood", weight=9]; 2917 -> 356[label="",style="solid", color="burlywood", weight=3]; 265[label="primEqInt (Neg Zero) xuu300",fontsize=16,color="burlywood",shape="box"];2918[label="xuu300/Pos xuu3000",fontsize=10,color="white",style="solid",shape="box"];265 -> 2918[label="",style="solid", color="burlywood", weight=9]; 2918 -> 357[label="",style="solid", color="burlywood", weight=3]; 2919[label="xuu300/Neg xuu3000",fontsize=10,color="white",style="solid",shape="box"];265 -> 2919[label="",style="solid", color="burlywood", weight=9]; 2919 -> 358[label="",style="solid", color="burlywood", weight=3]; 1244[label="False",fontsize=16,color="green",shape="box"];1245[label="(xuu35,xuu36)",fontsize=16,color="green",shape="box"];1246[label="(xuu33,xuu34)",fontsize=16,color="green",shape="box"];1243[label="compare2 xuu46 xuu48 xuu92",fontsize=16,color="burlywood",shape="triangle"];2920[label="xuu92/False",fontsize=10,color="white",style="solid",shape="box"];1243 -> 2920[label="",style="solid", color="burlywood", weight=9]; 2920 -> 1257[label="",style="solid", color="burlywood", weight=3]; 2921[label="xuu92/True",fontsize=10,color="white",style="solid",shape="box"];1243 -> 2921[label="",style="solid", color="burlywood", weight=9]; 2921 -> 1258[label="",style="solid", color="burlywood", weight=3]; 1247[label="xuu34 == xuu36",fontsize=16,color="blue",shape="box"];2922[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2922[label="",style="solid", color="blue", weight=9]; 2922 -> 1259[label="",style="solid", color="blue", weight=3]; 2923[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2923[label="",style="solid", color="blue", weight=9]; 2923 -> 1260[label="",style="solid", color="blue", weight=3]; 2924[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2924[label="",style="solid", color="blue", weight=9]; 2924 -> 1261[label="",style="solid", color="blue", weight=3]; 2925[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2925[label="",style="solid", color="blue", weight=9]; 2925 -> 1262[label="",style="solid", color="blue", weight=3]; 2926[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2926[label="",style="solid", color="blue", weight=9]; 2926 -> 1263[label="",style="solid", color="blue", weight=3]; 2927[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2927[label="",style="solid", color="blue", weight=9]; 2927 -> 1264[label="",style="solid", color="blue", weight=3]; 2928[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2928[label="",style="solid", color="blue", weight=9]; 2928 -> 1265[label="",style="solid", color="blue", weight=3]; 2929[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2929[label="",style="solid", color="blue", weight=9]; 2929 -> 1266[label="",style="solid", color="blue", weight=3]; 2930[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2930[label="",style="solid", color="blue", weight=9]; 2930 -> 1267[label="",style="solid", color="blue", weight=3]; 2931[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2931[label="",style="solid", color="blue", weight=9]; 2931 -> 1268[label="",style="solid", color="blue", weight=3]; 2932[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2932[label="",style="solid", color="blue", weight=9]; 2932 -> 1269[label="",style="solid", color="blue", weight=3]; 2933[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2933[label="",style="solid", color="blue", weight=9]; 2933 -> 1270[label="",style="solid", color="blue", weight=3]; 2934[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2934[label="",style="solid", color="blue", weight=9]; 2934 -> 1271[label="",style="solid", color="blue", weight=3]; 2935[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1247 -> 2935[label="",style="solid", color="blue", weight=9]; 2935 -> 1272[label="",style="solid", color="blue", weight=3]; 1248[label="(xuu35,xuu36)",fontsize=16,color="green",shape="box"];1249[label="(xuu33,xuu34)",fontsize=16,color="green",shape="box"];278[label="GT",fontsize=16,color="green",shape="box"];279[label="compare (xuu22,xuu23) (xuu16,xuu17)",fontsize=16,color="black",shape="box"];279 -> 375[label="",style="solid", color="black", weight=3]; 280[label="FiniteMap.addToFM_C0 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 otherwise",fontsize=16,color="black",shape="box"];280 -> 376[label="",style="solid", color="black", weight=3]; 281 -> 178[label="",style="dashed", color="red", weight=0]; 281[label="FiniteMap.mkBalBranch (xuu16,xuu17) xuu18 xuu20 (FiniteMap.addToFM_C FiniteMap.addListToFM0 xuu21 (xuu22,xuu23) xuu24)",fontsize=16,color="magenta"];281 -> 377[label="",style="dashed", color="magenta", weight=3]; 281 -> 378[label="",style="dashed", color="magenta", weight=3]; 282 -> 612[label="",style="dashed", color="red", weight=0]; 282[label="FiniteMap.mkBalBranch6MkBalBranch5 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 (FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21 + FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21 < Pos (Succ (Succ Zero)))",fontsize=16,color="magenta"];282 -> 613[label="",style="dashed", color="magenta", weight=3]; 395[label="xuu40000 == xuu3000",fontsize=16,color="blue",shape="box"];2936[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2936[label="",style="solid", color="blue", weight=9]; 2936 -> 407[label="",style="solid", color="blue", weight=3]; 2937[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2937[label="",style="solid", color="blue", weight=9]; 2937 -> 408[label="",style="solid", color="blue", weight=3]; 2938[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2938[label="",style="solid", color="blue", weight=9]; 2938 -> 409[label="",style="solid", color="blue", weight=3]; 2939[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2939[label="",style="solid", color="blue", weight=9]; 2939 -> 410[label="",style="solid", color="blue", weight=3]; 2940[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2940[label="",style="solid", color="blue", weight=9]; 2940 -> 411[label="",style="solid", color="blue", weight=3]; 2941[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2941[label="",style="solid", color="blue", weight=9]; 2941 -> 412[label="",style="solid", color="blue", weight=3]; 2942[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2942[label="",style="solid", color="blue", weight=9]; 2942 -> 413[label="",style="solid", color="blue", weight=3]; 2943[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2943[label="",style="solid", color="blue", weight=9]; 2943 -> 414[label="",style="solid", color="blue", weight=3]; 2944[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2944[label="",style="solid", color="blue", weight=9]; 2944 -> 415[label="",style="solid", color="blue", weight=3]; 2945[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2945[label="",style="solid", color="blue", weight=9]; 2945 -> 416[label="",style="solid", color="blue", weight=3]; 2946[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2946[label="",style="solid", color="blue", weight=9]; 2946 -> 417[label="",style="solid", color="blue", weight=3]; 2947[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2947[label="",style="solid", color="blue", weight=9]; 2947 -> 418[label="",style="solid", color="blue", weight=3]; 2948[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2948[label="",style="solid", color="blue", weight=9]; 2948 -> 419[label="",style="solid", color="blue", weight=3]; 2949[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];395 -> 2949[label="",style="solid", color="blue", weight=9]; 2949 -> 420[label="",style="solid", color="blue", weight=3]; 396[label="xuu40001 == xuu3001",fontsize=16,color="blue",shape="box"];2950[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2950[label="",style="solid", color="blue", weight=9]; 2950 -> 421[label="",style="solid", color="blue", weight=3]; 2951[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2951[label="",style="solid", color="blue", weight=9]; 2951 -> 422[label="",style="solid", color="blue", weight=3]; 2952[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2952[label="",style="solid", color="blue", weight=9]; 2952 -> 423[label="",style="solid", color="blue", weight=3]; 2953[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2953[label="",style="solid", color="blue", weight=9]; 2953 -> 424[label="",style="solid", color="blue", weight=3]; 2954[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2954[label="",style="solid", color="blue", weight=9]; 2954 -> 425[label="",style="solid", color="blue", weight=3]; 2955[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2955[label="",style="solid", color="blue", weight=9]; 2955 -> 426[label="",style="solid", color="blue", weight=3]; 2956[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2956[label="",style="solid", color="blue", weight=9]; 2956 -> 427[label="",style="solid", color="blue", weight=3]; 2957[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2957[label="",style="solid", color="blue", weight=9]; 2957 -> 428[label="",style="solid", color="blue", weight=3]; 2958[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2958[label="",style="solid", color="blue", weight=9]; 2958 -> 429[label="",style="solid", color="blue", weight=3]; 2959[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2959[label="",style="solid", color="blue", weight=9]; 2959 -> 430[label="",style="solid", color="blue", weight=3]; 2960[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2960[label="",style="solid", color="blue", weight=9]; 2960 -> 431[label="",style="solid", color="blue", weight=3]; 2961[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2961[label="",style="solid", color="blue", weight=9]; 2961 -> 432[label="",style="solid", color="blue", weight=3]; 2962[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2962[label="",style="solid", color="blue", weight=9]; 2962 -> 433[label="",style="solid", color="blue", weight=3]; 2963[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];396 -> 2963[label="",style="solid", color="blue", weight=9]; 2963 -> 434[label="",style="solid", color="blue", weight=3]; 394[label="xuu62 && xuu63",fontsize=16,color="burlywood",shape="triangle"];2964[label="xuu62/False",fontsize=10,color="white",style="solid",shape="box"];394 -> 2964[label="",style="solid", color="burlywood", weight=9]; 2964 -> 435[label="",style="solid", color="burlywood", weight=3]; 2965[label="xuu62/True",fontsize=10,color="white",style="solid",shape="box"];394 -> 2965[label="",style="solid", color="burlywood", weight=9]; 2965 -> 436[label="",style="solid", color="burlywood", weight=3]; 397[label="xuu40000 == xuu3000",fontsize=16,color="blue",shape="box"];2966[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2966[label="",style="solid", color="blue", weight=9]; 2966 -> 437[label="",style="solid", color="blue", weight=3]; 2967[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2967[label="",style="solid", color="blue", weight=9]; 2967 -> 438[label="",style="solid", color="blue", weight=3]; 2968[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2968[label="",style="solid", color="blue", weight=9]; 2968 -> 439[label="",style="solid", color="blue", weight=3]; 2969[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2969[label="",style="solid", color="blue", weight=9]; 2969 -> 440[label="",style="solid", color="blue", weight=3]; 2970[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2970[label="",style="solid", color="blue", weight=9]; 2970 -> 441[label="",style="solid", color="blue", weight=3]; 2971[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2971[label="",style="solid", color="blue", weight=9]; 2971 -> 442[label="",style="solid", color="blue", weight=3]; 2972[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2972[label="",style="solid", color="blue", weight=9]; 2972 -> 443[label="",style="solid", color="blue", weight=3]; 2973[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2973[label="",style="solid", color="blue", weight=9]; 2973 -> 444[label="",style="solid", color="blue", weight=3]; 2974[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2974[label="",style="solid", color="blue", weight=9]; 2974 -> 445[label="",style="solid", color="blue", weight=3]; 2975[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2975[label="",style="solid", color="blue", weight=9]; 2975 -> 446[label="",style="solid", color="blue", weight=3]; 2976[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2976[label="",style="solid", color="blue", weight=9]; 2976 -> 447[label="",style="solid", color="blue", weight=3]; 2977[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2977[label="",style="solid", color="blue", weight=9]; 2977 -> 448[label="",style="solid", color="blue", weight=3]; 2978[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2978[label="",style="solid", color="blue", weight=9]; 2978 -> 449[label="",style="solid", color="blue", weight=3]; 2979[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];397 -> 2979[label="",style="solid", color="blue", weight=9]; 2979 -> 450[label="",style="solid", color="blue", weight=3]; 398 -> 394[label="",style="dashed", color="red", weight=0]; 398[label="xuu40001 == xuu3001 && xuu40002 == xuu3002",fontsize=16,color="magenta"];398 -> 451[label="",style="dashed", color="magenta", weight=3]; 398 -> 452[label="",style="dashed", color="magenta", weight=3]; 304 -> 150[label="",style="dashed", color="red", weight=0]; 304[label="xuu40000 * xuu3001 == xuu40001 * xuu3000",fontsize=16,color="magenta"];304 -> 453[label="",style="dashed", color="magenta", weight=3]; 304 -> 454[label="",style="dashed", color="magenta", weight=3]; 305 -> 137[label="",style="dashed", color="red", weight=0]; 305[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];305 -> 455[label="",style="dashed", color="magenta", weight=3]; 305 -> 456[label="",style="dashed", color="magenta", weight=3]; 306 -> 138[label="",style="dashed", color="red", weight=0]; 306[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];306 -> 457[label="",style="dashed", color="magenta", weight=3]; 306 -> 458[label="",style="dashed", color="magenta", weight=3]; 307 -> 139[label="",style="dashed", color="red", weight=0]; 307[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];307 -> 459[label="",style="dashed", color="magenta", weight=3]; 307 -> 460[label="",style="dashed", color="magenta", weight=3]; 308 -> 140[label="",style="dashed", color="red", weight=0]; 308[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];308 -> 461[label="",style="dashed", color="magenta", weight=3]; 308 -> 462[label="",style="dashed", color="magenta", weight=3]; 309 -> 141[label="",style="dashed", color="red", weight=0]; 309[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];309 -> 463[label="",style="dashed", color="magenta", weight=3]; 309 -> 464[label="",style="dashed", color="magenta", weight=3]; 310 -> 142[label="",style="dashed", color="red", weight=0]; 310[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];310 -> 465[label="",style="dashed", color="magenta", weight=3]; 310 -> 466[label="",style="dashed", color="magenta", weight=3]; 311 -> 143[label="",style="dashed", color="red", weight=0]; 311[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];311 -> 467[label="",style="dashed", color="magenta", weight=3]; 311 -> 468[label="",style="dashed", color="magenta", weight=3]; 312 -> 144[label="",style="dashed", color="red", weight=0]; 312[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];312 -> 469[label="",style="dashed", color="magenta", weight=3]; 312 -> 470[label="",style="dashed", color="magenta", weight=3]; 313 -> 145[label="",style="dashed", color="red", weight=0]; 313[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];313 -> 471[label="",style="dashed", color="magenta", weight=3]; 313 -> 472[label="",style="dashed", color="magenta", weight=3]; 314 -> 146[label="",style="dashed", color="red", weight=0]; 314[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];314 -> 473[label="",style="dashed", color="magenta", weight=3]; 314 -> 474[label="",style="dashed", color="magenta", weight=3]; 315 -> 147[label="",style="dashed", color="red", weight=0]; 315[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];315 -> 475[label="",style="dashed", color="magenta", weight=3]; 315 -> 476[label="",style="dashed", color="magenta", weight=3]; 316 -> 148[label="",style="dashed", color="red", weight=0]; 316[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];316 -> 477[label="",style="dashed", color="magenta", weight=3]; 316 -> 478[label="",style="dashed", color="magenta", weight=3]; 317 -> 149[label="",style="dashed", color="red", weight=0]; 317[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];317 -> 479[label="",style="dashed", color="magenta", weight=3]; 317 -> 480[label="",style="dashed", color="magenta", weight=3]; 318 -> 150[label="",style="dashed", color="red", weight=0]; 318[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];318 -> 481[label="",style="dashed", color="magenta", weight=3]; 318 -> 482[label="",style="dashed", color="magenta", weight=3]; 399[label="xuu40000 == xuu3000",fontsize=16,color="blue",shape="box"];2980[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];399 -> 2980[label="",style="solid", color="blue", weight=9]; 2980 -> 483[label="",style="solid", color="blue", weight=3]; 2981[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];399 -> 2981[label="",style="solid", color="blue", weight=9]; 2981 -> 484[label="",style="solid", color="blue", weight=3]; 400[label="xuu40001 == xuu3001",fontsize=16,color="blue",shape="box"];2982[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];400 -> 2982[label="",style="solid", color="blue", weight=9]; 2982 -> 485[label="",style="solid", color="blue", weight=3]; 2983[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];400 -> 2983[label="",style="solid", color="blue", weight=9]; 2983 -> 486[label="",style="solid", color="blue", weight=3]; 319[label="primEqNat xuu40000 xuu3000",fontsize=16,color="burlywood",shape="triangle"];2984[label="xuu40000/Succ xuu400000",fontsize=10,color="white",style="solid",shape="box"];319 -> 2984[label="",style="solid", color="burlywood", weight=9]; 2984 -> 487[label="",style="solid", color="burlywood", weight=3]; 2985[label="xuu40000/Zero",fontsize=10,color="white",style="solid",shape="box"];319 -> 2985[label="",style="solid", color="burlywood", weight=9]; 2985 -> 488[label="",style="solid", color="burlywood", weight=3]; 401[label="xuu40000 == xuu3000",fontsize=16,color="blue",shape="box"];2986[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2986[label="",style="solid", color="blue", weight=9]; 2986 -> 489[label="",style="solid", color="blue", weight=3]; 2987[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2987[label="",style="solid", color="blue", weight=9]; 2987 -> 490[label="",style="solid", color="blue", weight=3]; 2988[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2988[label="",style="solid", color="blue", weight=9]; 2988 -> 491[label="",style="solid", color="blue", weight=3]; 2989[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2989[label="",style="solid", color="blue", weight=9]; 2989 -> 492[label="",style="solid", color="blue", weight=3]; 2990[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2990[label="",style="solid", color="blue", weight=9]; 2990 -> 493[label="",style="solid", color="blue", weight=3]; 2991[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2991[label="",style="solid", color="blue", weight=9]; 2991 -> 494[label="",style="solid", color="blue", weight=3]; 2992[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2992[label="",style="solid", color="blue", weight=9]; 2992 -> 495[label="",style="solid", color="blue", weight=3]; 2993[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2993[label="",style="solid", color="blue", weight=9]; 2993 -> 496[label="",style="solid", color="blue", weight=3]; 2994[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2994[label="",style="solid", color="blue", weight=9]; 2994 -> 497[label="",style="solid", color="blue", weight=3]; 2995[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2995[label="",style="solid", color="blue", weight=9]; 2995 -> 498[label="",style="solid", color="blue", weight=3]; 2996[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2996[label="",style="solid", color="blue", weight=9]; 2996 -> 499[label="",style="solid", color="blue", weight=3]; 2997[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2997[label="",style="solid", color="blue", weight=9]; 2997 -> 500[label="",style="solid", color="blue", weight=3]; 2998[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2998[label="",style="solid", color="blue", weight=9]; 2998 -> 501[label="",style="solid", color="blue", weight=3]; 2999[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];401 -> 2999[label="",style="solid", color="blue", weight=9]; 2999 -> 502[label="",style="solid", color="blue", weight=3]; 402 -> 146[label="",style="dashed", color="red", weight=0]; 402[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];402 -> 503[label="",style="dashed", color="magenta", weight=3]; 402 -> 504[label="",style="dashed", color="magenta", weight=3]; 320 -> 150[label="",style="dashed", color="red", weight=0]; 320[label="xuu40000 * xuu3001 == xuu40001 * xuu3000",fontsize=16,color="magenta"];320 -> 505[label="",style="dashed", color="magenta", weight=3]; 320 -> 506[label="",style="dashed", color="magenta", weight=3]; 321[label="xuu3000",fontsize=16,color="green",shape="box"];322[label="xuu40000",fontsize=16,color="green",shape="box"];323 -> 137[label="",style="dashed", color="red", weight=0]; 323[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];323 -> 507[label="",style="dashed", color="magenta", weight=3]; 323 -> 508[label="",style="dashed", color="magenta", weight=3]; 324 -> 138[label="",style="dashed", color="red", weight=0]; 324[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];324 -> 509[label="",style="dashed", color="magenta", weight=3]; 324 -> 510[label="",style="dashed", color="magenta", weight=3]; 325 -> 139[label="",style="dashed", color="red", weight=0]; 325[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];325 -> 511[label="",style="dashed", color="magenta", weight=3]; 325 -> 512[label="",style="dashed", color="magenta", weight=3]; 326 -> 140[label="",style="dashed", color="red", weight=0]; 326[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];326 -> 513[label="",style="dashed", color="magenta", weight=3]; 326 -> 514[label="",style="dashed", color="magenta", weight=3]; 327 -> 141[label="",style="dashed", color="red", weight=0]; 327[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];327 -> 515[label="",style="dashed", color="magenta", weight=3]; 327 -> 516[label="",style="dashed", color="magenta", weight=3]; 328 -> 142[label="",style="dashed", color="red", weight=0]; 328[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];328 -> 517[label="",style="dashed", color="magenta", weight=3]; 328 -> 518[label="",style="dashed", color="magenta", weight=3]; 329 -> 143[label="",style="dashed", color="red", weight=0]; 329[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];329 -> 519[label="",style="dashed", color="magenta", weight=3]; 329 -> 520[label="",style="dashed", color="magenta", weight=3]; 330 -> 144[label="",style="dashed", color="red", weight=0]; 330[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];330 -> 521[label="",style="dashed", color="magenta", weight=3]; 330 -> 522[label="",style="dashed", color="magenta", weight=3]; 331 -> 145[label="",style="dashed", color="red", weight=0]; 331[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];331 -> 523[label="",style="dashed", color="magenta", weight=3]; 331 -> 524[label="",style="dashed", color="magenta", weight=3]; 332 -> 146[label="",style="dashed", color="red", weight=0]; 332[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];332 -> 525[label="",style="dashed", color="magenta", weight=3]; 332 -> 526[label="",style="dashed", color="magenta", weight=3]; 333 -> 147[label="",style="dashed", color="red", weight=0]; 333[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];333 -> 527[label="",style="dashed", color="magenta", weight=3]; 333 -> 528[label="",style="dashed", color="magenta", weight=3]; 334 -> 148[label="",style="dashed", color="red", weight=0]; 334[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];334 -> 529[label="",style="dashed", color="magenta", weight=3]; 334 -> 530[label="",style="dashed", color="magenta", weight=3]; 335 -> 149[label="",style="dashed", color="red", weight=0]; 335[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];335 -> 531[label="",style="dashed", color="magenta", weight=3]; 335 -> 532[label="",style="dashed", color="magenta", weight=3]; 336 -> 150[label="",style="dashed", color="red", weight=0]; 336[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];336 -> 533[label="",style="dashed", color="magenta", weight=3]; 336 -> 534[label="",style="dashed", color="magenta", weight=3]; 337 -> 137[label="",style="dashed", color="red", weight=0]; 337[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];337 -> 535[label="",style="dashed", color="magenta", weight=3]; 337 -> 536[label="",style="dashed", color="magenta", weight=3]; 338 -> 138[label="",style="dashed", color="red", weight=0]; 338[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];338 -> 537[label="",style="dashed", color="magenta", weight=3]; 338 -> 538[label="",style="dashed", color="magenta", weight=3]; 339 -> 139[label="",style="dashed", color="red", weight=0]; 339[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];339 -> 539[label="",style="dashed", color="magenta", weight=3]; 339 -> 540[label="",style="dashed", color="magenta", weight=3]; 340 -> 140[label="",style="dashed", color="red", weight=0]; 340[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];340 -> 541[label="",style="dashed", color="magenta", weight=3]; 340 -> 542[label="",style="dashed", color="magenta", weight=3]; 341 -> 141[label="",style="dashed", color="red", weight=0]; 341[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];341 -> 543[label="",style="dashed", color="magenta", weight=3]; 341 -> 544[label="",style="dashed", color="magenta", weight=3]; 342 -> 142[label="",style="dashed", color="red", weight=0]; 342[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];342 -> 545[label="",style="dashed", color="magenta", weight=3]; 342 -> 546[label="",style="dashed", color="magenta", weight=3]; 343 -> 143[label="",style="dashed", color="red", weight=0]; 343[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];343 -> 547[label="",style="dashed", color="magenta", weight=3]; 343 -> 548[label="",style="dashed", color="magenta", weight=3]; 344 -> 144[label="",style="dashed", color="red", weight=0]; 344[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];344 -> 549[label="",style="dashed", color="magenta", weight=3]; 344 -> 550[label="",style="dashed", color="magenta", weight=3]; 345 -> 145[label="",style="dashed", color="red", weight=0]; 345[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];345 -> 551[label="",style="dashed", color="magenta", weight=3]; 345 -> 552[label="",style="dashed", color="magenta", weight=3]; 346 -> 146[label="",style="dashed", color="red", weight=0]; 346[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];346 -> 553[label="",style="dashed", color="magenta", weight=3]; 346 -> 554[label="",style="dashed", color="magenta", weight=3]; 347 -> 147[label="",style="dashed", color="red", weight=0]; 347[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];347 -> 555[label="",style="dashed", color="magenta", weight=3]; 347 -> 556[label="",style="dashed", color="magenta", weight=3]; 348 -> 148[label="",style="dashed", color="red", weight=0]; 348[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];348 -> 557[label="",style="dashed", color="magenta", weight=3]; 348 -> 558[label="",style="dashed", color="magenta", weight=3]; 349 -> 149[label="",style="dashed", color="red", weight=0]; 349[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];349 -> 559[label="",style="dashed", color="magenta", weight=3]; 349 -> 560[label="",style="dashed", color="magenta", weight=3]; 350 -> 150[label="",style="dashed", color="red", weight=0]; 350[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];350 -> 561[label="",style="dashed", color="magenta", weight=3]; 350 -> 562[label="",style="dashed", color="magenta", weight=3]; 351[label="primEqInt (Pos (Succ xuu400000)) (Pos xuu3000)",fontsize=16,color="burlywood",shape="box"];3000[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];351 -> 3000[label="",style="solid", color="burlywood", weight=9]; 3000 -> 563[label="",style="solid", color="burlywood", weight=3]; 3001[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];351 -> 3001[label="",style="solid", color="burlywood", weight=9]; 3001 -> 564[label="",style="solid", color="burlywood", weight=3]; 352[label="primEqInt (Pos (Succ xuu400000)) (Neg xuu3000)",fontsize=16,color="black",shape="box"];352 -> 565[label="",style="solid", color="black", weight=3]; 353[label="primEqInt (Pos Zero) (Pos xuu3000)",fontsize=16,color="burlywood",shape="box"];3002[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];353 -> 3002[label="",style="solid", color="burlywood", weight=9]; 3002 -> 566[label="",style="solid", color="burlywood", weight=3]; 3003[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];353 -> 3003[label="",style="solid", color="burlywood", weight=9]; 3003 -> 567[label="",style="solid", color="burlywood", weight=3]; 354[label="primEqInt (Pos Zero) (Neg xuu3000)",fontsize=16,color="burlywood",shape="box"];3004[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];354 -> 3004[label="",style="solid", color="burlywood", weight=9]; 3004 -> 568[label="",style="solid", color="burlywood", weight=3]; 3005[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];354 -> 3005[label="",style="solid", color="burlywood", weight=9]; 3005 -> 569[label="",style="solid", color="burlywood", weight=3]; 355[label="primEqInt (Neg (Succ xuu400000)) (Pos xuu3000)",fontsize=16,color="black",shape="box"];355 -> 570[label="",style="solid", color="black", weight=3]; 356[label="primEqInt (Neg (Succ xuu400000)) (Neg xuu3000)",fontsize=16,color="burlywood",shape="box"];3006[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];356 -> 3006[label="",style="solid", color="burlywood", weight=9]; 3006 -> 571[label="",style="solid", color="burlywood", weight=3]; 3007[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];356 -> 3007[label="",style="solid", color="burlywood", weight=9]; 3007 -> 572[label="",style="solid", color="burlywood", weight=3]; 357[label="primEqInt (Neg Zero) (Pos xuu3000)",fontsize=16,color="burlywood",shape="box"];3008[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];357 -> 3008[label="",style="solid", color="burlywood", weight=9]; 3008 -> 573[label="",style="solid", color="burlywood", weight=3]; 3009[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];357 -> 3009[label="",style="solid", color="burlywood", weight=9]; 3009 -> 574[label="",style="solid", color="burlywood", weight=3]; 358[label="primEqInt (Neg Zero) (Neg xuu3000)",fontsize=16,color="burlywood",shape="box"];3010[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];358 -> 3010[label="",style="solid", color="burlywood", weight=9]; 3010 -> 575[label="",style="solid", color="burlywood", weight=3]; 3011[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];358 -> 3011[label="",style="solid", color="burlywood", weight=9]; 3011 -> 576[label="",style="solid", color="burlywood", weight=3]; 1257[label="compare2 xuu46 xuu48 False",fontsize=16,color="black",shape="box"];1257 -> 1284[label="",style="solid", color="black", weight=3]; 1258[label="compare2 xuu46 xuu48 True",fontsize=16,color="black",shape="box"];1258 -> 1285[label="",style="solid", color="black", weight=3]; 1259 -> 137[label="",style="dashed", color="red", weight=0]; 1259[label="xuu34 == xuu36",fontsize=16,color="magenta"];1259 -> 1286[label="",style="dashed", color="magenta", weight=3]; 1259 -> 1287[label="",style="dashed", color="magenta", weight=3]; 1260 -> 138[label="",style="dashed", color="red", weight=0]; 1260[label="xuu34 == xuu36",fontsize=16,color="magenta"];1260 -> 1288[label="",style="dashed", color="magenta", weight=3]; 1260 -> 1289[label="",style="dashed", color="magenta", weight=3]; 1261 -> 139[label="",style="dashed", color="red", weight=0]; 1261[label="xuu34 == xuu36",fontsize=16,color="magenta"];1261 -> 1290[label="",style="dashed", color="magenta", weight=3]; 1261 -> 1291[label="",style="dashed", color="magenta", weight=3]; 1262 -> 140[label="",style="dashed", color="red", weight=0]; 1262[label="xuu34 == xuu36",fontsize=16,color="magenta"];1262 -> 1292[label="",style="dashed", color="magenta", weight=3]; 1262 -> 1293[label="",style="dashed", color="magenta", weight=3]; 1263 -> 141[label="",style="dashed", color="red", weight=0]; 1263[label="xuu34 == xuu36",fontsize=16,color="magenta"];1263 -> 1294[label="",style="dashed", color="magenta", weight=3]; 1263 -> 1295[label="",style="dashed", color="magenta", weight=3]; 1264 -> 142[label="",style="dashed", color="red", weight=0]; 1264[label="xuu34 == xuu36",fontsize=16,color="magenta"];1264 -> 1296[label="",style="dashed", color="magenta", weight=3]; 1264 -> 1297[label="",style="dashed", color="magenta", weight=3]; 1265 -> 143[label="",style="dashed", color="red", weight=0]; 1265[label="xuu34 == xuu36",fontsize=16,color="magenta"];1265 -> 1298[label="",style="dashed", color="magenta", weight=3]; 1265 -> 1299[label="",style="dashed", color="magenta", weight=3]; 1266 -> 144[label="",style="dashed", color="red", weight=0]; 1266[label="xuu34 == xuu36",fontsize=16,color="magenta"];1266 -> 1300[label="",style="dashed", color="magenta", weight=3]; 1266 -> 1301[label="",style="dashed", color="magenta", weight=3]; 1267 -> 145[label="",style="dashed", color="red", weight=0]; 1267[label="xuu34 == xuu36",fontsize=16,color="magenta"];1267 -> 1302[label="",style="dashed", color="magenta", weight=3]; 1267 -> 1303[label="",style="dashed", color="magenta", weight=3]; 1268 -> 146[label="",style="dashed", color="red", weight=0]; 1268[label="xuu34 == xuu36",fontsize=16,color="magenta"];1268 -> 1304[label="",style="dashed", color="magenta", weight=3]; 1268 -> 1305[label="",style="dashed", color="magenta", weight=3]; 1269 -> 147[label="",style="dashed", color="red", weight=0]; 1269[label="xuu34 == xuu36",fontsize=16,color="magenta"];1269 -> 1306[label="",style="dashed", color="magenta", weight=3]; 1269 -> 1307[label="",style="dashed", color="magenta", weight=3]; 1270 -> 148[label="",style="dashed", color="red", weight=0]; 1270[label="xuu34 == xuu36",fontsize=16,color="magenta"];1270 -> 1308[label="",style="dashed", color="magenta", weight=3]; 1270 -> 1309[label="",style="dashed", color="magenta", weight=3]; 1271 -> 149[label="",style="dashed", color="red", weight=0]; 1271[label="xuu34 == xuu36",fontsize=16,color="magenta"];1271 -> 1310[label="",style="dashed", color="magenta", weight=3]; 1271 -> 1311[label="",style="dashed", color="magenta", weight=3]; 1272 -> 150[label="",style="dashed", color="red", weight=0]; 1272[label="xuu34 == xuu36",fontsize=16,color="magenta"];1272 -> 1312[label="",style="dashed", color="magenta", weight=3]; 1272 -> 1313[label="",style="dashed", color="magenta", weight=3]; 375[label="compare3 (xuu22,xuu23) (xuu16,xuu17)",fontsize=16,color="black",shape="box"];375 -> 607[label="",style="solid", color="black", weight=3]; 376[label="FiniteMap.addToFM_C0 FiniteMap.addListToFM0 (xuu16,xuu17) xuu18 xuu19 xuu20 xuu21 (xuu22,xuu23) xuu24 True",fontsize=16,color="black",shape="box"];376 -> 608[label="",style="solid", color="black", weight=3]; 377[label="xuu20",fontsize=16,color="green",shape="box"];378 -> 14[label="",style="dashed", color="red", weight=0]; 378[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 xuu21 (xuu22,xuu23) xuu24",fontsize=16,color="magenta"];378 -> 609[label="",style="dashed", color="magenta", weight=3]; 378 -> 610[label="",style="dashed", color="magenta", weight=3]; 378 -> 611[label="",style="dashed", color="magenta", weight=3]; 613[label="FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21 + FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21 < Pos (Succ (Succ Zero))",fontsize=16,color="black",shape="box"];613 -> 615[label="",style="solid", color="black", weight=3]; 612[label="FiniteMap.mkBalBranch6MkBalBranch5 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 xuu64",fontsize=16,color="burlywood",shape="triangle"];3012[label="xuu64/False",fontsize=10,color="white",style="solid",shape="box"];612 -> 3012[label="",style="solid", color="burlywood", weight=9]; 3012 -> 616[label="",style="solid", color="burlywood", weight=3]; 3013[label="xuu64/True",fontsize=10,color="white",style="solid",shape="box"];612 -> 3013[label="",style="solid", color="burlywood", weight=9]; 3013 -> 617[label="",style="solid", color="burlywood", weight=3]; 407 -> 137[label="",style="dashed", color="red", weight=0]; 407[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];407 -> 618[label="",style="dashed", color="magenta", weight=3]; 407 -> 619[label="",style="dashed", color="magenta", weight=3]; 408 -> 138[label="",style="dashed", color="red", weight=0]; 408[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];408 -> 620[label="",style="dashed", color="magenta", weight=3]; 408 -> 621[label="",style="dashed", color="magenta", weight=3]; 409 -> 139[label="",style="dashed", color="red", weight=0]; 409[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];409 -> 622[label="",style="dashed", color="magenta", weight=3]; 409 -> 623[label="",style="dashed", color="magenta", weight=3]; 410 -> 140[label="",style="dashed", color="red", weight=0]; 410[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];410 -> 624[label="",style="dashed", color="magenta", weight=3]; 410 -> 625[label="",style="dashed", color="magenta", weight=3]; 411 -> 141[label="",style="dashed", color="red", weight=0]; 411[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];411 -> 626[label="",style="dashed", color="magenta", weight=3]; 411 -> 627[label="",style="dashed", color="magenta", weight=3]; 412 -> 142[label="",style="dashed", color="red", weight=0]; 412[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];412 -> 628[label="",style="dashed", color="magenta", weight=3]; 412 -> 629[label="",style="dashed", color="magenta", weight=3]; 413 -> 143[label="",style="dashed", color="red", weight=0]; 413[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];413 -> 630[label="",style="dashed", color="magenta", weight=3]; 413 -> 631[label="",style="dashed", color="magenta", weight=3]; 414 -> 144[label="",style="dashed", color="red", weight=0]; 414[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];414 -> 632[label="",style="dashed", color="magenta", weight=3]; 414 -> 633[label="",style="dashed", color="magenta", weight=3]; 415 -> 145[label="",style="dashed", color="red", weight=0]; 415[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];415 -> 634[label="",style="dashed", color="magenta", weight=3]; 415 -> 635[label="",style="dashed", color="magenta", weight=3]; 416 -> 146[label="",style="dashed", color="red", weight=0]; 416[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];416 -> 636[label="",style="dashed", color="magenta", weight=3]; 416 -> 637[label="",style="dashed", color="magenta", weight=3]; 417 -> 147[label="",style="dashed", color="red", weight=0]; 417[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];417 -> 638[label="",style="dashed", color="magenta", weight=3]; 417 -> 639[label="",style="dashed", color="magenta", weight=3]; 418 -> 148[label="",style="dashed", color="red", weight=0]; 418[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];418 -> 640[label="",style="dashed", color="magenta", weight=3]; 418 -> 641[label="",style="dashed", color="magenta", weight=3]; 419 -> 149[label="",style="dashed", color="red", weight=0]; 419[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];419 -> 642[label="",style="dashed", color="magenta", weight=3]; 419 -> 643[label="",style="dashed", color="magenta", weight=3]; 420 -> 150[label="",style="dashed", color="red", weight=0]; 420[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];420 -> 644[label="",style="dashed", color="magenta", weight=3]; 420 -> 645[label="",style="dashed", color="magenta", weight=3]; 421 -> 137[label="",style="dashed", color="red", weight=0]; 421[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];421 -> 646[label="",style="dashed", color="magenta", weight=3]; 421 -> 647[label="",style="dashed", color="magenta", weight=3]; 422 -> 138[label="",style="dashed", color="red", weight=0]; 422[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];422 -> 648[label="",style="dashed", color="magenta", weight=3]; 422 -> 649[label="",style="dashed", color="magenta", weight=3]; 423 -> 139[label="",style="dashed", color="red", weight=0]; 423[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];423 -> 650[label="",style="dashed", color="magenta", weight=3]; 423 -> 651[label="",style="dashed", color="magenta", weight=3]; 424 -> 140[label="",style="dashed", color="red", weight=0]; 424[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];424 -> 652[label="",style="dashed", color="magenta", weight=3]; 424 -> 653[label="",style="dashed", color="magenta", weight=3]; 425 -> 141[label="",style="dashed", color="red", weight=0]; 425[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];425 -> 654[label="",style="dashed", color="magenta", weight=3]; 425 -> 655[label="",style="dashed", color="magenta", weight=3]; 426 -> 142[label="",style="dashed", color="red", weight=0]; 426[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];426 -> 656[label="",style="dashed", color="magenta", weight=3]; 426 -> 657[label="",style="dashed", color="magenta", weight=3]; 427 -> 143[label="",style="dashed", color="red", weight=0]; 427[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];427 -> 658[label="",style="dashed", color="magenta", weight=3]; 427 -> 659[label="",style="dashed", color="magenta", weight=3]; 428 -> 144[label="",style="dashed", color="red", weight=0]; 428[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];428 -> 660[label="",style="dashed", color="magenta", weight=3]; 428 -> 661[label="",style="dashed", color="magenta", weight=3]; 429 -> 145[label="",style="dashed", color="red", weight=0]; 429[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];429 -> 662[label="",style="dashed", color="magenta", weight=3]; 429 -> 663[label="",style="dashed", color="magenta", weight=3]; 430 -> 146[label="",style="dashed", color="red", weight=0]; 430[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];430 -> 664[label="",style="dashed", color="magenta", weight=3]; 430 -> 665[label="",style="dashed", color="magenta", weight=3]; 431 -> 147[label="",style="dashed", color="red", weight=0]; 431[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];431 -> 666[label="",style="dashed", color="magenta", weight=3]; 431 -> 667[label="",style="dashed", color="magenta", weight=3]; 432 -> 148[label="",style="dashed", color="red", weight=0]; 432[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];432 -> 668[label="",style="dashed", color="magenta", weight=3]; 432 -> 669[label="",style="dashed", color="magenta", weight=3]; 433 -> 149[label="",style="dashed", color="red", weight=0]; 433[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];433 -> 670[label="",style="dashed", color="magenta", weight=3]; 433 -> 671[label="",style="dashed", color="magenta", weight=3]; 434 -> 150[label="",style="dashed", color="red", weight=0]; 434[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];434 -> 672[label="",style="dashed", color="magenta", weight=3]; 434 -> 673[label="",style="dashed", color="magenta", weight=3]; 435[label="False && xuu63",fontsize=16,color="black",shape="box"];435 -> 674[label="",style="solid", color="black", weight=3]; 436[label="True && xuu63",fontsize=16,color="black",shape="box"];436 -> 675[label="",style="solid", color="black", weight=3]; 437 -> 137[label="",style="dashed", color="red", weight=0]; 437[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];437 -> 676[label="",style="dashed", color="magenta", weight=3]; 437 -> 677[label="",style="dashed", color="magenta", weight=3]; 438 -> 138[label="",style="dashed", color="red", weight=0]; 438[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];438 -> 678[label="",style="dashed", color="magenta", weight=3]; 438 -> 679[label="",style="dashed", color="magenta", weight=3]; 439 -> 139[label="",style="dashed", color="red", weight=0]; 439[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];439 -> 680[label="",style="dashed", color="magenta", weight=3]; 439 -> 681[label="",style="dashed", color="magenta", weight=3]; 440 -> 140[label="",style="dashed", color="red", weight=0]; 440[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];440 -> 682[label="",style="dashed", color="magenta", weight=3]; 440 -> 683[label="",style="dashed", color="magenta", weight=3]; 441 -> 141[label="",style="dashed", color="red", weight=0]; 441[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];441 -> 684[label="",style="dashed", color="magenta", weight=3]; 441 -> 685[label="",style="dashed", color="magenta", weight=3]; 442 -> 142[label="",style="dashed", color="red", weight=0]; 442[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];442 -> 686[label="",style="dashed", color="magenta", weight=3]; 442 -> 687[label="",style="dashed", color="magenta", weight=3]; 443 -> 143[label="",style="dashed", color="red", weight=0]; 443[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];443 -> 688[label="",style="dashed", color="magenta", weight=3]; 443 -> 689[label="",style="dashed", color="magenta", weight=3]; 444 -> 144[label="",style="dashed", color="red", weight=0]; 444[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];444 -> 690[label="",style="dashed", color="magenta", weight=3]; 444 -> 691[label="",style="dashed", color="magenta", weight=3]; 445 -> 145[label="",style="dashed", color="red", weight=0]; 445[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];445 -> 692[label="",style="dashed", color="magenta", weight=3]; 445 -> 693[label="",style="dashed", color="magenta", weight=3]; 446 -> 146[label="",style="dashed", color="red", weight=0]; 446[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];446 -> 694[label="",style="dashed", color="magenta", weight=3]; 446 -> 695[label="",style="dashed", color="magenta", weight=3]; 447 -> 147[label="",style="dashed", color="red", weight=0]; 447[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];447 -> 696[label="",style="dashed", color="magenta", weight=3]; 447 -> 697[label="",style="dashed", color="magenta", weight=3]; 448 -> 148[label="",style="dashed", color="red", weight=0]; 448[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];448 -> 698[label="",style="dashed", color="magenta", weight=3]; 448 -> 699[label="",style="dashed", color="magenta", weight=3]; 449 -> 149[label="",style="dashed", color="red", weight=0]; 449[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];449 -> 700[label="",style="dashed", color="magenta", weight=3]; 449 -> 701[label="",style="dashed", color="magenta", weight=3]; 450 -> 150[label="",style="dashed", color="red", weight=0]; 450[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];450 -> 702[label="",style="dashed", color="magenta", weight=3]; 450 -> 703[label="",style="dashed", color="magenta", weight=3]; 451[label="xuu40001 == xuu3001",fontsize=16,color="blue",shape="box"];3014[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3014[label="",style="solid", color="blue", weight=9]; 3014 -> 704[label="",style="solid", color="blue", weight=3]; 3015[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3015[label="",style="solid", color="blue", weight=9]; 3015 -> 705[label="",style="solid", color="blue", weight=3]; 3016[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3016[label="",style="solid", color="blue", weight=9]; 3016 -> 706[label="",style="solid", color="blue", weight=3]; 3017[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3017[label="",style="solid", color="blue", weight=9]; 3017 -> 707[label="",style="solid", color="blue", weight=3]; 3018[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3018[label="",style="solid", color="blue", weight=9]; 3018 -> 708[label="",style="solid", color="blue", weight=3]; 3019[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3019[label="",style="solid", color="blue", weight=9]; 3019 -> 709[label="",style="solid", color="blue", weight=3]; 3020[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3020[label="",style="solid", color="blue", weight=9]; 3020 -> 710[label="",style="solid", color="blue", weight=3]; 3021[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3021[label="",style="solid", color="blue", weight=9]; 3021 -> 711[label="",style="solid", color="blue", weight=3]; 3022[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3022[label="",style="solid", color="blue", weight=9]; 3022 -> 712[label="",style="solid", color="blue", weight=3]; 3023[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3023[label="",style="solid", color="blue", weight=9]; 3023 -> 713[label="",style="solid", color="blue", weight=3]; 3024[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3024[label="",style="solid", color="blue", weight=9]; 3024 -> 714[label="",style="solid", color="blue", weight=3]; 3025[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3025[label="",style="solid", color="blue", weight=9]; 3025 -> 715[label="",style="solid", color="blue", weight=3]; 3026[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3026[label="",style="solid", color="blue", weight=9]; 3026 -> 716[label="",style="solid", color="blue", weight=3]; 3027[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];451 -> 3027[label="",style="solid", color="blue", weight=9]; 3027 -> 717[label="",style="solid", color="blue", weight=3]; 452[label="xuu40002 == xuu3002",fontsize=16,color="blue",shape="box"];3028[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3028[label="",style="solid", color="blue", weight=9]; 3028 -> 718[label="",style="solid", color="blue", weight=3]; 3029[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3029[label="",style="solid", color="blue", weight=9]; 3029 -> 719[label="",style="solid", color="blue", weight=3]; 3030[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3030[label="",style="solid", color="blue", weight=9]; 3030 -> 720[label="",style="solid", color="blue", weight=3]; 3031[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3031[label="",style="solid", color="blue", weight=9]; 3031 -> 721[label="",style="solid", color="blue", weight=3]; 3032[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3032[label="",style="solid", color="blue", weight=9]; 3032 -> 722[label="",style="solid", color="blue", weight=3]; 3033[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3033[label="",style="solid", color="blue", weight=9]; 3033 -> 723[label="",style="solid", color="blue", weight=3]; 3034[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3034[label="",style="solid", color="blue", weight=9]; 3034 -> 724[label="",style="solid", color="blue", weight=3]; 3035[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3035[label="",style="solid", color="blue", weight=9]; 3035 -> 725[label="",style="solid", color="blue", weight=3]; 3036[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3036[label="",style="solid", color="blue", weight=9]; 3036 -> 726[label="",style="solid", color="blue", weight=3]; 3037[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3037[label="",style="solid", color="blue", weight=9]; 3037 -> 727[label="",style="solid", color="blue", weight=3]; 3038[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3038[label="",style="solid", color="blue", weight=9]; 3038 -> 728[label="",style="solid", color="blue", weight=3]; 3039[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3039[label="",style="solid", color="blue", weight=9]; 3039 -> 729[label="",style="solid", color="blue", weight=3]; 3040[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3040[label="",style="solid", color="blue", weight=9]; 3040 -> 730[label="",style="solid", color="blue", weight=3]; 3041[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];452 -> 3041[label="",style="solid", color="blue", weight=9]; 3041 -> 731[label="",style="solid", color="blue", weight=3]; 453[label="xuu40001 * xuu3000",fontsize=16,color="black",shape="triangle"];453 -> 732[label="",style="solid", color="black", weight=3]; 454 -> 453[label="",style="dashed", color="red", weight=0]; 454[label="xuu40000 * xuu3001",fontsize=16,color="magenta"];454 -> 733[label="",style="dashed", color="magenta", weight=3]; 454 -> 734[label="",style="dashed", color="magenta", weight=3]; 455[label="xuu3000",fontsize=16,color="green",shape="box"];456[label="xuu40000",fontsize=16,color="green",shape="box"];457[label="xuu3000",fontsize=16,color="green",shape="box"];458[label="xuu40000",fontsize=16,color="green",shape="box"];459[label="xuu3000",fontsize=16,color="green",shape="box"];460[label="xuu40000",fontsize=16,color="green",shape="box"];461[label="xuu3000",fontsize=16,color="green",shape="box"];462[label="xuu40000",fontsize=16,color="green",shape="box"];463[label="xuu3000",fontsize=16,color="green",shape="box"];464[label="xuu40000",fontsize=16,color="green",shape="box"];465[label="xuu3000",fontsize=16,color="green",shape="box"];466[label="xuu40000",fontsize=16,color="green",shape="box"];467[label="xuu3000",fontsize=16,color="green",shape="box"];468[label="xuu40000",fontsize=16,color="green",shape="box"];469[label="xuu3000",fontsize=16,color="green",shape="box"];470[label="xuu40000",fontsize=16,color="green",shape="box"];471[label="xuu3000",fontsize=16,color="green",shape="box"];472[label="xuu40000",fontsize=16,color="green",shape="box"];473[label="xuu3000",fontsize=16,color="green",shape="box"];474[label="xuu40000",fontsize=16,color="green",shape="box"];475[label="xuu3000",fontsize=16,color="green",shape="box"];476[label="xuu40000",fontsize=16,color="green",shape="box"];477[label="xuu3000",fontsize=16,color="green",shape="box"];478[label="xuu40000",fontsize=16,color="green",shape="box"];479[label="xuu3000",fontsize=16,color="green",shape="box"];480[label="xuu40000",fontsize=16,color="green",shape="box"];481[label="xuu3000",fontsize=16,color="green",shape="box"];482[label="xuu40000",fontsize=16,color="green",shape="box"];483 -> 148[label="",style="dashed", color="red", weight=0]; 483[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];483 -> 735[label="",style="dashed", color="magenta", weight=3]; 483 -> 736[label="",style="dashed", color="magenta", weight=3]; 484 -> 150[label="",style="dashed", color="red", weight=0]; 484[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];484 -> 737[label="",style="dashed", color="magenta", weight=3]; 484 -> 738[label="",style="dashed", color="magenta", weight=3]; 485 -> 148[label="",style="dashed", color="red", weight=0]; 485[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];485 -> 739[label="",style="dashed", color="magenta", weight=3]; 485 -> 740[label="",style="dashed", color="magenta", weight=3]; 486 -> 150[label="",style="dashed", color="red", weight=0]; 486[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];486 -> 741[label="",style="dashed", color="magenta", weight=3]; 486 -> 742[label="",style="dashed", color="magenta", weight=3]; 487[label="primEqNat (Succ xuu400000) xuu3000",fontsize=16,color="burlywood",shape="box"];3042[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];487 -> 3042[label="",style="solid", color="burlywood", weight=9]; 3042 -> 743[label="",style="solid", color="burlywood", weight=3]; 3043[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];487 -> 3043[label="",style="solid", color="burlywood", weight=9]; 3043 -> 744[label="",style="solid", color="burlywood", weight=3]; 488[label="primEqNat Zero xuu3000",fontsize=16,color="burlywood",shape="box"];3044[label="xuu3000/Succ xuu30000",fontsize=10,color="white",style="solid",shape="box"];488 -> 3044[label="",style="solid", color="burlywood", weight=9]; 3044 -> 745[label="",style="solid", color="burlywood", weight=3]; 3045[label="xuu3000/Zero",fontsize=10,color="white",style="solid",shape="box"];488 -> 3045[label="",style="solid", color="burlywood", weight=9]; 3045 -> 746[label="",style="solid", color="burlywood", weight=3]; 489 -> 137[label="",style="dashed", color="red", weight=0]; 489[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];489 -> 747[label="",style="dashed", color="magenta", weight=3]; 489 -> 748[label="",style="dashed", color="magenta", weight=3]; 490 -> 138[label="",style="dashed", color="red", weight=0]; 490[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];490 -> 749[label="",style="dashed", color="magenta", weight=3]; 490 -> 750[label="",style="dashed", color="magenta", weight=3]; 491 -> 139[label="",style="dashed", color="red", weight=0]; 491[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];491 -> 751[label="",style="dashed", color="magenta", weight=3]; 491 -> 752[label="",style="dashed", color="magenta", weight=3]; 492 -> 140[label="",style="dashed", color="red", weight=0]; 492[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];492 -> 753[label="",style="dashed", color="magenta", weight=3]; 492 -> 754[label="",style="dashed", color="magenta", weight=3]; 493 -> 141[label="",style="dashed", color="red", weight=0]; 493[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];493 -> 755[label="",style="dashed", color="magenta", weight=3]; 493 -> 756[label="",style="dashed", color="magenta", weight=3]; 494 -> 142[label="",style="dashed", color="red", weight=0]; 494[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];494 -> 757[label="",style="dashed", color="magenta", weight=3]; 494 -> 758[label="",style="dashed", color="magenta", weight=3]; 495 -> 143[label="",style="dashed", color="red", weight=0]; 495[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];495 -> 759[label="",style="dashed", color="magenta", weight=3]; 495 -> 760[label="",style="dashed", color="magenta", weight=3]; 496 -> 144[label="",style="dashed", color="red", weight=0]; 496[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];496 -> 761[label="",style="dashed", color="magenta", weight=3]; 496 -> 762[label="",style="dashed", color="magenta", weight=3]; 497 -> 145[label="",style="dashed", color="red", weight=0]; 497[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];497 -> 763[label="",style="dashed", color="magenta", weight=3]; 497 -> 764[label="",style="dashed", color="magenta", weight=3]; 498 -> 146[label="",style="dashed", color="red", weight=0]; 498[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];498 -> 765[label="",style="dashed", color="magenta", weight=3]; 498 -> 766[label="",style="dashed", color="magenta", weight=3]; 499 -> 147[label="",style="dashed", color="red", weight=0]; 499[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];499 -> 767[label="",style="dashed", color="magenta", weight=3]; 499 -> 768[label="",style="dashed", color="magenta", weight=3]; 500 -> 148[label="",style="dashed", color="red", weight=0]; 500[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];500 -> 769[label="",style="dashed", color="magenta", weight=3]; 500 -> 770[label="",style="dashed", color="magenta", weight=3]; 501 -> 149[label="",style="dashed", color="red", weight=0]; 501[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];501 -> 771[label="",style="dashed", color="magenta", weight=3]; 501 -> 772[label="",style="dashed", color="magenta", weight=3]; 502 -> 150[label="",style="dashed", color="red", weight=0]; 502[label="xuu40000 == xuu3000",fontsize=16,color="magenta"];502 -> 773[label="",style="dashed", color="magenta", weight=3]; 502 -> 774[label="",style="dashed", color="magenta", weight=3]; 503[label="xuu3001",fontsize=16,color="green",shape="box"];504[label="xuu40001",fontsize=16,color="green",shape="box"];505 -> 453[label="",style="dashed", color="red", weight=0]; 505[label="xuu40001 * xuu3000",fontsize=16,color="magenta"];505 -> 775[label="",style="dashed", color="magenta", weight=3]; 505 -> 776[label="",style="dashed", color="magenta", weight=3]; 506 -> 453[label="",style="dashed", color="red", weight=0]; 506[label="xuu40000 * xuu3001",fontsize=16,color="magenta"];506 -> 777[label="",style="dashed", color="magenta", weight=3]; 506 -> 778[label="",style="dashed", color="magenta", weight=3]; 507[label="xuu3000",fontsize=16,color="green",shape="box"];508[label="xuu40000",fontsize=16,color="green",shape="box"];509[label="xuu3000",fontsize=16,color="green",shape="box"];510[label="xuu40000",fontsize=16,color="green",shape="box"];511[label="xuu3000",fontsize=16,color="green",shape="box"];512[label="xuu40000",fontsize=16,color="green",shape="box"];513[label="xuu3000",fontsize=16,color="green",shape="box"];514[label="xuu40000",fontsize=16,color="green",shape="box"];515[label="xuu3000",fontsize=16,color="green",shape="box"];516[label="xuu40000",fontsize=16,color="green",shape="box"];517[label="xuu3000",fontsize=16,color="green",shape="box"];518[label="xuu40000",fontsize=16,color="green",shape="box"];519[label="xuu3000",fontsize=16,color="green",shape="box"];520[label="xuu40000",fontsize=16,color="green",shape="box"];521[label="xuu3000",fontsize=16,color="green",shape="box"];522[label="xuu40000",fontsize=16,color="green",shape="box"];523[label="xuu3000",fontsize=16,color="green",shape="box"];524[label="xuu40000",fontsize=16,color="green",shape="box"];525[label="xuu3000",fontsize=16,color="green",shape="box"];526[label="xuu40000",fontsize=16,color="green",shape="box"];527[label="xuu3000",fontsize=16,color="green",shape="box"];528[label="xuu40000",fontsize=16,color="green",shape="box"];529[label="xuu3000",fontsize=16,color="green",shape="box"];530[label="xuu40000",fontsize=16,color="green",shape="box"];531[label="xuu3000",fontsize=16,color="green",shape="box"];532[label="xuu40000",fontsize=16,color="green",shape="box"];533[label="xuu3000",fontsize=16,color="green",shape="box"];534[label="xuu40000",fontsize=16,color="green",shape="box"];535[label="xuu3000",fontsize=16,color="green",shape="box"];536[label="xuu40000",fontsize=16,color="green",shape="box"];537[label="xuu3000",fontsize=16,color="green",shape="box"];538[label="xuu40000",fontsize=16,color="green",shape="box"];539[label="xuu3000",fontsize=16,color="green",shape="box"];540[label="xuu40000",fontsize=16,color="green",shape="box"];541[label="xuu3000",fontsize=16,color="green",shape="box"];542[label="xuu40000",fontsize=16,color="green",shape="box"];543[label="xuu3000",fontsize=16,color="green",shape="box"];544[label="xuu40000",fontsize=16,color="green",shape="box"];545[label="xuu3000",fontsize=16,color="green",shape="box"];546[label="xuu40000",fontsize=16,color="green",shape="box"];547[label="xuu3000",fontsize=16,color="green",shape="box"];548[label="xuu40000",fontsize=16,color="green",shape="box"];549[label="xuu3000",fontsize=16,color="green",shape="box"];550[label="xuu40000",fontsize=16,color="green",shape="box"];551[label="xuu3000",fontsize=16,color="green",shape="box"];552[label="xuu40000",fontsize=16,color="green",shape="box"];553[label="xuu3000",fontsize=16,color="green",shape="box"];554[label="xuu40000",fontsize=16,color="green",shape="box"];555[label="xuu3000",fontsize=16,color="green",shape="box"];556[label="xuu40000",fontsize=16,color="green",shape="box"];557[label="xuu3000",fontsize=16,color="green",shape="box"];558[label="xuu40000",fontsize=16,color="green",shape="box"];559[label="xuu3000",fontsize=16,color="green",shape="box"];560[label="xuu40000",fontsize=16,color="green",shape="box"];561[label="xuu3000",fontsize=16,color="green",shape="box"];562[label="xuu40000",fontsize=16,color="green",shape="box"];563[label="primEqInt (Pos (Succ xuu400000)) (Pos (Succ xuu30000))",fontsize=16,color="black",shape="box"];563 -> 779[label="",style="solid", color="black", weight=3]; 564[label="primEqInt (Pos (Succ xuu400000)) (Pos Zero)",fontsize=16,color="black",shape="box"];564 -> 780[label="",style="solid", color="black", weight=3]; 565[label="False",fontsize=16,color="green",shape="box"];566[label="primEqInt (Pos Zero) (Pos (Succ xuu30000))",fontsize=16,color="black",shape="box"];566 -> 781[label="",style="solid", color="black", weight=3]; 567[label="primEqInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];567 -> 782[label="",style="solid", color="black", weight=3]; 568[label="primEqInt (Pos Zero) (Neg (Succ xuu30000))",fontsize=16,color="black",shape="box"];568 -> 783[label="",style="solid", color="black", weight=3]; 569[label="primEqInt (Pos Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];569 -> 784[label="",style="solid", color="black", weight=3]; 570[label="False",fontsize=16,color="green",shape="box"];571[label="primEqInt (Neg (Succ xuu400000)) (Neg (Succ xuu30000))",fontsize=16,color="black",shape="box"];571 -> 785[label="",style="solid", color="black", weight=3]; 572[label="primEqInt (Neg (Succ xuu400000)) (Neg Zero)",fontsize=16,color="black",shape="box"];572 -> 786[label="",style="solid", color="black", weight=3]; 573[label="primEqInt (Neg Zero) (Pos (Succ xuu30000))",fontsize=16,color="black",shape="box"];573 -> 787[label="",style="solid", color="black", weight=3]; 574[label="primEqInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];574 -> 788[label="",style="solid", color="black", weight=3]; 575[label="primEqInt (Neg Zero) (Neg (Succ xuu30000))",fontsize=16,color="black",shape="box"];575 -> 789[label="",style="solid", color="black", weight=3]; 576[label="primEqInt (Neg Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];576 -> 790[label="",style="solid", color="black", weight=3]; 1284[label="compare1 xuu46 xuu48 (xuu46 <= xuu48)",fontsize=16,color="burlywood",shape="box"];3046[label="xuu46/(xuu460,xuu461)",fontsize=10,color="white",style="solid",shape="box"];1284 -> 3046[label="",style="solid", color="burlywood", weight=9]; 3046 -> 1328[label="",style="solid", color="burlywood", weight=3]; 1285[label="EQ",fontsize=16,color="green",shape="box"];1286[label="xuu36",fontsize=16,color="green",shape="box"];1287[label="xuu34",fontsize=16,color="green",shape="box"];1288[label="xuu36",fontsize=16,color="green",shape="box"];1289[label="xuu34",fontsize=16,color="green",shape="box"];1290[label="xuu36",fontsize=16,color="green",shape="box"];1291[label="xuu34",fontsize=16,color="green",shape="box"];1292[label="xuu36",fontsize=16,color="green",shape="box"];1293[label="xuu34",fontsize=16,color="green",shape="box"];1294[label="xuu36",fontsize=16,color="green",shape="box"];1295[label="xuu34",fontsize=16,color="green",shape="box"];1296[label="xuu36",fontsize=16,color="green",shape="box"];1297[label="xuu34",fontsize=16,color="green",shape="box"];1298[label="xuu36",fontsize=16,color="green",shape="box"];1299[label="xuu34",fontsize=16,color="green",shape="box"];1300[label="xuu36",fontsize=16,color="green",shape="box"];1301[label="xuu34",fontsize=16,color="green",shape="box"];1302[label="xuu36",fontsize=16,color="green",shape="box"];1303[label="xuu34",fontsize=16,color="green",shape="box"];1304[label="xuu36",fontsize=16,color="green",shape="box"];1305[label="xuu34",fontsize=16,color="green",shape="box"];1306[label="xuu36",fontsize=16,color="green",shape="box"];1307[label="xuu34",fontsize=16,color="green",shape="box"];1308[label="xuu36",fontsize=16,color="green",shape="box"];1309[label="xuu34",fontsize=16,color="green",shape="box"];1310[label="xuu36",fontsize=16,color="green",shape="box"];1311[label="xuu34",fontsize=16,color="green",shape="box"];1312[label="xuu36",fontsize=16,color="green",shape="box"];1313[label="xuu34",fontsize=16,color="green",shape="box"];607 -> 1243[label="",style="dashed", color="red", weight=0]; 607[label="compare2 (xuu22,xuu23) (xuu16,xuu17) ((xuu22,xuu23) == (xuu16,xuu17))",fontsize=16,color="magenta"];607 -> 1253[label="",style="dashed", color="magenta", weight=3]; 607 -> 1254[label="",style="dashed", color="magenta", weight=3]; 607 -> 1255[label="",style="dashed", color="magenta", weight=3]; 608[label="FiniteMap.Branch (xuu22,xuu23) (FiniteMap.addListToFM0 xuu18 xuu24) xuu19 xuu20 xuu21",fontsize=16,color="green",shape="box"];608 -> 797[label="",style="dashed", color="green", weight=3]; 609[label="xuu21",fontsize=16,color="green",shape="box"];610[label="xuu24",fontsize=16,color="green",shape="box"];611[label="(xuu22,xuu23)",fontsize=16,color="green",shape="box"];615 -> 139[label="",style="dashed", color="red", weight=0]; 615[label="compare (FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21 + FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21) (Pos (Succ (Succ Zero))) == LT",fontsize=16,color="magenta"];615 -> 798[label="",style="dashed", color="magenta", weight=3]; 615 -> 799[label="",style="dashed", color="magenta", weight=3]; 616[label="FiniteMap.mkBalBranch6MkBalBranch5 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 False",fontsize=16,color="black",shape="box"];616 -> 800[label="",style="solid", color="black", weight=3]; 617[label="FiniteMap.mkBalBranch6MkBalBranch5 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 True",fontsize=16,color="black",shape="box"];617 -> 801[label="",style="solid", color="black", weight=3]; 618[label="xuu3000",fontsize=16,color="green",shape="box"];619[label="xuu40000",fontsize=16,color="green",shape="box"];620[label="xuu3000",fontsize=16,color="green",shape="box"];621[label="xuu40000",fontsize=16,color="green",shape="box"];622[label="xuu3000",fontsize=16,color="green",shape="box"];623[label="xuu40000",fontsize=16,color="green",shape="box"];624[label="xuu3000",fontsize=16,color="green",shape="box"];625[label="xuu40000",fontsize=16,color="green",shape="box"];626[label="xuu3000",fontsize=16,color="green",shape="box"];627[label="xuu40000",fontsize=16,color="green",shape="box"];628[label="xuu3000",fontsize=16,color="green",shape="box"];629[label="xuu40000",fontsize=16,color="green",shape="box"];630[label="xuu3000",fontsize=16,color="green",shape="box"];631[label="xuu40000",fontsize=16,color="green",shape="box"];632[label="xuu3000",fontsize=16,color="green",shape="box"];633[label="xuu40000",fontsize=16,color="green",shape="box"];634[label="xuu3000",fontsize=16,color="green",shape="box"];635[label="xuu40000",fontsize=16,color="green",shape="box"];636[label="xuu3000",fontsize=16,color="green",shape="box"];637[label="xuu40000",fontsize=16,color="green",shape="box"];638[label="xuu3000",fontsize=16,color="green",shape="box"];639[label="xuu40000",fontsize=16,color="green",shape="box"];640[label="xuu3000",fontsize=16,color="green",shape="box"];641[label="xuu40000",fontsize=16,color="green",shape="box"];642[label="xuu3000",fontsize=16,color="green",shape="box"];643[label="xuu40000",fontsize=16,color="green",shape="box"];644[label="xuu3000",fontsize=16,color="green",shape="box"];645[label="xuu40000",fontsize=16,color="green",shape="box"];646[label="xuu3001",fontsize=16,color="green",shape="box"];647[label="xuu40001",fontsize=16,color="green",shape="box"];648[label="xuu3001",fontsize=16,color="green",shape="box"];649[label="xuu40001",fontsize=16,color="green",shape="box"];650[label="xuu3001",fontsize=16,color="green",shape="box"];651[label="xuu40001",fontsize=16,color="green",shape="box"];652[label="xuu3001",fontsize=16,color="green",shape="box"];653[label="xuu40001",fontsize=16,color="green",shape="box"];654[label="xuu3001",fontsize=16,color="green",shape="box"];655[label="xuu40001",fontsize=16,color="green",shape="box"];656[label="xuu3001",fontsize=16,color="green",shape="box"];657[label="xuu40001",fontsize=16,color="green",shape="box"];658[label="xuu3001",fontsize=16,color="green",shape="box"];659[label="xuu40001",fontsize=16,color="green",shape="box"];660[label="xuu3001",fontsize=16,color="green",shape="box"];661[label="xuu40001",fontsize=16,color="green",shape="box"];662[label="xuu3001",fontsize=16,color="green",shape="box"];663[label="xuu40001",fontsize=16,color="green",shape="box"];664[label="xuu3001",fontsize=16,color="green",shape="box"];665[label="xuu40001",fontsize=16,color="green",shape="box"];666[label="xuu3001",fontsize=16,color="green",shape="box"];667[label="xuu40001",fontsize=16,color="green",shape="box"];668[label="xuu3001",fontsize=16,color="green",shape="box"];669[label="xuu40001",fontsize=16,color="green",shape="box"];670[label="xuu3001",fontsize=16,color="green",shape="box"];671[label="xuu40001",fontsize=16,color="green",shape="box"];672[label="xuu3001",fontsize=16,color="green",shape="box"];673[label="xuu40001",fontsize=16,color="green",shape="box"];674[label="False",fontsize=16,color="green",shape="box"];675[label="xuu63",fontsize=16,color="green",shape="box"];676[label="xuu3000",fontsize=16,color="green",shape="box"];677[label="xuu40000",fontsize=16,color="green",shape="box"];678[label="xuu3000",fontsize=16,color="green",shape="box"];679[label="xuu40000",fontsize=16,color="green",shape="box"];680[label="xuu3000",fontsize=16,color="green",shape="box"];681[label="xuu40000",fontsize=16,color="green",shape="box"];682[label="xuu3000",fontsize=16,color="green",shape="box"];683[label="xuu40000",fontsize=16,color="green",shape="box"];684[label="xuu3000",fontsize=16,color="green",shape="box"];685[label="xuu40000",fontsize=16,color="green",shape="box"];686[label="xuu3000",fontsize=16,color="green",shape="box"];687[label="xuu40000",fontsize=16,color="green",shape="box"];688[label="xuu3000",fontsize=16,color="green",shape="box"];689[label="xuu40000",fontsize=16,color="green",shape="box"];690[label="xuu3000",fontsize=16,color="green",shape="box"];691[label="xuu40000",fontsize=16,color="green",shape="box"];692[label="xuu3000",fontsize=16,color="green",shape="box"];693[label="xuu40000",fontsize=16,color="green",shape="box"];694[label="xuu3000",fontsize=16,color="green",shape="box"];695[label="xuu40000",fontsize=16,color="green",shape="box"];696[label="xuu3000",fontsize=16,color="green",shape="box"];697[label="xuu40000",fontsize=16,color="green",shape="box"];698[label="xuu3000",fontsize=16,color="green",shape="box"];699[label="xuu40000",fontsize=16,color="green",shape="box"];700[label="xuu3000",fontsize=16,color="green",shape="box"];701[label="xuu40000",fontsize=16,color="green",shape="box"];702[label="xuu3000",fontsize=16,color="green",shape="box"];703[label="xuu40000",fontsize=16,color="green",shape="box"];704 -> 137[label="",style="dashed", color="red", weight=0]; 704[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];704 -> 802[label="",style="dashed", color="magenta", weight=3]; 704 -> 803[label="",style="dashed", color="magenta", weight=3]; 705 -> 138[label="",style="dashed", color="red", weight=0]; 705[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];705 -> 804[label="",style="dashed", color="magenta", weight=3]; 705 -> 805[label="",style="dashed", color="magenta", weight=3]; 706 -> 139[label="",style="dashed", color="red", weight=0]; 706[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];706 -> 806[label="",style="dashed", color="magenta", weight=3]; 706 -> 807[label="",style="dashed", color="magenta", weight=3]; 707 -> 140[label="",style="dashed", color="red", weight=0]; 707[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];707 -> 808[label="",style="dashed", color="magenta", weight=3]; 707 -> 809[label="",style="dashed", color="magenta", weight=3]; 708 -> 141[label="",style="dashed", color="red", weight=0]; 708[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];708 -> 810[label="",style="dashed", color="magenta", weight=3]; 708 -> 811[label="",style="dashed", color="magenta", weight=3]; 709 -> 142[label="",style="dashed", color="red", weight=0]; 709[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];709 -> 812[label="",style="dashed", color="magenta", weight=3]; 709 -> 813[label="",style="dashed", color="magenta", weight=3]; 710 -> 143[label="",style="dashed", color="red", weight=0]; 710[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];710 -> 814[label="",style="dashed", color="magenta", weight=3]; 710 -> 815[label="",style="dashed", color="magenta", weight=3]; 711 -> 144[label="",style="dashed", color="red", weight=0]; 711[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];711 -> 816[label="",style="dashed", color="magenta", weight=3]; 711 -> 817[label="",style="dashed", color="magenta", weight=3]; 712 -> 145[label="",style="dashed", color="red", weight=0]; 712[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];712 -> 818[label="",style="dashed", color="magenta", weight=3]; 712 -> 819[label="",style="dashed", color="magenta", weight=3]; 713 -> 146[label="",style="dashed", color="red", weight=0]; 713[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];713 -> 820[label="",style="dashed", color="magenta", weight=3]; 713 -> 821[label="",style="dashed", color="magenta", weight=3]; 714 -> 147[label="",style="dashed", color="red", weight=0]; 714[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];714 -> 822[label="",style="dashed", color="magenta", weight=3]; 714 -> 823[label="",style="dashed", color="magenta", weight=3]; 715 -> 148[label="",style="dashed", color="red", weight=0]; 715[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];715 -> 824[label="",style="dashed", color="magenta", weight=3]; 715 -> 825[label="",style="dashed", color="magenta", weight=3]; 716 -> 149[label="",style="dashed", color="red", weight=0]; 716[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];716 -> 826[label="",style="dashed", color="magenta", weight=3]; 716 -> 827[label="",style="dashed", color="magenta", weight=3]; 717 -> 150[label="",style="dashed", color="red", weight=0]; 717[label="xuu40001 == xuu3001",fontsize=16,color="magenta"];717 -> 828[label="",style="dashed", color="magenta", weight=3]; 717 -> 829[label="",style="dashed", color="magenta", weight=3]; 718 -> 137[label="",style="dashed", color="red", weight=0]; 718[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];718 -> 830[label="",style="dashed", color="magenta", weight=3]; 718 -> 831[label="",style="dashed", color="magenta", weight=3]; 719 -> 138[label="",style="dashed", color="red", weight=0]; 719[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];719 -> 832[label="",style="dashed", color="magenta", weight=3]; 719 -> 833[label="",style="dashed", color="magenta", weight=3]; 720 -> 139[label="",style="dashed", color="red", weight=0]; 720[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];720 -> 834[label="",style="dashed", color="magenta", weight=3]; 720 -> 835[label="",style="dashed", color="magenta", weight=3]; 721 -> 140[label="",style="dashed", color="red", weight=0]; 721[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];721 -> 836[label="",style="dashed", color="magenta", weight=3]; 721 -> 837[label="",style="dashed", color="magenta", weight=3]; 722 -> 141[label="",style="dashed", color="red", weight=0]; 722[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];722 -> 838[label="",style="dashed", color="magenta", weight=3]; 722 -> 839[label="",style="dashed", color="magenta", weight=3]; 723 -> 142[label="",style="dashed", color="red", weight=0]; 723[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];723 -> 840[label="",style="dashed", color="magenta", weight=3]; 723 -> 841[label="",style="dashed", color="magenta", weight=3]; 724 -> 143[label="",style="dashed", color="red", weight=0]; 724[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];724 -> 842[label="",style="dashed", color="magenta", weight=3]; 724 -> 843[label="",style="dashed", color="magenta", weight=3]; 725 -> 144[label="",style="dashed", color="red", weight=0]; 725[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];725 -> 844[label="",style="dashed", color="magenta", weight=3]; 725 -> 845[label="",style="dashed", color="magenta", weight=3]; 726 -> 145[label="",style="dashed", color="red", weight=0]; 726[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];726 -> 846[label="",style="dashed", color="magenta", weight=3]; 726 -> 847[label="",style="dashed", color="magenta", weight=3]; 727 -> 146[label="",style="dashed", color="red", weight=0]; 727[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];727 -> 848[label="",style="dashed", color="magenta", weight=3]; 727 -> 849[label="",style="dashed", color="magenta", weight=3]; 728 -> 147[label="",style="dashed", color="red", weight=0]; 728[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];728 -> 850[label="",style="dashed", color="magenta", weight=3]; 728 -> 851[label="",style="dashed", color="magenta", weight=3]; 729 -> 148[label="",style="dashed", color="red", weight=0]; 729[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];729 -> 852[label="",style="dashed", color="magenta", weight=3]; 729 -> 853[label="",style="dashed", color="magenta", weight=3]; 730 -> 149[label="",style="dashed", color="red", weight=0]; 730[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];730 -> 854[label="",style="dashed", color="magenta", weight=3]; 730 -> 855[label="",style="dashed", color="magenta", weight=3]; 731 -> 150[label="",style="dashed", color="red", weight=0]; 731[label="xuu40002 == xuu3002",fontsize=16,color="magenta"];731 -> 856[label="",style="dashed", color="magenta", weight=3]; 731 -> 857[label="",style="dashed", color="magenta", weight=3]; 732[label="primMulInt xuu40001 xuu3000",fontsize=16,color="burlywood",shape="triangle"];3047[label="xuu40001/Pos xuu400010",fontsize=10,color="white",style="solid",shape="box"];732 -> 3047[label="",style="solid", color="burlywood", weight=9]; 3047 -> 858[label="",style="solid", color="burlywood", weight=3]; 3048[label="xuu40001/Neg xuu400010",fontsize=10,color="white",style="solid",shape="box"];732 -> 3048[label="",style="solid", color="burlywood", weight=9]; 3048 -> 859[label="",style="solid", color="burlywood", weight=3]; 733[label="xuu3001",fontsize=16,color="green",shape="box"];734[label="xuu40000",fontsize=16,color="green",shape="box"];735[label="xuu3000",fontsize=16,color="green",shape="box"];736[label="xuu40000",fontsize=16,color="green",shape="box"];737[label="xuu3000",fontsize=16,color="green",shape="box"];738[label="xuu40000",fontsize=16,color="green",shape="box"];739[label="xuu3001",fontsize=16,color="green",shape="box"];740[label="xuu40001",fontsize=16,color="green",shape="box"];741[label="xuu3001",fontsize=16,color="green",shape="box"];742[label="xuu40001",fontsize=16,color="green",shape="box"];743[label="primEqNat (Succ xuu400000) (Succ xuu30000)",fontsize=16,color="black",shape="box"];743 -> 860[label="",style="solid", color="black", weight=3]; 744[label="primEqNat (Succ xuu400000) Zero",fontsize=16,color="black",shape="box"];744 -> 861[label="",style="solid", color="black", weight=3]; 745[label="primEqNat Zero (Succ xuu30000)",fontsize=16,color="black",shape="box"];745 -> 862[label="",style="solid", color="black", weight=3]; 746[label="primEqNat Zero Zero",fontsize=16,color="black",shape="box"];746 -> 863[label="",style="solid", color="black", weight=3]; 747[label="xuu3000",fontsize=16,color="green",shape="box"];748[label="xuu40000",fontsize=16,color="green",shape="box"];749[label="xuu3000",fontsize=16,color="green",shape="box"];750[label="xuu40000",fontsize=16,color="green",shape="box"];751[label="xuu3000",fontsize=16,color="green",shape="box"];752[label="xuu40000",fontsize=16,color="green",shape="box"];753[label="xuu3000",fontsize=16,color="green",shape="box"];754[label="xuu40000",fontsize=16,color="green",shape="box"];755[label="xuu3000",fontsize=16,color="green",shape="box"];756[label="xuu40000",fontsize=16,color="green",shape="box"];757[label="xuu3000",fontsize=16,color="green",shape="box"];758[label="xuu40000",fontsize=16,color="green",shape="box"];759[label="xuu3000",fontsize=16,color="green",shape="box"];760[label="xuu40000",fontsize=16,color="green",shape="box"];761[label="xuu3000",fontsize=16,color="green",shape="box"];762[label="xuu40000",fontsize=16,color="green",shape="box"];763[label="xuu3000",fontsize=16,color="green",shape="box"];764[label="xuu40000",fontsize=16,color="green",shape="box"];765[label="xuu3000",fontsize=16,color="green",shape="box"];766[label="xuu40000",fontsize=16,color="green",shape="box"];767[label="xuu3000",fontsize=16,color="green",shape="box"];768[label="xuu40000",fontsize=16,color="green",shape="box"];769[label="xuu3000",fontsize=16,color="green",shape="box"];770[label="xuu40000",fontsize=16,color="green",shape="box"];771[label="xuu3000",fontsize=16,color="green",shape="box"];772[label="xuu40000",fontsize=16,color="green",shape="box"];773[label="xuu3000",fontsize=16,color="green",shape="box"];774[label="xuu40000",fontsize=16,color="green",shape="box"];775[label="xuu3000",fontsize=16,color="green",shape="box"];776[label="xuu40001",fontsize=16,color="green",shape="box"];777[label="xuu3001",fontsize=16,color="green",shape="box"];778[label="xuu40000",fontsize=16,color="green",shape="box"];779 -> 319[label="",style="dashed", color="red", weight=0]; 779[label="primEqNat xuu400000 xuu30000",fontsize=16,color="magenta"];779 -> 864[label="",style="dashed", color="magenta", weight=3]; 779 -> 865[label="",style="dashed", color="magenta", weight=3]; 780[label="False",fontsize=16,color="green",shape="box"];781[label="False",fontsize=16,color="green",shape="box"];782[label="True",fontsize=16,color="green",shape="box"];783[label="False",fontsize=16,color="green",shape="box"];784[label="True",fontsize=16,color="green",shape="box"];785 -> 319[label="",style="dashed", color="red", weight=0]; 785[label="primEqNat xuu400000 xuu30000",fontsize=16,color="magenta"];785 -> 866[label="",style="dashed", color="magenta", weight=3]; 785 -> 867[label="",style="dashed", color="magenta", weight=3]; 786[label="False",fontsize=16,color="green",shape="box"];787[label="False",fontsize=16,color="green",shape="box"];788[label="True",fontsize=16,color="green",shape="box"];789[label="False",fontsize=16,color="green",shape="box"];790[label="True",fontsize=16,color="green",shape="box"];1328[label="compare1 (xuu460,xuu461) xuu48 ((xuu460,xuu461) <= xuu48)",fontsize=16,color="burlywood",shape="box"];3049[label="xuu48/(xuu480,xuu481)",fontsize=10,color="white",style="solid",shape="box"];1328 -> 3049[label="",style="solid", color="burlywood", weight=9]; 3049 -> 1337[label="",style="solid", color="burlywood", weight=3]; 1253 -> 137[label="",style="dashed", color="red", weight=0]; 1253[label="(xuu22,xuu23) == (xuu16,xuu17)",fontsize=16,color="magenta"];1253 -> 1273[label="",style="dashed", color="magenta", weight=3]; 1253 -> 1274[label="",style="dashed", color="magenta", weight=3]; 1254[label="(xuu16,xuu17)",fontsize=16,color="green",shape="box"];1255[label="(xuu22,xuu23)",fontsize=16,color="green",shape="box"];797[label="FiniteMap.addListToFM0 xuu18 xuu24",fontsize=16,color="black",shape="box"];797 -> 872[label="",style="solid", color="black", weight=3]; 798[label="LT",fontsize=16,color="green",shape="box"];799[label="compare (FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21 + FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];799 -> 873[label="",style="solid", color="black", weight=3]; 800 -> 972[label="",style="dashed", color="red", weight=0]; 800[label="FiniteMap.mkBalBranch6MkBalBranch4 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21)",fontsize=16,color="magenta"];800 -> 973[label="",style="dashed", color="magenta", weight=3]; 801[label="FiniteMap.mkBranch (Pos (Succ Zero)) (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="black",shape="box"];801 -> 876[label="",style="solid", color="black", weight=3]; 802[label="xuu3001",fontsize=16,color="green",shape="box"];803[label="xuu40001",fontsize=16,color="green",shape="box"];804[label="xuu3001",fontsize=16,color="green",shape="box"];805[label="xuu40001",fontsize=16,color="green",shape="box"];806[label="xuu3001",fontsize=16,color="green",shape="box"];807[label="xuu40001",fontsize=16,color="green",shape="box"];808[label="xuu3001",fontsize=16,color="green",shape="box"];809[label="xuu40001",fontsize=16,color="green",shape="box"];810[label="xuu3001",fontsize=16,color="green",shape="box"];811[label="xuu40001",fontsize=16,color="green",shape="box"];812[label="xuu3001",fontsize=16,color="green",shape="box"];813[label="xuu40001",fontsize=16,color="green",shape="box"];814[label="xuu3001",fontsize=16,color="green",shape="box"];815[label="xuu40001",fontsize=16,color="green",shape="box"];816[label="xuu3001",fontsize=16,color="green",shape="box"];817[label="xuu40001",fontsize=16,color="green",shape="box"];818[label="xuu3001",fontsize=16,color="green",shape="box"];819[label="xuu40001",fontsize=16,color="green",shape="box"];820[label="xuu3001",fontsize=16,color="green",shape="box"];821[label="xuu40001",fontsize=16,color="green",shape="box"];822[label="xuu3001",fontsize=16,color="green",shape="box"];823[label="xuu40001",fontsize=16,color="green",shape="box"];824[label="xuu3001",fontsize=16,color="green",shape="box"];825[label="xuu40001",fontsize=16,color="green",shape="box"];826[label="xuu3001",fontsize=16,color="green",shape="box"];827[label="xuu40001",fontsize=16,color="green",shape="box"];828[label="xuu3001",fontsize=16,color="green",shape="box"];829[label="xuu40001",fontsize=16,color="green",shape="box"];830[label="xuu3002",fontsize=16,color="green",shape="box"];831[label="xuu40002",fontsize=16,color="green",shape="box"];832[label="xuu3002",fontsize=16,color="green",shape="box"];833[label="xuu40002",fontsize=16,color="green",shape="box"];834[label="xuu3002",fontsize=16,color="green",shape="box"];835[label="xuu40002",fontsize=16,color="green",shape="box"];836[label="xuu3002",fontsize=16,color="green",shape="box"];837[label="xuu40002",fontsize=16,color="green",shape="box"];838[label="xuu3002",fontsize=16,color="green",shape="box"];839[label="xuu40002",fontsize=16,color="green",shape="box"];840[label="xuu3002",fontsize=16,color="green",shape="box"];841[label="xuu40002",fontsize=16,color="green",shape="box"];842[label="xuu3002",fontsize=16,color="green",shape="box"];843[label="xuu40002",fontsize=16,color="green",shape="box"];844[label="xuu3002",fontsize=16,color="green",shape="box"];845[label="xuu40002",fontsize=16,color="green",shape="box"];846[label="xuu3002",fontsize=16,color="green",shape="box"];847[label="xuu40002",fontsize=16,color="green",shape="box"];848[label="xuu3002",fontsize=16,color="green",shape="box"];849[label="xuu40002",fontsize=16,color="green",shape="box"];850[label="xuu3002",fontsize=16,color="green",shape="box"];851[label="xuu40002",fontsize=16,color="green",shape="box"];852[label="xuu3002",fontsize=16,color="green",shape="box"];853[label="xuu40002",fontsize=16,color="green",shape="box"];854[label="xuu3002",fontsize=16,color="green",shape="box"];855[label="xuu40002",fontsize=16,color="green",shape="box"];856[label="xuu3002",fontsize=16,color="green",shape="box"];857[label="xuu40002",fontsize=16,color="green",shape="box"];858[label="primMulInt (Pos xuu400010) xuu3000",fontsize=16,color="burlywood",shape="box"];3050[label="xuu3000/Pos xuu30000",fontsize=10,color="white",style="solid",shape="box"];858 -> 3050[label="",style="solid", color="burlywood", weight=9]; 3050 -> 877[label="",style="solid", color="burlywood", weight=3]; 3051[label="xuu3000/Neg xuu30000",fontsize=10,color="white",style="solid",shape="box"];858 -> 3051[label="",style="solid", color="burlywood", weight=9]; 3051 -> 878[label="",style="solid", color="burlywood", weight=3]; 859[label="primMulInt (Neg xuu400010) xuu3000",fontsize=16,color="burlywood",shape="box"];3052[label="xuu3000/Pos xuu30000",fontsize=10,color="white",style="solid",shape="box"];859 -> 3052[label="",style="solid", color="burlywood", weight=9]; 3052 -> 879[label="",style="solid", color="burlywood", weight=3]; 3053[label="xuu3000/Neg xuu30000",fontsize=10,color="white",style="solid",shape="box"];859 -> 3053[label="",style="solid", color="burlywood", weight=9]; 3053 -> 880[label="",style="solid", color="burlywood", weight=3]; 860 -> 319[label="",style="dashed", color="red", weight=0]; 860[label="primEqNat xuu400000 xuu30000",fontsize=16,color="magenta"];860 -> 881[label="",style="dashed", color="magenta", weight=3]; 860 -> 882[label="",style="dashed", color="magenta", weight=3]; 861[label="False",fontsize=16,color="green",shape="box"];862[label="False",fontsize=16,color="green",shape="box"];863[label="True",fontsize=16,color="green",shape="box"];864[label="xuu30000",fontsize=16,color="green",shape="box"];865[label="xuu400000",fontsize=16,color="green",shape="box"];866[label="xuu30000",fontsize=16,color="green",shape="box"];867[label="xuu400000",fontsize=16,color="green",shape="box"];1337[label="compare1 (xuu460,xuu461) (xuu480,xuu481) ((xuu460,xuu461) <= (xuu480,xuu481))",fontsize=16,color="black",shape="box"];1337 -> 1344[label="",style="solid", color="black", weight=3]; 1273[label="(xuu16,xuu17)",fontsize=16,color="green",shape="box"];1274[label="(xuu22,xuu23)",fontsize=16,color="green",shape="box"];872[label="xuu24",fontsize=16,color="green",shape="box"];873[label="primCmpInt (FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21 + FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];873 -> 916[label="",style="solid", color="black", weight=3]; 973 -> 1221[label="",style="dashed", color="red", weight=0]; 973[label="FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="magenta"];973 -> 1222[label="",style="dashed", color="magenta", weight=3]; 973 -> 1223[label="",style="dashed", color="magenta", weight=3]; 972[label="FiniteMap.mkBalBranch6MkBalBranch4 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 xuu80",fontsize=16,color="burlywood",shape="triangle"];3054[label="xuu80/False",fontsize=10,color="white",style="solid",shape="box"];972 -> 3054[label="",style="solid", color="burlywood", weight=9]; 3054 -> 978[label="",style="solid", color="burlywood", weight=3]; 3055[label="xuu80/True",fontsize=10,color="white",style="solid",shape="box"];972 -> 3055[label="",style="solid", color="burlywood", weight=9]; 3055 -> 979[label="",style="solid", color="burlywood", weight=3]; 876[label="FiniteMap.mkBranchResult (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="black",shape="triangle"];876 -> 920[label="",style="solid", color="black", weight=3]; 877[label="primMulInt (Pos xuu400010) (Pos xuu30000)",fontsize=16,color="black",shape="box"];877 -> 921[label="",style="solid", color="black", weight=3]; 878[label="primMulInt (Pos xuu400010) (Neg xuu30000)",fontsize=16,color="black",shape="box"];878 -> 922[label="",style="solid", color="black", weight=3]; 879[label="primMulInt (Neg xuu400010) (Pos xuu30000)",fontsize=16,color="black",shape="box"];879 -> 923[label="",style="solid", color="black", weight=3]; 880[label="primMulInt (Neg xuu400010) (Neg xuu30000)",fontsize=16,color="black",shape="box"];880 -> 924[label="",style="solid", color="black", weight=3]; 881[label="xuu30000",fontsize=16,color="green",shape="box"];882[label="xuu400000",fontsize=16,color="green",shape="box"];1344 -> 1372[label="",style="dashed", color="red", weight=0]; 1344[label="compare1 (xuu460,xuu461) (xuu480,xuu481) (xuu460 < xuu480 || xuu460 == xuu480 && xuu461 <= xuu481)",fontsize=16,color="magenta"];1344 -> 1373[label="",style="dashed", color="magenta", weight=3]; 1344 -> 1374[label="",style="dashed", color="magenta", weight=3]; 1344 -> 1375[label="",style="dashed", color="magenta", weight=3]; 1344 -> 1376[label="",style="dashed", color="magenta", weight=3]; 1344 -> 1377[label="",style="dashed", color="magenta", weight=3]; 1344 -> 1378[label="",style="dashed", color="magenta", weight=3]; 916[label="primCmpInt (primPlusInt (FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21) (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21)) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];916 -> 969[label="",style="solid", color="black", weight=3]; 1222 -> 453[label="",style="dashed", color="red", weight=0]; 1222[label="FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="magenta"];1222 -> 1228[label="",style="dashed", color="magenta", weight=3]; 1222 -> 1229[label="",style="dashed", color="magenta", weight=3]; 1223[label="FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="black",shape="triangle"];1223 -> 1230[label="",style="solid", color="black", weight=3]; 1221[label="xuu89 > xuu88",fontsize=16,color="black",shape="triangle"];1221 -> 1231[label="",style="solid", color="black", weight=3]; 978[label="FiniteMap.mkBalBranch6MkBalBranch4 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 False",fontsize=16,color="black",shape="box"];978 -> 1068[label="",style="solid", color="black", weight=3]; 979[label="FiniteMap.mkBalBranch6MkBalBranch4 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 True",fontsize=16,color="black",shape="box"];979 -> 1069[label="",style="solid", color="black", weight=3]; 920[label="FiniteMap.Branch (xuu16,xuu17) xuu18 (FiniteMap.mkBranchUnbox xuu38 (xuu16,xuu17) xuu21 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu38 (xuu16,xuu17) xuu21 + FiniteMap.mkBranchRight_size xuu38 (xuu16,xuu17) xuu21)) xuu38 xuu21",fontsize=16,color="green",shape="box"];920 -> 983[label="",style="dashed", color="green", weight=3]; 921[label="Pos (primMulNat xuu400010 xuu30000)",fontsize=16,color="green",shape="box"];921 -> 984[label="",style="dashed", color="green", weight=3]; 922[label="Neg (primMulNat xuu400010 xuu30000)",fontsize=16,color="green",shape="box"];922 -> 985[label="",style="dashed", color="green", weight=3]; 923[label="Neg (primMulNat xuu400010 xuu30000)",fontsize=16,color="green",shape="box"];923 -> 986[label="",style="dashed", color="green", weight=3]; 924[label="Pos (primMulNat xuu400010 xuu30000)",fontsize=16,color="green",shape="box"];924 -> 987[label="",style="dashed", color="green", weight=3]; 1373[label="xuu460 < xuu480",fontsize=16,color="blue",shape="box"];3056[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3056[label="",style="solid", color="blue", weight=9]; 3056 -> 1385[label="",style="solid", color="blue", weight=3]; 3057[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3057[label="",style="solid", color="blue", weight=9]; 3057 -> 1386[label="",style="solid", color="blue", weight=3]; 3058[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3058[label="",style="solid", color="blue", weight=9]; 3058 -> 1387[label="",style="solid", color="blue", weight=3]; 3059[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3059[label="",style="solid", color="blue", weight=9]; 3059 -> 1388[label="",style="solid", color="blue", weight=3]; 3060[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3060[label="",style="solid", color="blue", weight=9]; 3060 -> 1389[label="",style="solid", color="blue", weight=3]; 3061[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3061[label="",style="solid", color="blue", weight=9]; 3061 -> 1390[label="",style="solid", color="blue", weight=3]; 3062[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3062[label="",style="solid", color="blue", weight=9]; 3062 -> 1391[label="",style="solid", color="blue", weight=3]; 3063[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3063[label="",style="solid", color="blue", weight=9]; 3063 -> 1392[label="",style="solid", color="blue", weight=3]; 3064[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3064[label="",style="solid", color="blue", weight=9]; 3064 -> 1393[label="",style="solid", color="blue", weight=3]; 3065[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3065[label="",style="solid", color="blue", weight=9]; 3065 -> 1394[label="",style="solid", color="blue", weight=3]; 3066[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3066[label="",style="solid", color="blue", weight=9]; 3066 -> 1395[label="",style="solid", color="blue", weight=3]; 3067[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3067[label="",style="solid", color="blue", weight=9]; 3067 -> 1396[label="",style="solid", color="blue", weight=3]; 3068[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3068[label="",style="solid", color="blue", weight=9]; 3068 -> 1397[label="",style="solid", color="blue", weight=3]; 3069[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1373 -> 3069[label="",style="solid", color="blue", weight=9]; 3069 -> 1398[label="",style="solid", color="blue", weight=3]; 1374 -> 394[label="",style="dashed", color="red", weight=0]; 1374[label="xuu460 == xuu480 && xuu461 <= xuu481",fontsize=16,color="magenta"];1374 -> 1399[label="",style="dashed", color="magenta", weight=3]; 1374 -> 1400[label="",style="dashed", color="magenta", weight=3]; 1375[label="xuu461",fontsize=16,color="green",shape="box"];1376[label="xuu481",fontsize=16,color="green",shape="box"];1377[label="xuu480",fontsize=16,color="green",shape="box"];1378[label="xuu460",fontsize=16,color="green",shape="box"];1372[label="compare1 (xuu107,xuu108) (xuu109,xuu110) (xuu111 || xuu112)",fontsize=16,color="burlywood",shape="triangle"];3070[label="xuu111/False",fontsize=10,color="white",style="solid",shape="box"];1372 -> 3070[label="",style="solid", color="burlywood", weight=9]; 3070 -> 1401[label="",style="solid", color="burlywood", weight=3]; 3071[label="xuu111/True",fontsize=10,color="white",style="solid",shape="box"];1372 -> 3071[label="",style="solid", color="burlywood", weight=9]; 3071 -> 1402[label="",style="solid", color="burlywood", weight=3]; 969[label="primCmpInt (primPlusInt (FiniteMap.sizeFM xuu38) (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21)) (Pos (Succ (Succ Zero)))",fontsize=16,color="burlywood",shape="box"];3072[label="xuu38/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];969 -> 3072[label="",style="solid", color="burlywood", weight=9]; 3072 -> 1066[label="",style="solid", color="burlywood", weight=3]; 3073[label="xuu38/FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384",fontsize=10,color="white",style="solid",shape="box"];969 -> 3073[label="",style="solid", color="burlywood", weight=9]; 3073 -> 1067[label="",style="solid", color="burlywood", weight=3]; 1228 -> 1227[label="",style="dashed", color="red", weight=0]; 1228[label="FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="magenta"];1229[label="FiniteMap.sIZE_RATIO",fontsize=16,color="black",shape="triangle"];1229 -> 1275[label="",style="solid", color="black", weight=3]; 1230[label="FiniteMap.sizeFM xuu21",fontsize=16,color="burlywood",shape="triangle"];3074[label="xuu21/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1230 -> 3074[label="",style="solid", color="burlywood", weight=9]; 3074 -> 1276[label="",style="solid", color="burlywood", weight=3]; 3075[label="xuu21/FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214",fontsize=10,color="white",style="solid",shape="box"];1230 -> 3075[label="",style="solid", color="burlywood", weight=9]; 3075 -> 1277[label="",style="solid", color="burlywood", weight=3]; 1231 -> 139[label="",style="dashed", color="red", weight=0]; 1231[label="compare xuu89 xuu88 == GT",fontsize=16,color="magenta"];1231 -> 1278[label="",style="dashed", color="magenta", weight=3]; 1231 -> 1279[label="",style="dashed", color="magenta", weight=3]; 1068 -> 1217[label="",style="dashed", color="red", weight=0]; 1068[label="FiniteMap.mkBalBranch6MkBalBranch3 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 (FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21)",fontsize=16,color="magenta"];1068 -> 1218[label="",style="dashed", color="magenta", weight=3]; 1069[label="FiniteMap.mkBalBranch6MkBalBranch0 (xuu16,xuu17) xuu18 xuu38 xuu21 xuu38 xuu21 xuu21",fontsize=16,color="burlywood",shape="box"];3076[label="xuu21/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1069 -> 3076[label="",style="solid", color="burlywood", weight=9]; 3076 -> 1109[label="",style="solid", color="burlywood", weight=3]; 3077[label="xuu21/FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214",fontsize=10,color="white",style="solid",shape="box"];1069 -> 3077[label="",style="solid", color="burlywood", weight=9]; 3077 -> 1110[label="",style="solid", color="burlywood", weight=3]; 983 -> 2674[label="",style="dashed", color="red", weight=0]; 983[label="FiniteMap.mkBranchUnbox xuu38 (xuu16,xuu17) xuu21 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu38 (xuu16,xuu17) xuu21 + FiniteMap.mkBranchRight_size xuu38 (xuu16,xuu17) xuu21)",fontsize=16,color="magenta"];983 -> 2675[label="",style="dashed", color="magenta", weight=3]; 983 -> 2676[label="",style="dashed", color="magenta", weight=3]; 983 -> 2677[label="",style="dashed", color="magenta", weight=3]; 983 -> 2678[label="",style="dashed", color="magenta", weight=3]; 984[label="primMulNat xuu400010 xuu30000",fontsize=16,color="burlywood",shape="triangle"];3078[label="xuu400010/Succ xuu4000100",fontsize=10,color="white",style="solid",shape="box"];984 -> 3078[label="",style="solid", color="burlywood", weight=9]; 3078 -> 1075[label="",style="solid", color="burlywood", weight=3]; 3079[label="xuu400010/Zero",fontsize=10,color="white",style="solid",shape="box"];984 -> 3079[label="",style="solid", color="burlywood", weight=9]; 3079 -> 1076[label="",style="solid", color="burlywood", weight=3]; 985 -> 984[label="",style="dashed", color="red", weight=0]; 985[label="primMulNat xuu400010 xuu30000",fontsize=16,color="magenta"];985 -> 1077[label="",style="dashed", color="magenta", weight=3]; 986 -> 984[label="",style="dashed", color="red", weight=0]; 986[label="primMulNat xuu400010 xuu30000",fontsize=16,color="magenta"];986 -> 1078[label="",style="dashed", color="magenta", weight=3]; 987 -> 984[label="",style="dashed", color="red", weight=0]; 987[label="primMulNat xuu400010 xuu30000",fontsize=16,color="magenta"];987 -> 1079[label="",style="dashed", color="magenta", weight=3]; 987 -> 1080[label="",style="dashed", color="magenta", weight=3]; 1385[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1385 -> 1418[label="",style="solid", color="black", weight=3]; 1386[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1386 -> 1419[label="",style="solid", color="black", weight=3]; 1387[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1387 -> 1420[label="",style="solid", color="black", weight=3]; 1388[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1388 -> 1421[label="",style="solid", color="black", weight=3]; 1389[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1389 -> 1422[label="",style="solid", color="black", weight=3]; 1390[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1390 -> 1423[label="",style="solid", color="black", weight=3]; 1391[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1391 -> 1424[label="",style="solid", color="black", weight=3]; 1392[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1392 -> 1425[label="",style="solid", color="black", weight=3]; 1393[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1393 -> 1426[label="",style="solid", color="black", weight=3]; 1394[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1394 -> 1427[label="",style="solid", color="black", weight=3]; 1395[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1395 -> 1428[label="",style="solid", color="black", weight=3]; 1396[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1396 -> 1429[label="",style="solid", color="black", weight=3]; 1397[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1397 -> 1430[label="",style="solid", color="black", weight=3]; 1398[label="xuu460 < xuu480",fontsize=16,color="black",shape="triangle"];1398 -> 1431[label="",style="solid", color="black", weight=3]; 1399[label="xuu460 == xuu480",fontsize=16,color="blue",shape="box"];3080[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3080[label="",style="solid", color="blue", weight=9]; 3080 -> 1432[label="",style="solid", color="blue", weight=3]; 3081[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3081[label="",style="solid", color="blue", weight=9]; 3081 -> 1433[label="",style="solid", color="blue", weight=3]; 3082[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3082[label="",style="solid", color="blue", weight=9]; 3082 -> 1434[label="",style="solid", color="blue", weight=3]; 3083[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3083[label="",style="solid", color="blue", weight=9]; 3083 -> 1435[label="",style="solid", color="blue", weight=3]; 3084[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3084[label="",style="solid", color="blue", weight=9]; 3084 -> 1436[label="",style="solid", color="blue", weight=3]; 3085[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3085[label="",style="solid", color="blue", weight=9]; 3085 -> 1437[label="",style="solid", color="blue", weight=3]; 3086[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3086[label="",style="solid", color="blue", weight=9]; 3086 -> 1438[label="",style="solid", color="blue", weight=3]; 3087[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3087[label="",style="solid", color="blue", weight=9]; 3087 -> 1439[label="",style="solid", color="blue", weight=3]; 3088[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3088[label="",style="solid", color="blue", weight=9]; 3088 -> 1440[label="",style="solid", color="blue", weight=3]; 3089[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3089[label="",style="solid", color="blue", weight=9]; 3089 -> 1441[label="",style="solid", color="blue", weight=3]; 3090[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3090[label="",style="solid", color="blue", weight=9]; 3090 -> 1442[label="",style="solid", color="blue", weight=3]; 3091[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3091[label="",style="solid", color="blue", weight=9]; 3091 -> 1443[label="",style="solid", color="blue", weight=3]; 3092[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3092[label="",style="solid", color="blue", weight=9]; 3092 -> 1444[label="",style="solid", color="blue", weight=3]; 3093[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1399 -> 3093[label="",style="solid", color="blue", weight=9]; 3093 -> 1445[label="",style="solid", color="blue", weight=3]; 1400[label="xuu461 <= xuu481",fontsize=16,color="blue",shape="box"];3094[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3094[label="",style="solid", color="blue", weight=9]; 3094 -> 1446[label="",style="solid", color="blue", weight=3]; 3095[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3095[label="",style="solid", color="blue", weight=9]; 3095 -> 1447[label="",style="solid", color="blue", weight=3]; 3096[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3096[label="",style="solid", color="blue", weight=9]; 3096 -> 1448[label="",style="solid", color="blue", weight=3]; 3097[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3097[label="",style="solid", color="blue", weight=9]; 3097 -> 1449[label="",style="solid", color="blue", weight=3]; 3098[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3098[label="",style="solid", color="blue", weight=9]; 3098 -> 1450[label="",style="solid", color="blue", weight=3]; 3099[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3099[label="",style="solid", color="blue", weight=9]; 3099 -> 1451[label="",style="solid", color="blue", weight=3]; 3100[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3100[label="",style="solid", color="blue", weight=9]; 3100 -> 1452[label="",style="solid", color="blue", weight=3]; 3101[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3101[label="",style="solid", color="blue", weight=9]; 3101 -> 1453[label="",style="solid", color="blue", weight=3]; 3102[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3102[label="",style="solid", color="blue", weight=9]; 3102 -> 1454[label="",style="solid", color="blue", weight=3]; 3103[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3103[label="",style="solid", color="blue", weight=9]; 3103 -> 1455[label="",style="solid", color="blue", weight=3]; 3104[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3104[label="",style="solid", color="blue", weight=9]; 3104 -> 1456[label="",style="solid", color="blue", weight=3]; 3105[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3105[label="",style="solid", color="blue", weight=9]; 3105 -> 1457[label="",style="solid", color="blue", weight=3]; 3106[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3106[label="",style="solid", color="blue", weight=9]; 3106 -> 1458[label="",style="solid", color="blue", weight=3]; 3107[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1400 -> 3107[label="",style="solid", color="blue", weight=9]; 3107 -> 1459[label="",style="solid", color="blue", weight=3]; 1401[label="compare1 (xuu107,xuu108) (xuu109,xuu110) (False || xuu112)",fontsize=16,color="black",shape="box"];1401 -> 1460[label="",style="solid", color="black", weight=3]; 1402[label="compare1 (xuu107,xuu108) (xuu109,xuu110) (True || xuu112)",fontsize=16,color="black",shape="box"];1402 -> 1461[label="",style="solid", color="black", weight=3]; 1066[label="primCmpInt (primPlusInt (FiniteMap.sizeFM FiniteMap.EmptyFM) (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 FiniteMap.EmptyFM xuu21)) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];1066 -> 1135[label="",style="solid", color="black", weight=3]; 1067[label="primCmpInt (primPlusInt (FiniteMap.sizeFM (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384)) (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21)) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];1067 -> 1136[label="",style="solid", color="black", weight=3]; 1227[label="FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="black",shape="triangle"];1227 -> 1236[label="",style="solid", color="black", weight=3]; 1275[label="Pos (Succ (Succ (Succ (Succ (Succ Zero)))))",fontsize=16,color="green",shape="box"];1276[label="FiniteMap.sizeFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];1276 -> 1314[label="",style="solid", color="black", weight=3]; 1277[label="FiniteMap.sizeFM (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214)",fontsize=16,color="black",shape="box"];1277 -> 1315[label="",style="solid", color="black", weight=3]; 1278[label="GT",fontsize=16,color="green",shape="box"];1279[label="compare xuu89 xuu88",fontsize=16,color="black",shape="triangle"];1279 -> 1316[label="",style="solid", color="black", weight=3]; 1218 -> 1221[label="",style="dashed", color="red", weight=0]; 1218[label="FiniteMap.mkBalBranch6Size_l (xuu16,xuu17) xuu18 xuu38 xuu21 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="magenta"];1218 -> 1226[label="",style="dashed", color="magenta", weight=3]; 1218 -> 1227[label="",style="dashed", color="magenta", weight=3]; 1217[label="FiniteMap.mkBalBranch6MkBalBranch3 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 xuu86",fontsize=16,color="burlywood",shape="triangle"];3108[label="xuu86/False",fontsize=10,color="white",style="solid",shape="box"];1217 -> 3108[label="",style="solid", color="burlywood", weight=9]; 3108 -> 1232[label="",style="solid", color="burlywood", weight=3]; 3109[label="xuu86/True",fontsize=10,color="white",style="solid",shape="box"];1217 -> 3109[label="",style="solid", color="burlywood", weight=9]; 3109 -> 1233[label="",style="solid", color="burlywood", weight=3]; 1109[label="FiniteMap.mkBalBranch6MkBalBranch0 (xuu16,xuu17) xuu18 xuu38 FiniteMap.EmptyFM xuu38 FiniteMap.EmptyFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];1109 -> 1185[label="",style="solid", color="black", weight=3]; 1110[label="FiniteMap.mkBalBranch6MkBalBranch0 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214)",fontsize=16,color="black",shape="box"];1110 -> 1186[label="",style="solid", color="black", weight=3]; 2675[label="xuu21",fontsize=16,color="green",shape="box"];2676 -> 2696[label="",style="dashed", color="red", weight=0]; 2676[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu38 (xuu16,xuu17) xuu21 + FiniteMap.mkBranchRight_size xuu38 (xuu16,xuu17) xuu21",fontsize=16,color="magenta"];2676 -> 2697[label="",style="dashed", color="magenta", weight=3]; 2676 -> 2698[label="",style="dashed", color="magenta", weight=3]; 2676 -> 2699[label="",style="dashed", color="magenta", weight=3]; 2676 -> 2700[label="",style="dashed", color="magenta", weight=3]; 2677[label="(xuu16,xuu17)",fontsize=16,color="green",shape="box"];2678[label="xuu38",fontsize=16,color="green",shape="box"];2674[label="FiniteMap.mkBranchUnbox xuu146 xuu144 xuu220 xuu210",fontsize=16,color="black",shape="triangle"];2674 -> 2695[label="",style="solid", color="black", weight=3]; 1075[label="primMulNat (Succ xuu4000100) xuu30000",fontsize=16,color="burlywood",shape="box"];3110[label="xuu30000/Succ xuu300000",fontsize=10,color="white",style="solid",shape="box"];1075 -> 3110[label="",style="solid", color="burlywood", weight=9]; 3110 -> 1145[label="",style="solid", color="burlywood", weight=3]; 3111[label="xuu30000/Zero",fontsize=10,color="white",style="solid",shape="box"];1075 -> 3111[label="",style="solid", color="burlywood", weight=9]; 3111 -> 1146[label="",style="solid", color="burlywood", weight=3]; 1076[label="primMulNat Zero xuu30000",fontsize=16,color="burlywood",shape="box"];3112[label="xuu30000/Succ xuu300000",fontsize=10,color="white",style="solid",shape="box"];1076 -> 3112[label="",style="solid", color="burlywood", weight=9]; 3112 -> 1147[label="",style="solid", color="burlywood", weight=3]; 3113[label="xuu30000/Zero",fontsize=10,color="white",style="solid",shape="box"];1076 -> 3113[label="",style="solid", color="burlywood", weight=9]; 3113 -> 1148[label="",style="solid", color="burlywood", weight=3]; 1077[label="xuu30000",fontsize=16,color="green",shape="box"];1078[label="xuu400010",fontsize=16,color="green",shape="box"];1079[label="xuu30000",fontsize=16,color="green",shape="box"];1080[label="xuu400010",fontsize=16,color="green",shape="box"];1418 -> 139[label="",style="dashed", color="red", weight=0]; 1418[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1418 -> 1487[label="",style="dashed", color="magenta", weight=3]; 1418 -> 1488[label="",style="dashed", color="magenta", weight=3]; 1419 -> 139[label="",style="dashed", color="red", weight=0]; 1419[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1419 -> 1489[label="",style="dashed", color="magenta", weight=3]; 1419 -> 1490[label="",style="dashed", color="magenta", weight=3]; 1420 -> 139[label="",style="dashed", color="red", weight=0]; 1420[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1420 -> 1491[label="",style="dashed", color="magenta", weight=3]; 1420 -> 1492[label="",style="dashed", color="magenta", weight=3]; 1421 -> 139[label="",style="dashed", color="red", weight=0]; 1421[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1421 -> 1493[label="",style="dashed", color="magenta", weight=3]; 1421 -> 1494[label="",style="dashed", color="magenta", weight=3]; 1422 -> 139[label="",style="dashed", color="red", weight=0]; 1422[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1422 -> 1495[label="",style="dashed", color="magenta", weight=3]; 1422 -> 1496[label="",style="dashed", color="magenta", weight=3]; 1423 -> 139[label="",style="dashed", color="red", weight=0]; 1423[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1423 -> 1497[label="",style="dashed", color="magenta", weight=3]; 1423 -> 1498[label="",style="dashed", color="magenta", weight=3]; 1424 -> 139[label="",style="dashed", color="red", weight=0]; 1424[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1424 -> 1499[label="",style="dashed", color="magenta", weight=3]; 1424 -> 1500[label="",style="dashed", color="magenta", weight=3]; 1425 -> 139[label="",style="dashed", color="red", weight=0]; 1425[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1425 -> 1501[label="",style="dashed", color="magenta", weight=3]; 1425 -> 1502[label="",style="dashed", color="magenta", weight=3]; 1426 -> 139[label="",style="dashed", color="red", weight=0]; 1426[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1426 -> 1503[label="",style="dashed", color="magenta", weight=3]; 1426 -> 1504[label="",style="dashed", color="magenta", weight=3]; 1427 -> 139[label="",style="dashed", color="red", weight=0]; 1427[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1427 -> 1505[label="",style="dashed", color="magenta", weight=3]; 1427 -> 1506[label="",style="dashed", color="magenta", weight=3]; 1428 -> 139[label="",style="dashed", color="red", weight=0]; 1428[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1428 -> 1507[label="",style="dashed", color="magenta", weight=3]; 1428 -> 1508[label="",style="dashed", color="magenta", weight=3]; 1429 -> 139[label="",style="dashed", color="red", weight=0]; 1429[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1429 -> 1509[label="",style="dashed", color="magenta", weight=3]; 1429 -> 1510[label="",style="dashed", color="magenta", weight=3]; 1430 -> 139[label="",style="dashed", color="red", weight=0]; 1430[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1430 -> 1511[label="",style="dashed", color="magenta", weight=3]; 1430 -> 1512[label="",style="dashed", color="magenta", weight=3]; 1431 -> 139[label="",style="dashed", color="red", weight=0]; 1431[label="compare xuu460 xuu480 == LT",fontsize=16,color="magenta"];1431 -> 1513[label="",style="dashed", color="magenta", weight=3]; 1431 -> 1514[label="",style="dashed", color="magenta", weight=3]; 1432 -> 137[label="",style="dashed", color="red", weight=0]; 1432[label="xuu460 == xuu480",fontsize=16,color="magenta"];1432 -> 1515[label="",style="dashed", color="magenta", weight=3]; 1432 -> 1516[label="",style="dashed", color="magenta", weight=3]; 1433 -> 150[label="",style="dashed", color="red", weight=0]; 1433[label="xuu460 == xuu480",fontsize=16,color="magenta"];1433 -> 1517[label="",style="dashed", color="magenta", weight=3]; 1433 -> 1518[label="",style="dashed", color="magenta", weight=3]; 1434 -> 144[label="",style="dashed", color="red", weight=0]; 1434[label="xuu460 == xuu480",fontsize=16,color="magenta"];1434 -> 1519[label="",style="dashed", color="magenta", weight=3]; 1434 -> 1520[label="",style="dashed", color="magenta", weight=3]; 1435 -> 140[label="",style="dashed", color="red", weight=0]; 1435[label="xuu460 == xuu480",fontsize=16,color="magenta"];1435 -> 1521[label="",style="dashed", color="magenta", weight=3]; 1435 -> 1522[label="",style="dashed", color="magenta", weight=3]; 1436 -> 143[label="",style="dashed", color="red", weight=0]; 1436[label="xuu460 == xuu480",fontsize=16,color="magenta"];1436 -> 1523[label="",style="dashed", color="magenta", weight=3]; 1436 -> 1524[label="",style="dashed", color="magenta", weight=3]; 1437 -> 147[label="",style="dashed", color="red", weight=0]; 1437[label="xuu460 == xuu480",fontsize=16,color="magenta"];1437 -> 1525[label="",style="dashed", color="magenta", weight=3]; 1437 -> 1526[label="",style="dashed", color="magenta", weight=3]; 1438 -> 149[label="",style="dashed", color="red", weight=0]; 1438[label="xuu460 == xuu480",fontsize=16,color="magenta"];1438 -> 1527[label="",style="dashed", color="magenta", weight=3]; 1438 -> 1528[label="",style="dashed", color="magenta", weight=3]; 1439 -> 138[label="",style="dashed", color="red", weight=0]; 1439[label="xuu460 == xuu480",fontsize=16,color="magenta"];1439 -> 1529[label="",style="dashed", color="magenta", weight=3]; 1439 -> 1530[label="",style="dashed", color="magenta", weight=3]; 1440 -> 141[label="",style="dashed", color="red", weight=0]; 1440[label="xuu460 == xuu480",fontsize=16,color="magenta"];1440 -> 1531[label="",style="dashed", color="magenta", weight=3]; 1440 -> 1532[label="",style="dashed", color="magenta", weight=3]; 1441 -> 146[label="",style="dashed", color="red", weight=0]; 1441[label="xuu460 == xuu480",fontsize=16,color="magenta"];1441 -> 1533[label="",style="dashed", color="magenta", weight=3]; 1441 -> 1534[label="",style="dashed", color="magenta", weight=3]; 1442 -> 139[label="",style="dashed", color="red", weight=0]; 1442[label="xuu460 == xuu480",fontsize=16,color="magenta"];1442 -> 1535[label="",style="dashed", color="magenta", weight=3]; 1442 -> 1536[label="",style="dashed", color="magenta", weight=3]; 1443 -> 142[label="",style="dashed", color="red", weight=0]; 1443[label="xuu460 == xuu480",fontsize=16,color="magenta"];1443 -> 1537[label="",style="dashed", color="magenta", weight=3]; 1443 -> 1538[label="",style="dashed", color="magenta", weight=3]; 1444 -> 148[label="",style="dashed", color="red", weight=0]; 1444[label="xuu460 == xuu480",fontsize=16,color="magenta"];1444 -> 1539[label="",style="dashed", color="magenta", weight=3]; 1444 -> 1540[label="",style="dashed", color="magenta", weight=3]; 1445 -> 145[label="",style="dashed", color="red", weight=0]; 1445[label="xuu460 == xuu480",fontsize=16,color="magenta"];1445 -> 1541[label="",style="dashed", color="magenta", weight=3]; 1445 -> 1542[label="",style="dashed", color="magenta", weight=3]; 1446[label="xuu461 <= xuu481",fontsize=16,color="burlywood",shape="triangle"];3114[label="xuu461/(xuu4610,xuu4611)",fontsize=10,color="white",style="solid",shape="box"];1446 -> 3114[label="",style="solid", color="burlywood", weight=9]; 3114 -> 1543[label="",style="solid", color="burlywood", weight=3]; 1447[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1447 -> 1544[label="",style="solid", color="black", weight=3]; 1448[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1448 -> 1545[label="",style="solid", color="black", weight=3]; 1449[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1449 -> 1546[label="",style="solid", color="black", weight=3]; 1450[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1450 -> 1547[label="",style="solid", color="black", weight=3]; 1451[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1451 -> 1548[label="",style="solid", color="black", weight=3]; 1452[label="xuu461 <= xuu481",fontsize=16,color="burlywood",shape="triangle"];3115[label="xuu461/Left xuu4610",fontsize=10,color="white",style="solid",shape="box"];1452 -> 3115[label="",style="solid", color="burlywood", weight=9]; 3115 -> 1549[label="",style="solid", color="burlywood", weight=3]; 3116[label="xuu461/Right xuu4610",fontsize=10,color="white",style="solid",shape="box"];1452 -> 3116[label="",style="solid", color="burlywood", weight=9]; 3116 -> 1550[label="",style="solid", color="burlywood", weight=3]; 1453[label="xuu461 <= xuu481",fontsize=16,color="burlywood",shape="triangle"];3117[label="xuu461/(xuu4610,xuu4611,xuu4612)",fontsize=10,color="white",style="solid",shape="box"];1453 -> 3117[label="",style="solid", color="burlywood", weight=9]; 3117 -> 1551[label="",style="solid", color="burlywood", weight=3]; 1454[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1454 -> 1552[label="",style="solid", color="black", weight=3]; 1455[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1455 -> 1553[label="",style="solid", color="black", weight=3]; 1456[label="xuu461 <= xuu481",fontsize=16,color="burlywood",shape="triangle"];3118[label="xuu461/LT",fontsize=10,color="white",style="solid",shape="box"];1456 -> 3118[label="",style="solid", color="burlywood", weight=9]; 3118 -> 1554[label="",style="solid", color="burlywood", weight=3]; 3119[label="xuu461/EQ",fontsize=10,color="white",style="solid",shape="box"];1456 -> 3119[label="",style="solid", color="burlywood", weight=9]; 3119 -> 1555[label="",style="solid", color="burlywood", weight=3]; 3120[label="xuu461/GT",fontsize=10,color="white",style="solid",shape="box"];1456 -> 3120[label="",style="solid", color="burlywood", weight=9]; 3120 -> 1556[label="",style="solid", color="burlywood", weight=3]; 1457[label="xuu461 <= xuu481",fontsize=16,color="burlywood",shape="triangle"];3121[label="xuu461/Nothing",fontsize=10,color="white",style="solid",shape="box"];1457 -> 3121[label="",style="solid", color="burlywood", weight=9]; 3121 -> 1557[label="",style="solid", color="burlywood", weight=3]; 3122[label="xuu461/Just xuu4610",fontsize=10,color="white",style="solid",shape="box"];1457 -> 3122[label="",style="solid", color="burlywood", weight=9]; 3122 -> 1558[label="",style="solid", color="burlywood", weight=3]; 1458[label="xuu461 <= xuu481",fontsize=16,color="black",shape="triangle"];1458 -> 1559[label="",style="solid", color="black", weight=3]; 1459[label="xuu461 <= xuu481",fontsize=16,color="burlywood",shape="triangle"];3123[label="xuu461/False",fontsize=10,color="white",style="solid",shape="box"];1459 -> 3123[label="",style="solid", color="burlywood", weight=9]; 3123 -> 1560[label="",style="solid", color="burlywood", weight=3]; 3124[label="xuu461/True",fontsize=10,color="white",style="solid",shape="box"];1459 -> 3124[label="",style="solid", color="burlywood", weight=9]; 3124 -> 1561[label="",style="solid", color="burlywood", weight=3]; 1460[label="compare1 (xuu107,xuu108) (xuu109,xuu110) xuu112",fontsize=16,color="burlywood",shape="triangle"];3125[label="xuu112/False",fontsize=10,color="white",style="solid",shape="box"];1460 -> 3125[label="",style="solid", color="burlywood", weight=9]; 3125 -> 1562[label="",style="solid", color="burlywood", weight=3]; 3126[label="xuu112/True",fontsize=10,color="white",style="solid",shape="box"];1460 -> 3126[label="",style="solid", color="burlywood", weight=9]; 3126 -> 1563[label="",style="solid", color="burlywood", weight=3]; 1461 -> 1460[label="",style="dashed", color="red", weight=0]; 1461[label="compare1 (xuu107,xuu108) (xuu109,xuu110) True",fontsize=16,color="magenta"];1461 -> 1564[label="",style="dashed", color="magenta", weight=3]; 1135 -> 1082[label="",style="dashed", color="red", weight=0]; 1135[label="primCmpInt (primPlusInt (Pos Zero) (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 FiniteMap.EmptyFM xuu21)) (Pos (Succ (Succ Zero)))",fontsize=16,color="magenta"];1135 -> 1210[label="",style="dashed", color="magenta", weight=3]; 1135 -> 1211[label="",style="dashed", color="magenta", weight=3]; 1136 -> 1082[label="",style="dashed", color="red", weight=0]; 1136[label="primCmpInt (primPlusInt xuu382 (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21)) (Pos (Succ (Succ Zero)))",fontsize=16,color="magenta"];1136 -> 1212[label="",style="dashed", color="magenta", weight=3]; 1136 -> 1213[label="",style="dashed", color="magenta", weight=3]; 1236 -> 1230[label="",style="dashed", color="red", weight=0]; 1236[label="FiniteMap.sizeFM xuu38",fontsize=16,color="magenta"];1236 -> 1317[label="",style="dashed", color="magenta", weight=3]; 1314[label="Pos Zero",fontsize=16,color="green",shape="box"];1315[label="xuu212",fontsize=16,color="green",shape="box"];1316 -> 1082[label="",style="dashed", color="red", weight=0]; 1316[label="primCmpInt xuu89 xuu88",fontsize=16,color="magenta"];1316 -> 1329[label="",style="dashed", color="magenta", weight=3]; 1316 -> 1330[label="",style="dashed", color="magenta", weight=3]; 1226 -> 453[label="",style="dashed", color="red", weight=0]; 1226[label="FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="magenta"];1226 -> 1234[label="",style="dashed", color="magenta", weight=3]; 1226 -> 1235[label="",style="dashed", color="magenta", weight=3]; 1232[label="FiniteMap.mkBalBranch6MkBalBranch3 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 False",fontsize=16,color="black",shape="box"];1232 -> 1280[label="",style="solid", color="black", weight=3]; 1233[label="FiniteMap.mkBalBranch6MkBalBranch3 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 True",fontsize=16,color="black",shape="box"];1233 -> 1281[label="",style="solid", color="black", weight=3]; 1185[label="error []",fontsize=16,color="red",shape="box"];1186[label="FiniteMap.mkBalBranch6MkBalBranch02 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214)",fontsize=16,color="black",shape="box"];1186 -> 1237[label="",style="solid", color="black", weight=3]; 2697[label="xuu38",fontsize=16,color="green",shape="box"];2698[label="(xuu16,xuu17)",fontsize=16,color="green",shape="box"];2699[label="xuu38",fontsize=16,color="green",shape="box"];2700[label="xuu21",fontsize=16,color="green",shape="box"];2696[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu222 xuu210 xuu214 + FiniteMap.mkBranchRight_size xuu221 xuu210 xuu214",fontsize=16,color="black",shape="triangle"];2696 -> 2711[label="",style="solid", color="black", weight=3]; 2695[label="xuu210",fontsize=16,color="green",shape="box"];1145[label="primMulNat (Succ xuu4000100) (Succ xuu300000)",fontsize=16,color="black",shape="box"];1145 -> 1239[label="",style="solid", color="black", weight=3]; 1146[label="primMulNat (Succ xuu4000100) Zero",fontsize=16,color="black",shape="box"];1146 -> 1240[label="",style="solid", color="black", weight=3]; 1147[label="primMulNat Zero (Succ xuu300000)",fontsize=16,color="black",shape="box"];1147 -> 1241[label="",style="solid", color="black", weight=3]; 1148[label="primMulNat Zero Zero",fontsize=16,color="black",shape="box"];1148 -> 1242[label="",style="solid", color="black", weight=3]; 1487[label="LT",fontsize=16,color="green",shape="box"];1488[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1488 -> 1594[label="",style="solid", color="black", weight=3]; 1489[label="LT",fontsize=16,color="green",shape="box"];1490 -> 1279[label="",style="dashed", color="red", weight=0]; 1490[label="compare xuu460 xuu480",fontsize=16,color="magenta"];1490 -> 1595[label="",style="dashed", color="magenta", weight=3]; 1490 -> 1596[label="",style="dashed", color="magenta", weight=3]; 1491[label="LT",fontsize=16,color="green",shape="box"];1492[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1492 -> 1597[label="",style="solid", color="black", weight=3]; 1493[label="LT",fontsize=16,color="green",shape="box"];1494[label="compare xuu460 xuu480",fontsize=16,color="burlywood",shape="triangle"];3127[label="xuu460/()",fontsize=10,color="white",style="solid",shape="box"];1494 -> 3127[label="",style="solid", color="burlywood", weight=9]; 3127 -> 1598[label="",style="solid", color="burlywood", weight=3]; 1495[label="LT",fontsize=16,color="green",shape="box"];1496[label="compare xuu460 xuu480",fontsize=16,color="burlywood",shape="triangle"];3128[label="xuu460/xuu4600 :% xuu4601",fontsize=10,color="white",style="solid",shape="box"];1496 -> 3128[label="",style="solid", color="burlywood", weight=9]; 3128 -> 1599[label="",style="solid", color="burlywood", weight=3]; 1497[label="LT",fontsize=16,color="green",shape="box"];1498[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1498 -> 1600[label="",style="solid", color="black", weight=3]; 1499[label="LT",fontsize=16,color="green",shape="box"];1500[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1500 -> 1601[label="",style="solid", color="black", weight=3]; 1501[label="LT",fontsize=16,color="green",shape="box"];1502[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1502 -> 1602[label="",style="solid", color="black", weight=3]; 1503[label="LT",fontsize=16,color="green",shape="box"];1504[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1504 -> 1603[label="",style="solid", color="black", weight=3]; 1505[label="LT",fontsize=16,color="green",shape="box"];1506[label="compare xuu460 xuu480",fontsize=16,color="burlywood",shape="triangle"];3129[label="xuu460/xuu4600 : xuu4601",fontsize=10,color="white",style="solid",shape="box"];1506 -> 3129[label="",style="solid", color="burlywood", weight=9]; 3129 -> 1604[label="",style="solid", color="burlywood", weight=3]; 3130[label="xuu460/[]",fontsize=10,color="white",style="solid",shape="box"];1506 -> 3130[label="",style="solid", color="burlywood", weight=9]; 3130 -> 1605[label="",style="solid", color="burlywood", weight=3]; 1507[label="LT",fontsize=16,color="green",shape="box"];1508[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1508 -> 1606[label="",style="solid", color="black", weight=3]; 1509[label="LT",fontsize=16,color="green",shape="box"];1510[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1510 -> 1607[label="",style="solid", color="black", weight=3]; 1511[label="LT",fontsize=16,color="green",shape="box"];1512[label="compare xuu460 xuu480",fontsize=16,color="burlywood",shape="triangle"];3131[label="xuu460/Integer xuu4600",fontsize=10,color="white",style="solid",shape="box"];1512 -> 3131[label="",style="solid", color="burlywood", weight=9]; 3131 -> 1608[label="",style="solid", color="burlywood", weight=3]; 1513[label="LT",fontsize=16,color="green",shape="box"];1514[label="compare xuu460 xuu480",fontsize=16,color="black",shape="triangle"];1514 -> 1609[label="",style="solid", color="black", weight=3]; 1515[label="xuu480",fontsize=16,color="green",shape="box"];1516[label="xuu460",fontsize=16,color="green",shape="box"];1517[label="xuu480",fontsize=16,color="green",shape="box"];1518[label="xuu460",fontsize=16,color="green",shape="box"];1519[label="xuu480",fontsize=16,color="green",shape="box"];1520[label="xuu460",fontsize=16,color="green",shape="box"];1521[label="xuu480",fontsize=16,color="green",shape="box"];1522[label="xuu460",fontsize=16,color="green",shape="box"];1523[label="xuu480",fontsize=16,color="green",shape="box"];1524[label="xuu460",fontsize=16,color="green",shape="box"];1525[label="xuu480",fontsize=16,color="green",shape="box"];1526[label="xuu460",fontsize=16,color="green",shape="box"];1527[label="xuu480",fontsize=16,color="green",shape="box"];1528[label="xuu460",fontsize=16,color="green",shape="box"];1529[label="xuu480",fontsize=16,color="green",shape="box"];1530[label="xuu460",fontsize=16,color="green",shape="box"];1531[label="xuu480",fontsize=16,color="green",shape="box"];1532[label="xuu460",fontsize=16,color="green",shape="box"];1533[label="xuu480",fontsize=16,color="green",shape="box"];1534[label="xuu460",fontsize=16,color="green",shape="box"];1535[label="xuu480",fontsize=16,color="green",shape="box"];1536[label="xuu460",fontsize=16,color="green",shape="box"];1537[label="xuu480",fontsize=16,color="green",shape="box"];1538[label="xuu460",fontsize=16,color="green",shape="box"];1539[label="xuu480",fontsize=16,color="green",shape="box"];1540[label="xuu460",fontsize=16,color="green",shape="box"];1541[label="xuu480",fontsize=16,color="green",shape="box"];1542[label="xuu460",fontsize=16,color="green",shape="box"];1543[label="(xuu4610,xuu4611) <= xuu481",fontsize=16,color="burlywood",shape="box"];3132[label="xuu481/(xuu4810,xuu4811)",fontsize=10,color="white",style="solid",shape="box"];1543 -> 3132[label="",style="solid", color="burlywood", weight=9]; 3132 -> 1610[label="",style="solid", color="burlywood", weight=3]; 1544 -> 1611[label="",style="dashed", color="red", weight=0]; 1544[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1544 -> 1612[label="",style="dashed", color="magenta", weight=3]; 1545 -> 1611[label="",style="dashed", color="red", weight=0]; 1545[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1545 -> 1613[label="",style="dashed", color="magenta", weight=3]; 1546 -> 1611[label="",style="dashed", color="red", weight=0]; 1546[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1546 -> 1614[label="",style="dashed", color="magenta", weight=3]; 1547 -> 1611[label="",style="dashed", color="red", weight=0]; 1547[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1547 -> 1615[label="",style="dashed", color="magenta", weight=3]; 1548 -> 1611[label="",style="dashed", color="red", weight=0]; 1548[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1548 -> 1616[label="",style="dashed", color="magenta", weight=3]; 1549[label="Left xuu4610 <= xuu481",fontsize=16,color="burlywood",shape="box"];3133[label="xuu481/Left xuu4810",fontsize=10,color="white",style="solid",shape="box"];1549 -> 3133[label="",style="solid", color="burlywood", weight=9]; 3133 -> 1620[label="",style="solid", color="burlywood", weight=3]; 3134[label="xuu481/Right xuu4810",fontsize=10,color="white",style="solid",shape="box"];1549 -> 3134[label="",style="solid", color="burlywood", weight=9]; 3134 -> 1621[label="",style="solid", color="burlywood", weight=3]; 1550[label="Right xuu4610 <= xuu481",fontsize=16,color="burlywood",shape="box"];3135[label="xuu481/Left xuu4810",fontsize=10,color="white",style="solid",shape="box"];1550 -> 3135[label="",style="solid", color="burlywood", weight=9]; 3135 -> 1622[label="",style="solid", color="burlywood", weight=3]; 3136[label="xuu481/Right xuu4810",fontsize=10,color="white",style="solid",shape="box"];1550 -> 3136[label="",style="solid", color="burlywood", weight=9]; 3136 -> 1623[label="",style="solid", color="burlywood", weight=3]; 1551[label="(xuu4610,xuu4611,xuu4612) <= xuu481",fontsize=16,color="burlywood",shape="box"];3137[label="xuu481/(xuu4810,xuu4811,xuu4812)",fontsize=10,color="white",style="solid",shape="box"];1551 -> 3137[label="",style="solid", color="burlywood", weight=9]; 3137 -> 1624[label="",style="solid", color="burlywood", weight=3]; 1552 -> 1611[label="",style="dashed", color="red", weight=0]; 1552[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1552 -> 1617[label="",style="dashed", color="magenta", weight=3]; 1553 -> 1611[label="",style="dashed", color="red", weight=0]; 1553[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1553 -> 1618[label="",style="dashed", color="magenta", weight=3]; 1554[label="LT <= xuu481",fontsize=16,color="burlywood",shape="box"];3138[label="xuu481/LT",fontsize=10,color="white",style="solid",shape="box"];1554 -> 3138[label="",style="solid", color="burlywood", weight=9]; 3138 -> 1625[label="",style="solid", color="burlywood", weight=3]; 3139[label="xuu481/EQ",fontsize=10,color="white",style="solid",shape="box"];1554 -> 3139[label="",style="solid", color="burlywood", weight=9]; 3139 -> 1626[label="",style="solid", color="burlywood", weight=3]; 3140[label="xuu481/GT",fontsize=10,color="white",style="solid",shape="box"];1554 -> 3140[label="",style="solid", color="burlywood", weight=9]; 3140 -> 1627[label="",style="solid", color="burlywood", weight=3]; 1555[label="EQ <= xuu481",fontsize=16,color="burlywood",shape="box"];3141[label="xuu481/LT",fontsize=10,color="white",style="solid",shape="box"];1555 -> 3141[label="",style="solid", color="burlywood", weight=9]; 3141 -> 1628[label="",style="solid", color="burlywood", weight=3]; 3142[label="xuu481/EQ",fontsize=10,color="white",style="solid",shape="box"];1555 -> 3142[label="",style="solid", color="burlywood", weight=9]; 3142 -> 1629[label="",style="solid", color="burlywood", weight=3]; 3143[label="xuu481/GT",fontsize=10,color="white",style="solid",shape="box"];1555 -> 3143[label="",style="solid", color="burlywood", weight=9]; 3143 -> 1630[label="",style="solid", color="burlywood", weight=3]; 1556[label="GT <= xuu481",fontsize=16,color="burlywood",shape="box"];3144[label="xuu481/LT",fontsize=10,color="white",style="solid",shape="box"];1556 -> 3144[label="",style="solid", color="burlywood", weight=9]; 3144 -> 1631[label="",style="solid", color="burlywood", weight=3]; 3145[label="xuu481/EQ",fontsize=10,color="white",style="solid",shape="box"];1556 -> 3145[label="",style="solid", color="burlywood", weight=9]; 3145 -> 1632[label="",style="solid", color="burlywood", weight=3]; 3146[label="xuu481/GT",fontsize=10,color="white",style="solid",shape="box"];1556 -> 3146[label="",style="solid", color="burlywood", weight=9]; 3146 -> 1633[label="",style="solid", color="burlywood", weight=3]; 1557[label="Nothing <= xuu481",fontsize=16,color="burlywood",shape="box"];3147[label="xuu481/Nothing",fontsize=10,color="white",style="solid",shape="box"];1557 -> 3147[label="",style="solid", color="burlywood", weight=9]; 3147 -> 1634[label="",style="solid", color="burlywood", weight=3]; 3148[label="xuu481/Just xuu4810",fontsize=10,color="white",style="solid",shape="box"];1557 -> 3148[label="",style="solid", color="burlywood", weight=9]; 3148 -> 1635[label="",style="solid", color="burlywood", weight=3]; 1558[label="Just xuu4610 <= xuu481",fontsize=16,color="burlywood",shape="box"];3149[label="xuu481/Nothing",fontsize=10,color="white",style="solid",shape="box"];1558 -> 3149[label="",style="solid", color="burlywood", weight=9]; 3149 -> 1636[label="",style="solid", color="burlywood", weight=3]; 3150[label="xuu481/Just xuu4810",fontsize=10,color="white",style="solid",shape="box"];1558 -> 3150[label="",style="solid", color="burlywood", weight=9]; 3150 -> 1637[label="",style="solid", color="burlywood", weight=3]; 1559 -> 1611[label="",style="dashed", color="red", weight=0]; 1559[label="compare xuu461 xuu481 /= GT",fontsize=16,color="magenta"];1559 -> 1619[label="",style="dashed", color="magenta", weight=3]; 1560[label="False <= xuu481",fontsize=16,color="burlywood",shape="box"];3151[label="xuu481/False",fontsize=10,color="white",style="solid",shape="box"];1560 -> 3151[label="",style="solid", color="burlywood", weight=9]; 3151 -> 1638[label="",style="solid", color="burlywood", weight=3]; 3152[label="xuu481/True",fontsize=10,color="white",style="solid",shape="box"];1560 -> 3152[label="",style="solid", color="burlywood", weight=9]; 3152 -> 1639[label="",style="solid", color="burlywood", weight=3]; 1561[label="True <= xuu481",fontsize=16,color="burlywood",shape="box"];3153[label="xuu481/False",fontsize=10,color="white",style="solid",shape="box"];1561 -> 3153[label="",style="solid", color="burlywood", weight=9]; 3153 -> 1640[label="",style="solid", color="burlywood", weight=3]; 3154[label="xuu481/True",fontsize=10,color="white",style="solid",shape="box"];1561 -> 3154[label="",style="solid", color="burlywood", weight=9]; 3154 -> 1641[label="",style="solid", color="burlywood", weight=3]; 1562[label="compare1 (xuu107,xuu108) (xuu109,xuu110) False",fontsize=16,color="black",shape="box"];1562 -> 1642[label="",style="solid", color="black", weight=3]; 1563[label="compare1 (xuu107,xuu108) (xuu109,xuu110) True",fontsize=16,color="black",shape="box"];1563 -> 1643[label="",style="solid", color="black", weight=3]; 1564[label="True",fontsize=16,color="green",shape="box"];1210[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];1211 -> 1318[label="",style="dashed", color="red", weight=0]; 1211[label="primPlusInt (Pos Zero) (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 FiniteMap.EmptyFM xuu21)",fontsize=16,color="magenta"];1211 -> 1321[label="",style="dashed", color="magenta", weight=3]; 1211 -> 1322[label="",style="dashed", color="magenta", weight=3]; 1082[label="primCmpInt xuu46 xuu48",fontsize=16,color="burlywood",shape="triangle"];3155[label="xuu46/Pos xuu460",fontsize=10,color="white",style="solid",shape="box"];1082 -> 3155[label="",style="solid", color="burlywood", weight=9]; 3155 -> 1150[label="",style="solid", color="burlywood", weight=3]; 3156[label="xuu46/Neg xuu460",fontsize=10,color="white",style="solid",shape="box"];1082 -> 3156[label="",style="solid", color="burlywood", weight=9]; 3156 -> 1151[label="",style="solid", color="burlywood", weight=3]; 1212[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];1213 -> 1318[label="",style="dashed", color="red", weight=0]; 1213[label="primPlusInt xuu382 (FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21)",fontsize=16,color="magenta"];1213 -> 1323[label="",style="dashed", color="magenta", weight=3]; 1317[label="xuu38",fontsize=16,color="green",shape="box"];1329[label="xuu88",fontsize=16,color="green",shape="box"];1330[label="xuu89",fontsize=16,color="green",shape="box"];1234 -> 1223[label="",style="dashed", color="red", weight=0]; 1234[label="FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="magenta"];1235 -> 1229[label="",style="dashed", color="red", weight=0]; 1235[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1280[label="FiniteMap.mkBalBranch6MkBalBranch2 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 otherwise",fontsize=16,color="black",shape="box"];1280 -> 1331[label="",style="solid", color="black", weight=3]; 1281[label="FiniteMap.mkBalBranch6MkBalBranch1 (xuu16,xuu17) xuu18 xuu38 xuu21 xuu38 xuu21 xuu38",fontsize=16,color="burlywood",shape="box"];3157[label="xuu38/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1281 -> 3157[label="",style="solid", color="burlywood", weight=9]; 3157 -> 1332[label="",style="solid", color="burlywood", weight=3]; 3158[label="xuu38/FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384",fontsize=10,color="white",style="solid",shape="box"];1281 -> 3158[label="",style="solid", color="burlywood", weight=9]; 3158 -> 1333[label="",style="solid", color="burlywood", weight=3]; 1237 -> 1414[label="",style="dashed", color="red", weight=0]; 1237[label="FiniteMap.mkBalBranch6MkBalBranch01 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu210 xuu211 xuu212 xuu213 xuu214 (FiniteMap.sizeFM xuu213 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xuu214)",fontsize=16,color="magenta"];1237 -> 1415[label="",style="dashed", color="magenta", weight=3]; 2711 -> 1318[label="",style="dashed", color="red", weight=0]; 2711[label="primPlusInt (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu222 xuu210 xuu214) (FiniteMap.mkBranchRight_size xuu221 xuu210 xuu214)",fontsize=16,color="magenta"];2711 -> 2763[label="",style="dashed", color="magenta", weight=3]; 2711 -> 2764[label="",style="dashed", color="magenta", weight=3]; 1239 -> 1342[label="",style="dashed", color="red", weight=0]; 1239[label="primPlusNat (primMulNat xuu4000100 (Succ xuu300000)) (Succ xuu300000)",fontsize=16,color="magenta"];1239 -> 1343[label="",style="dashed", color="magenta", weight=3]; 1240[label="Zero",fontsize=16,color="green",shape="box"];1241[label="Zero",fontsize=16,color="green",shape="box"];1242[label="Zero",fontsize=16,color="green",shape="box"];1594[label="compare3 xuu460 xuu480",fontsize=16,color="black",shape="box"];1594 -> 1644[label="",style="solid", color="black", weight=3]; 1595[label="xuu480",fontsize=16,color="green",shape="box"];1596[label="xuu460",fontsize=16,color="green",shape="box"];1597[label="primCmpChar xuu460 xuu480",fontsize=16,color="burlywood",shape="box"];3159[label="xuu460/Char xuu4600",fontsize=10,color="white",style="solid",shape="box"];1597 -> 3159[label="",style="solid", color="burlywood", weight=9]; 3159 -> 1645[label="",style="solid", color="burlywood", weight=3]; 1598[label="compare () xuu480",fontsize=16,color="burlywood",shape="box"];3160[label="xuu480/()",fontsize=10,color="white",style="solid",shape="box"];1598 -> 3160[label="",style="solid", color="burlywood", weight=9]; 3160 -> 1646[label="",style="solid", color="burlywood", weight=3]; 1599[label="compare (xuu4600 :% xuu4601) xuu480",fontsize=16,color="burlywood",shape="box"];3161[label="xuu480/xuu4800 :% xuu4801",fontsize=10,color="white",style="solid",shape="box"];1599 -> 3161[label="",style="solid", color="burlywood", weight=9]; 3161 -> 1647[label="",style="solid", color="burlywood", weight=3]; 1600[label="primCmpDouble xuu460 xuu480",fontsize=16,color="burlywood",shape="box"];3162[label="xuu460/Double xuu4600 xuu4601",fontsize=10,color="white",style="solid",shape="box"];1600 -> 3162[label="",style="solid", color="burlywood", weight=9]; 3162 -> 1648[label="",style="solid", color="burlywood", weight=3]; 1601[label="compare3 xuu460 xuu480",fontsize=16,color="black",shape="box"];1601 -> 1649[label="",style="solid", color="black", weight=3]; 1602[label="compare3 xuu460 xuu480",fontsize=16,color="black",shape="box"];1602 -> 1650[label="",style="solid", color="black", weight=3]; 1603[label="primCmpFloat xuu460 xuu480",fontsize=16,color="burlywood",shape="box"];3163[label="xuu460/Float xuu4600 xuu4601",fontsize=10,color="white",style="solid",shape="box"];1603 -> 3163[label="",style="solid", color="burlywood", weight=9]; 3163 -> 1651[label="",style="solid", color="burlywood", weight=3]; 1604[label="compare (xuu4600 : xuu4601) xuu480",fontsize=16,color="burlywood",shape="box"];3164[label="xuu480/xuu4800 : xuu4801",fontsize=10,color="white",style="solid",shape="box"];1604 -> 3164[label="",style="solid", color="burlywood", weight=9]; 3164 -> 1652[label="",style="solid", color="burlywood", weight=3]; 3165[label="xuu480/[]",fontsize=10,color="white",style="solid",shape="box"];1604 -> 3165[label="",style="solid", color="burlywood", weight=9]; 3165 -> 1653[label="",style="solid", color="burlywood", weight=3]; 1605[label="compare [] xuu480",fontsize=16,color="burlywood",shape="box"];3166[label="xuu480/xuu4800 : xuu4801",fontsize=10,color="white",style="solid",shape="box"];1605 -> 3166[label="",style="solid", color="burlywood", weight=9]; 3166 -> 1654[label="",style="solid", color="burlywood", weight=3]; 3167[label="xuu480/[]",fontsize=10,color="white",style="solid",shape="box"];1605 -> 3167[label="",style="solid", color="burlywood", weight=9]; 3167 -> 1655[label="",style="solid", color="burlywood", weight=3]; 1606[label="compare3 xuu460 xuu480",fontsize=16,color="black",shape="box"];1606 -> 1656[label="",style="solid", color="black", weight=3]; 1607[label="compare3 xuu460 xuu480",fontsize=16,color="black",shape="box"];1607 -> 1657[label="",style="solid", color="black", weight=3]; 1608[label="compare (Integer xuu4600) xuu480",fontsize=16,color="burlywood",shape="box"];3168[label="xuu480/Integer xuu4800",fontsize=10,color="white",style="solid",shape="box"];1608 -> 3168[label="",style="solid", color="burlywood", weight=9]; 3168 -> 1658[label="",style="solid", color="burlywood", weight=3]; 1609[label="compare3 xuu460 xuu480",fontsize=16,color="black",shape="box"];1609 -> 1659[label="",style="solid", color="black", weight=3]; 1610[label="(xuu4610,xuu4611) <= (xuu4810,xuu4811)",fontsize=16,color="black",shape="box"];1610 -> 1660[label="",style="solid", color="black", weight=3]; 1612 -> 1279[label="",style="dashed", color="red", weight=0]; 1612[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1612 -> 1661[label="",style="dashed", color="magenta", weight=3]; 1612 -> 1662[label="",style="dashed", color="magenta", weight=3]; 1611[label="xuu119 /= GT",fontsize=16,color="black",shape="triangle"];1611 -> 1663[label="",style="solid", color="black", weight=3]; 1613 -> 1492[label="",style="dashed", color="red", weight=0]; 1613[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1613 -> 1664[label="",style="dashed", color="magenta", weight=3]; 1613 -> 1665[label="",style="dashed", color="magenta", weight=3]; 1614 -> 1494[label="",style="dashed", color="red", weight=0]; 1614[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1614 -> 1666[label="",style="dashed", color="magenta", weight=3]; 1614 -> 1667[label="",style="dashed", color="magenta", weight=3]; 1615 -> 1496[label="",style="dashed", color="red", weight=0]; 1615[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1615 -> 1668[label="",style="dashed", color="magenta", weight=3]; 1615 -> 1669[label="",style="dashed", color="magenta", weight=3]; 1616 -> 1498[label="",style="dashed", color="red", weight=0]; 1616[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1616 -> 1670[label="",style="dashed", color="magenta", weight=3]; 1616 -> 1671[label="",style="dashed", color="magenta", weight=3]; 1620[label="Left xuu4610 <= Left xuu4810",fontsize=16,color="black",shape="box"];1620 -> 1704[label="",style="solid", color="black", weight=3]; 1621[label="Left xuu4610 <= Right xuu4810",fontsize=16,color="black",shape="box"];1621 -> 1705[label="",style="solid", color="black", weight=3]; 1622[label="Right xuu4610 <= Left xuu4810",fontsize=16,color="black",shape="box"];1622 -> 1706[label="",style="solid", color="black", weight=3]; 1623[label="Right xuu4610 <= Right xuu4810",fontsize=16,color="black",shape="box"];1623 -> 1707[label="",style="solid", color="black", weight=3]; 1624[label="(xuu4610,xuu4611,xuu4612) <= (xuu4810,xuu4811,xuu4812)",fontsize=16,color="black",shape="box"];1624 -> 1708[label="",style="solid", color="black", weight=3]; 1617 -> 1504[label="",style="dashed", color="red", weight=0]; 1617[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1617 -> 1672[label="",style="dashed", color="magenta", weight=3]; 1617 -> 1673[label="",style="dashed", color="magenta", weight=3]; 1618 -> 1506[label="",style="dashed", color="red", weight=0]; 1618[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1618 -> 1674[label="",style="dashed", color="magenta", weight=3]; 1618 -> 1675[label="",style="dashed", color="magenta", weight=3]; 1625[label="LT <= LT",fontsize=16,color="black",shape="box"];1625 -> 1709[label="",style="solid", color="black", weight=3]; 1626[label="LT <= EQ",fontsize=16,color="black",shape="box"];1626 -> 1710[label="",style="solid", color="black", weight=3]; 1627[label="LT <= GT",fontsize=16,color="black",shape="box"];1627 -> 1711[label="",style="solid", color="black", weight=3]; 1628[label="EQ <= LT",fontsize=16,color="black",shape="box"];1628 -> 1712[label="",style="solid", color="black", weight=3]; 1629[label="EQ <= EQ",fontsize=16,color="black",shape="box"];1629 -> 1713[label="",style="solid", color="black", weight=3]; 1630[label="EQ <= GT",fontsize=16,color="black",shape="box"];1630 -> 1714[label="",style="solid", color="black", weight=3]; 1631[label="GT <= LT",fontsize=16,color="black",shape="box"];1631 -> 1715[label="",style="solid", color="black", weight=3]; 1632[label="GT <= EQ",fontsize=16,color="black",shape="box"];1632 -> 1716[label="",style="solid", color="black", weight=3]; 1633[label="GT <= GT",fontsize=16,color="black",shape="box"];1633 -> 1717[label="",style="solid", color="black", weight=3]; 1634[label="Nothing <= Nothing",fontsize=16,color="black",shape="box"];1634 -> 1718[label="",style="solid", color="black", weight=3]; 1635[label="Nothing <= Just xuu4810",fontsize=16,color="black",shape="box"];1635 -> 1719[label="",style="solid", color="black", weight=3]; 1636[label="Just xuu4610 <= Nothing",fontsize=16,color="black",shape="box"];1636 -> 1720[label="",style="solid", color="black", weight=3]; 1637[label="Just xuu4610 <= Just xuu4810",fontsize=16,color="black",shape="box"];1637 -> 1721[label="",style="solid", color="black", weight=3]; 1619 -> 1512[label="",style="dashed", color="red", weight=0]; 1619[label="compare xuu461 xuu481",fontsize=16,color="magenta"];1619 -> 1676[label="",style="dashed", color="magenta", weight=3]; 1619 -> 1677[label="",style="dashed", color="magenta", weight=3]; 1638[label="False <= False",fontsize=16,color="black",shape="box"];1638 -> 1722[label="",style="solid", color="black", weight=3]; 1639[label="False <= True",fontsize=16,color="black",shape="box"];1639 -> 1723[label="",style="solid", color="black", weight=3]; 1640[label="True <= False",fontsize=16,color="black",shape="box"];1640 -> 1724[label="",style="solid", color="black", weight=3]; 1641[label="True <= True",fontsize=16,color="black",shape="box"];1641 -> 1725[label="",style="solid", color="black", weight=3]; 1642[label="compare0 (xuu107,xuu108) (xuu109,xuu110) otherwise",fontsize=16,color="black",shape="box"];1642 -> 1726[label="",style="solid", color="black", weight=3]; 1643[label="LT",fontsize=16,color="green",shape="box"];1321 -> 1223[label="",style="dashed", color="red", weight=0]; 1321[label="FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 FiniteMap.EmptyFM xuu21",fontsize=16,color="magenta"];1321 -> 1345[label="",style="dashed", color="magenta", weight=3]; 1322[label="Pos Zero",fontsize=16,color="green",shape="box"];1318[label="primPlusInt xuu382 xuu94",fontsize=16,color="burlywood",shape="triangle"];3169[label="xuu382/Pos xuu3820",fontsize=10,color="white",style="solid",shape="box"];1318 -> 3169[label="",style="solid", color="burlywood", weight=9]; 3169 -> 1340[label="",style="solid", color="burlywood", weight=3]; 3170[label="xuu382/Neg xuu3820",fontsize=10,color="white",style="solid",shape="box"];1318 -> 3170[label="",style="solid", color="burlywood", weight=9]; 3170 -> 1341[label="",style="solid", color="burlywood", weight=3]; 1150[label="primCmpInt (Pos xuu460) xuu48",fontsize=16,color="burlywood",shape="box"];3171[label="xuu460/Succ xuu4600",fontsize=10,color="white",style="solid",shape="box"];1150 -> 3171[label="",style="solid", color="burlywood", weight=9]; 3171 -> 1346[label="",style="solid", color="burlywood", weight=3]; 3172[label="xuu460/Zero",fontsize=10,color="white",style="solid",shape="box"];1150 -> 3172[label="",style="solid", color="burlywood", weight=9]; 3172 -> 1347[label="",style="solid", color="burlywood", weight=3]; 1151[label="primCmpInt (Neg xuu460) xuu48",fontsize=16,color="burlywood",shape="box"];3173[label="xuu460/Succ xuu4600",fontsize=10,color="white",style="solid",shape="box"];1151 -> 3173[label="",style="solid", color="burlywood", weight=9]; 3173 -> 1348[label="",style="solid", color="burlywood", weight=3]; 3174[label="xuu460/Zero",fontsize=10,color="white",style="solid",shape="box"];1151 -> 3174[label="",style="solid", color="burlywood", weight=9]; 3174 -> 1349[label="",style="solid", color="burlywood", weight=3]; 1323 -> 1223[label="",style="dashed", color="red", weight=0]; 1323[label="FiniteMap.mkBalBranch6Size_r (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21",fontsize=16,color="magenta"];1323 -> 1350[label="",style="dashed", color="magenta", weight=3]; 1331[label="FiniteMap.mkBalBranch6MkBalBranch2 (xuu16,xuu17) xuu18 xuu38 xuu21 (xuu16,xuu17) xuu18 xuu38 xuu21 True",fontsize=16,color="black",shape="box"];1331 -> 1351[label="",style="solid", color="black", weight=3]; 1332[label="FiniteMap.mkBalBranch6MkBalBranch1 (xuu16,xuu17) xuu18 FiniteMap.EmptyFM xuu21 FiniteMap.EmptyFM xuu21 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];1332 -> 1352[label="",style="solid", color="black", weight=3]; 1333[label="FiniteMap.mkBalBranch6MkBalBranch1 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384)",fontsize=16,color="black",shape="box"];1333 -> 1353[label="",style="solid", color="black", weight=3]; 1415 -> 1386[label="",style="dashed", color="red", weight=0]; 1415[label="FiniteMap.sizeFM xuu213 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xuu214",fontsize=16,color="magenta"];1415 -> 1462[label="",style="dashed", color="magenta", weight=3]; 1415 -> 1463[label="",style="dashed", color="magenta", weight=3]; 1414[label="FiniteMap.mkBalBranch6MkBalBranch01 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu210 xuu211 xuu212 xuu213 xuu214 xuu113",fontsize=16,color="burlywood",shape="triangle"];3175[label="xuu113/False",fontsize=10,color="white",style="solid",shape="box"];1414 -> 3175[label="",style="solid", color="burlywood", weight=9]; 3175 -> 1464[label="",style="solid", color="burlywood", weight=3]; 3176[label="xuu113/True",fontsize=10,color="white",style="solid",shape="box"];1414 -> 3176[label="",style="solid", color="burlywood", weight=9]; 3176 -> 1465[label="",style="solid", color="burlywood", weight=3]; 2763[label="FiniteMap.mkBranchRight_size xuu221 xuu210 xuu214",fontsize=16,color="black",shape="box"];2763 -> 2770[label="",style="solid", color="black", weight=3]; 2764[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu222 xuu210 xuu214",fontsize=16,color="black",shape="box"];2764 -> 2771[label="",style="solid", color="black", weight=3]; 1343 -> 984[label="",style="dashed", color="red", weight=0]; 1343[label="primMulNat xuu4000100 (Succ xuu300000)",fontsize=16,color="magenta"];1343 -> 1364[label="",style="dashed", color="magenta", weight=3]; 1343 -> 1365[label="",style="dashed", color="magenta", weight=3]; 1342[label="primPlusNat xuu98 (Succ xuu300000)",fontsize=16,color="burlywood",shape="triangle"];3177[label="xuu98/Succ xuu980",fontsize=10,color="white",style="solid",shape="box"];1342 -> 3177[label="",style="solid", color="burlywood", weight=9]; 3177 -> 1366[label="",style="solid", color="burlywood", weight=3]; 3178[label="xuu98/Zero",fontsize=10,color="white",style="solid",shape="box"];1342 -> 3178[label="",style="solid", color="burlywood", weight=9]; 3178 -> 1367[label="",style="solid", color="burlywood", weight=3]; 1644 -> 1243[label="",style="dashed", color="red", weight=0]; 1644[label="compare2 xuu460 xuu480 (xuu460 == xuu480)",fontsize=16,color="magenta"];1644 -> 1727[label="",style="dashed", color="magenta", weight=3]; 1644 -> 1728[label="",style="dashed", color="magenta", weight=3]; 1644 -> 1729[label="",style="dashed", color="magenta", weight=3]; 1645[label="primCmpChar (Char xuu4600) xuu480",fontsize=16,color="burlywood",shape="box"];3179[label="xuu480/Char xuu4800",fontsize=10,color="white",style="solid",shape="box"];1645 -> 3179[label="",style="solid", color="burlywood", weight=9]; 3179 -> 1730[label="",style="solid", color="burlywood", weight=3]; 1646[label="compare () ()",fontsize=16,color="black",shape="box"];1646 -> 1731[label="",style="solid", color="black", weight=3]; 1647[label="compare (xuu4600 :% xuu4601) (xuu4800 :% xuu4801)",fontsize=16,color="black",shape="box"];1647 -> 1732[label="",style="solid", color="black", weight=3]; 1648[label="primCmpDouble (Double xuu4600 xuu4601) xuu480",fontsize=16,color="burlywood",shape="box"];3180[label="xuu4601/Pos xuu46010",fontsize=10,color="white",style="solid",shape="box"];1648 -> 3180[label="",style="solid", color="burlywood", weight=9]; 3180 -> 1733[label="",style="solid", color="burlywood", weight=3]; 3181[label="xuu4601/Neg xuu46010",fontsize=10,color="white",style="solid",shape="box"];1648 -> 3181[label="",style="solid", color="burlywood", weight=9]; 3181 -> 1734[label="",style="solid", color="burlywood", weight=3]; 1649 -> 1735[label="",style="dashed", color="red", weight=0]; 1649[label="compare2 xuu460 xuu480 (xuu460 == xuu480)",fontsize=16,color="magenta"];1649 -> 1736[label="",style="dashed", color="magenta", weight=3]; 1650 -> 1737[label="",style="dashed", color="red", weight=0]; 1650[label="compare2 xuu460 xuu480 (xuu460 == xuu480)",fontsize=16,color="magenta"];1650 -> 1738[label="",style="dashed", color="magenta", weight=3]; 1651[label="primCmpFloat (Float xuu4600 xuu4601) xuu480",fontsize=16,color="burlywood",shape="box"];3182[label="xuu4601/Pos xuu46010",fontsize=10,color="white",style="solid",shape="box"];1651 -> 3182[label="",style="solid", color="burlywood", weight=9]; 3182 -> 1739[label="",style="solid", color="burlywood", weight=3]; 3183[label="xuu4601/Neg xuu46010",fontsize=10,color="white",style="solid",shape="box"];1651 -> 3183[label="",style="solid", color="burlywood", weight=9]; 3183 -> 1740[label="",style="solid", color="burlywood", weight=3]; 1652[label="compare (xuu4600 : xuu4601) (xuu4800 : xuu4801)",fontsize=16,color="black",shape="box"];1652 -> 1741[label="",style="solid", color="black", weight=3]; 1653[label="compare (xuu4600 : xuu4601) []",fontsize=16,color="black",shape="box"];1653 -> 1742[label="",style="solid", color="black", weight=3]; 1654[label="compare [] (xuu4800 : xuu4801)",fontsize=16,color="black",shape="box"];1654 -> 1743[label="",style="solid", color="black", weight=3]; 1655[label="compare [] []",fontsize=16,color="black",shape="box"];1655 -> 1744[label="",style="solid", color="black", weight=3]; 1656 -> 1745[label="",style="dashed", color="red", weight=0]; 1656[label="compare2 xuu460 xuu480 (xuu460 == xuu480)",fontsize=16,color="magenta"];1656 -> 1746[label="",style="dashed", color="magenta", weight=3]; 1657 -> 1747[label="",style="dashed", color="red", weight=0]; 1657[label="compare2 xuu460 xuu480 (xuu460 == xuu480)",fontsize=16,color="magenta"];1657 -> 1748[label="",style="dashed", color="magenta", weight=3]; 1658[label="compare (Integer xuu4600) (Integer xuu4800)",fontsize=16,color="black",shape="box"];1658 -> 1749[label="",style="solid", color="black", weight=3]; 1659 -> 1750[label="",style="dashed", color="red", weight=0]; 1659[label="compare2 xuu460 xuu480 (xuu460 == xuu480)",fontsize=16,color="magenta"];1659 -> 1751[label="",style="dashed", color="magenta", weight=3]; 1660 -> 1837[label="",style="dashed", color="red", weight=0]; 1660[label="xuu4610 < xuu4810 || xuu4610 == xuu4810 && xuu4611 <= xuu4811",fontsize=16,color="magenta"];1660 -> 1838[label="",style="dashed", color="magenta", weight=3]; 1660 -> 1839[label="",style="dashed", color="magenta", weight=3]; 1661[label="xuu481",fontsize=16,color="green",shape="box"];1662[label="xuu461",fontsize=16,color="green",shape="box"];1663 -> 1757[label="",style="dashed", color="red", weight=0]; 1663[label="not (xuu119 == GT)",fontsize=16,color="magenta"];1663 -> 1758[label="",style="dashed", color="magenta", weight=3]; 1664[label="xuu461",fontsize=16,color="green",shape="box"];1665[label="xuu481",fontsize=16,color="green",shape="box"];1666[label="xuu461",fontsize=16,color="green",shape="box"];1667[label="xuu481",fontsize=16,color="green",shape="box"];1668[label="xuu461",fontsize=16,color="green",shape="box"];1669[label="xuu481",fontsize=16,color="green",shape="box"];1670[label="xuu461",fontsize=16,color="green",shape="box"];1671[label="xuu481",fontsize=16,color="green",shape="box"];1704[label="xuu4610 <= xuu4810",fontsize=16,color="blue",shape="box"];3184[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3184[label="",style="solid", color="blue", weight=9]; 3184 -> 1759[label="",style="solid", color="blue", weight=3]; 3185[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3185[label="",style="solid", color="blue", weight=9]; 3185 -> 1760[label="",style="solid", color="blue", weight=3]; 3186[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3186[label="",style="solid", color="blue", weight=9]; 3186 -> 1761[label="",style="solid", color="blue", weight=3]; 3187[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3187[label="",style="solid", color="blue", weight=9]; 3187 -> 1762[label="",style="solid", color="blue", weight=3]; 3188[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3188[label="",style="solid", color="blue", weight=9]; 3188 -> 1763[label="",style="solid", color="blue", weight=3]; 3189[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3189[label="",style="solid", color="blue", weight=9]; 3189 -> 1764[label="",style="solid", color="blue", weight=3]; 3190[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3190[label="",style="solid", color="blue", weight=9]; 3190 -> 1765[label="",style="solid", color="blue", weight=3]; 3191[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3191[label="",style="solid", color="blue", weight=9]; 3191 -> 1766[label="",style="solid", color="blue", weight=3]; 3192[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3192[label="",style="solid", color="blue", weight=9]; 3192 -> 1767[label="",style="solid", color="blue", weight=3]; 3193[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3193[label="",style="solid", color="blue", weight=9]; 3193 -> 1768[label="",style="solid", color="blue", weight=3]; 3194[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3194[label="",style="solid", color="blue", weight=9]; 3194 -> 1769[label="",style="solid", color="blue", weight=3]; 3195[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3195[label="",style="solid", color="blue", weight=9]; 3195 -> 1770[label="",style="solid", color="blue", weight=3]; 3196[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3196[label="",style="solid", color="blue", weight=9]; 3196 -> 1771[label="",style="solid", color="blue", weight=3]; 3197[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1704 -> 3197[label="",style="solid", color="blue", weight=9]; 3197 -> 1772[label="",style="solid", color="blue", weight=3]; 1705[label="True",fontsize=16,color="green",shape="box"];1706[label="False",fontsize=16,color="green",shape="box"];1707[label="xuu4610 <= xuu4810",fontsize=16,color="blue",shape="box"];3198[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3198[label="",style="solid", color="blue", weight=9]; 3198 -> 1773[label="",style="solid", color="blue", weight=3]; 3199[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3199[label="",style="solid", color="blue", weight=9]; 3199 -> 1774[label="",style="solid", color="blue", weight=3]; 3200[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3200[label="",style="solid", color="blue", weight=9]; 3200 -> 1775[label="",style="solid", color="blue", weight=3]; 3201[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3201[label="",style="solid", color="blue", weight=9]; 3201 -> 1776[label="",style="solid", color="blue", weight=3]; 3202[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3202[label="",style="solid", color="blue", weight=9]; 3202 -> 1777[label="",style="solid", color="blue", weight=3]; 3203[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3203[label="",style="solid", color="blue", weight=9]; 3203 -> 1778[label="",style="solid", color="blue", weight=3]; 3204[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3204[label="",style="solid", color="blue", weight=9]; 3204 -> 1779[label="",style="solid", color="blue", weight=3]; 3205[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3205[label="",style="solid", color="blue", weight=9]; 3205 -> 1780[label="",style="solid", color="blue", weight=3]; 3206[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3206[label="",style="solid", color="blue", weight=9]; 3206 -> 1781[label="",style="solid", color="blue", weight=3]; 3207[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3207[label="",style="solid", color="blue", weight=9]; 3207 -> 1782[label="",style="solid", color="blue", weight=3]; 3208[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3208[label="",style="solid", color="blue", weight=9]; 3208 -> 1783[label="",style="solid", color="blue", weight=3]; 3209[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3209[label="",style="solid", color="blue", weight=9]; 3209 -> 1784[label="",style="solid", color="blue", weight=3]; 3210[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3210[label="",style="solid", color="blue", weight=9]; 3210 -> 1785[label="",style="solid", color="blue", weight=3]; 3211[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1707 -> 3211[label="",style="solid", color="blue", weight=9]; 3211 -> 1786[label="",style="solid", color="blue", weight=3]; 1708 -> 1837[label="",style="dashed", color="red", weight=0]; 1708[label="xuu4610 < xuu4810 || xuu4610 == xuu4810 && (xuu4611 < xuu4811 || xuu4611 == xuu4811 && xuu4612 <= xuu4812)",fontsize=16,color="magenta"];1708 -> 1840[label="",style="dashed", color="magenta", weight=3]; 1708 -> 1841[label="",style="dashed", color="magenta", weight=3]; 1672[label="xuu461",fontsize=16,color="green",shape="box"];1673[label="xuu481",fontsize=16,color="green",shape="box"];1674[label="xuu461",fontsize=16,color="green",shape="box"];1675[label="xuu481",fontsize=16,color="green",shape="box"];1709[label="True",fontsize=16,color="green",shape="box"];1710[label="True",fontsize=16,color="green",shape="box"];1711[label="True",fontsize=16,color="green",shape="box"];1712[label="False",fontsize=16,color="green",shape="box"];1713[label="True",fontsize=16,color="green",shape="box"];1714[label="True",fontsize=16,color="green",shape="box"];1715[label="False",fontsize=16,color="green",shape="box"];1716[label="False",fontsize=16,color="green",shape="box"];1717[label="True",fontsize=16,color="green",shape="box"];1718[label="True",fontsize=16,color="green",shape="box"];1719[label="True",fontsize=16,color="green",shape="box"];1720[label="False",fontsize=16,color="green",shape="box"];1721[label="xuu4610 <= xuu4810",fontsize=16,color="blue",shape="box"];3212[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3212[label="",style="solid", color="blue", weight=9]; 3212 -> 1787[label="",style="solid", color="blue", weight=3]; 3213[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3213[label="",style="solid", color="blue", weight=9]; 3213 -> 1788[label="",style="solid", color="blue", weight=3]; 3214[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3214[label="",style="solid", color="blue", weight=9]; 3214 -> 1789[label="",style="solid", color="blue", weight=3]; 3215[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3215[label="",style="solid", color="blue", weight=9]; 3215 -> 1790[label="",style="solid", color="blue", weight=3]; 3216[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3216[label="",style="solid", color="blue", weight=9]; 3216 -> 1791[label="",style="solid", color="blue", weight=3]; 3217[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3217[label="",style="solid", color="blue", weight=9]; 3217 -> 1792[label="",style="solid", color="blue", weight=3]; 3218[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3218[label="",style="solid", color="blue", weight=9]; 3218 -> 1793[label="",style="solid", color="blue", weight=3]; 3219[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3219[label="",style="solid", color="blue", weight=9]; 3219 -> 1794[label="",style="solid", color="blue", weight=3]; 3220[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3220[label="",style="solid", color="blue", weight=9]; 3220 -> 1795[label="",style="solid", color="blue", weight=3]; 3221[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3221[label="",style="solid", color="blue", weight=9]; 3221 -> 1796[label="",style="solid", color="blue", weight=3]; 3222[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3222[label="",style="solid", color="blue", weight=9]; 3222 -> 1797[label="",style="solid", color="blue", weight=3]; 3223[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3223[label="",style="solid", color="blue", weight=9]; 3223 -> 1798[label="",style="solid", color="blue", weight=3]; 3224[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3224[label="",style="solid", color="blue", weight=9]; 3224 -> 1799[label="",style="solid", color="blue", weight=3]; 3225[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1721 -> 3225[label="",style="solid", color="blue", weight=9]; 3225 -> 1800[label="",style="solid", color="blue", weight=3]; 1676[label="xuu461",fontsize=16,color="green",shape="box"];1677[label="xuu481",fontsize=16,color="green",shape="box"];1722[label="True",fontsize=16,color="green",shape="box"];1723[label="True",fontsize=16,color="green",shape="box"];1724[label="False",fontsize=16,color="green",shape="box"];1725[label="True",fontsize=16,color="green",shape="box"];1726[label="compare0 (xuu107,xuu108) (xuu109,xuu110) True",fontsize=16,color="black",shape="box"];1726 -> 1801[label="",style="solid", color="black", weight=3]; 1345[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];1340[label="primPlusInt (Pos xuu3820) xuu94",fontsize=16,color="burlywood",shape="box"];3226[label="xuu94/Pos xuu940",fontsize=10,color="white",style="solid",shape="box"];1340 -> 3226[label="",style="solid", color="burlywood", weight=9]; 3226 -> 1360[label="",style="solid", color="burlywood", weight=3]; 3227[label="xuu94/Neg xuu940",fontsize=10,color="white",style="solid",shape="box"];1340 -> 3227[label="",style="solid", color="burlywood", weight=9]; 3227 -> 1361[label="",style="solid", color="burlywood", weight=3]; 1341[label="primPlusInt (Neg xuu3820) xuu94",fontsize=16,color="burlywood",shape="box"];3228[label="xuu94/Pos xuu940",fontsize=10,color="white",style="solid",shape="box"];1341 -> 3228[label="",style="solid", color="burlywood", weight=9]; 3228 -> 1362[label="",style="solid", color="burlywood", weight=3]; 3229[label="xuu94/Neg xuu940",fontsize=10,color="white",style="solid",shape="box"];1341 -> 3229[label="",style="solid", color="burlywood", weight=9]; 3229 -> 1363[label="",style="solid", color="burlywood", weight=3]; 1346[label="primCmpInt (Pos (Succ xuu4600)) xuu48",fontsize=16,color="burlywood",shape="box"];3230[label="xuu48/Pos xuu480",fontsize=10,color="white",style="solid",shape="box"];1346 -> 3230[label="",style="solid", color="burlywood", weight=9]; 3230 -> 1403[label="",style="solid", color="burlywood", weight=3]; 3231[label="xuu48/Neg xuu480",fontsize=10,color="white",style="solid",shape="box"];1346 -> 3231[label="",style="solid", color="burlywood", weight=9]; 3231 -> 1404[label="",style="solid", color="burlywood", weight=3]; 1347[label="primCmpInt (Pos Zero) xuu48",fontsize=16,color="burlywood",shape="box"];3232[label="xuu48/Pos xuu480",fontsize=10,color="white",style="solid",shape="box"];1347 -> 3232[label="",style="solid", color="burlywood", weight=9]; 3232 -> 1405[label="",style="solid", color="burlywood", weight=3]; 3233[label="xuu48/Neg xuu480",fontsize=10,color="white",style="solid",shape="box"];1347 -> 3233[label="",style="solid", color="burlywood", weight=9]; 3233 -> 1406[label="",style="solid", color="burlywood", weight=3]; 1348[label="primCmpInt (Neg (Succ xuu4600)) xuu48",fontsize=16,color="burlywood",shape="box"];3234[label="xuu48/Pos xuu480",fontsize=10,color="white",style="solid",shape="box"];1348 -> 3234[label="",style="solid", color="burlywood", weight=9]; 3234 -> 1407[label="",style="solid", color="burlywood", weight=3]; 3235[label="xuu48/Neg xuu480",fontsize=10,color="white",style="solid",shape="box"];1348 -> 3235[label="",style="solid", color="burlywood", weight=9]; 3235 -> 1408[label="",style="solid", color="burlywood", weight=3]; 1349[label="primCmpInt (Neg Zero) xuu48",fontsize=16,color="burlywood",shape="box"];3236[label="xuu48/Pos xuu480",fontsize=10,color="white",style="solid",shape="box"];1349 -> 3236[label="",style="solid", color="burlywood", weight=9]; 3236 -> 1409[label="",style="solid", color="burlywood", weight=3]; 3237[label="xuu48/Neg xuu480",fontsize=10,color="white",style="solid",shape="box"];1349 -> 3237[label="",style="solid", color="burlywood", weight=9]; 3237 -> 1410[label="",style="solid", color="burlywood", weight=3]; 1350[label="FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384",fontsize=16,color="green",shape="box"];1351[label="FiniteMap.mkBranch (Pos (Succ (Succ Zero))) (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="black",shape="box"];1351 -> 1411[label="",style="solid", color="black", weight=3]; 1352[label="error []",fontsize=16,color="red",shape="box"];1353[label="FiniteMap.mkBalBranch6MkBalBranch12 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384)",fontsize=16,color="black",shape="box"];1353 -> 1412[label="",style="solid", color="black", weight=3]; 1462 -> 1230[label="",style="dashed", color="red", weight=0]; 1462[label="FiniteMap.sizeFM xuu213",fontsize=16,color="magenta"];1462 -> 1565[label="",style="dashed", color="magenta", weight=3]; 1463 -> 453[label="",style="dashed", color="red", weight=0]; 1463[label="Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xuu214",fontsize=16,color="magenta"];1463 -> 1566[label="",style="dashed", color="magenta", weight=3]; 1463 -> 1567[label="",style="dashed", color="magenta", weight=3]; 1464[label="FiniteMap.mkBalBranch6MkBalBranch01 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu210 xuu211 xuu212 xuu213 xuu214 False",fontsize=16,color="black",shape="box"];1464 -> 1568[label="",style="solid", color="black", weight=3]; 1465[label="FiniteMap.mkBalBranch6MkBalBranch01 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu210 xuu211 xuu212 xuu213 xuu214 True",fontsize=16,color="black",shape="box"];1465 -> 1569[label="",style="solid", color="black", weight=3]; 2770 -> 1230[label="",style="dashed", color="red", weight=0]; 2770[label="FiniteMap.sizeFM xuu214",fontsize=16,color="magenta"];2770 -> 2776[label="",style="dashed", color="magenta", weight=3]; 2771 -> 1318[label="",style="dashed", color="red", weight=0]; 2771[label="primPlusInt (Pos (Succ Zero)) (FiniteMap.mkBranchLeft_size xuu222 xuu210 xuu214)",fontsize=16,color="magenta"];2771 -> 2777[label="",style="dashed", color="magenta", weight=3]; 2771 -> 2778[label="",style="dashed", color="magenta", weight=3]; 1364[label="Succ xuu300000",fontsize=16,color="green",shape="box"];1365[label="xuu4000100",fontsize=16,color="green",shape="box"];1366[label="primPlusNat (Succ xuu980) (Succ xuu300000)",fontsize=16,color="black",shape="box"];1366 -> 1471[label="",style="solid", color="black", weight=3]; 1367[label="primPlusNat Zero (Succ xuu300000)",fontsize=16,color="black",shape="box"];1367 -> 1472[label="",style="solid", color="black", weight=3]; 1727 -> 137[label="",style="dashed", color="red", weight=0]; 1727[label="xuu460 == xuu480",fontsize=16,color="magenta"];1727 -> 1802[label="",style="dashed", color="magenta", weight=3]; 1727 -> 1803[label="",style="dashed", color="magenta", weight=3]; 1728[label="xuu480",fontsize=16,color="green",shape="box"];1729[label="xuu460",fontsize=16,color="green",shape="box"];1730[label="primCmpChar (Char xuu4600) (Char xuu4800)",fontsize=16,color="black",shape="box"];1730 -> 1804[label="",style="solid", color="black", weight=3]; 1731[label="EQ",fontsize=16,color="green",shape="box"];1732[label="compare (xuu4600 * xuu4801) (xuu4800 * xuu4601)",fontsize=16,color="blue",shape="box"];3238[label="compare :: Int -> Int -> Ordering",fontsize=10,color="white",style="solid",shape="box"];1732 -> 3238[label="",style="solid", color="blue", weight=9]; 3238 -> 1805[label="",style="solid", color="blue", weight=3]; 3239[label="compare :: Integer -> Integer -> Ordering",fontsize=10,color="white",style="solid",shape="box"];1732 -> 3239[label="",style="solid", color="blue", weight=9]; 3239 -> 1806[label="",style="solid", color="blue", weight=3]; 1733[label="primCmpDouble (Double xuu4600 (Pos xuu46010)) xuu480",fontsize=16,color="burlywood",shape="box"];3240[label="xuu480/Double xuu4800 xuu4801",fontsize=10,color="white",style="solid",shape="box"];1733 -> 3240[label="",style="solid", color="burlywood", weight=9]; 3240 -> 1807[label="",style="solid", color="burlywood", weight=3]; 1734[label="primCmpDouble (Double xuu4600 (Neg xuu46010)) xuu480",fontsize=16,color="burlywood",shape="box"];3241[label="xuu480/Double xuu4800 xuu4801",fontsize=10,color="white",style="solid",shape="box"];1734 -> 3241[label="",style="solid", color="burlywood", weight=9]; 3241 -> 1808[label="",style="solid", color="burlywood", weight=3]; 1736 -> 149[label="",style="dashed", color="red", weight=0]; 1736[label="xuu460 == xuu480",fontsize=16,color="magenta"];1736 -> 1809[label="",style="dashed", color="magenta", weight=3]; 1736 -> 1810[label="",style="dashed", color="magenta", weight=3]; 1735[label="compare2 xuu460 xuu480 xuu120",fontsize=16,color="burlywood",shape="triangle"];3242[label="xuu120/False",fontsize=10,color="white",style="solid",shape="box"];1735 -> 3242[label="",style="solid", color="burlywood", weight=9]; 3242 -> 1811[label="",style="solid", color="burlywood", weight=3]; 3243[label="xuu120/True",fontsize=10,color="white",style="solid",shape="box"];1735 -> 3243[label="",style="solid", color="burlywood", weight=9]; 3243 -> 1812[label="",style="solid", color="burlywood", weight=3]; 1738 -> 138[label="",style="dashed", color="red", weight=0]; 1738[label="xuu460 == xuu480",fontsize=16,color="magenta"];1738 -> 1813[label="",style="dashed", color="magenta", weight=3]; 1738 -> 1814[label="",style="dashed", color="magenta", weight=3]; 1737[label="compare2 xuu460 xuu480 xuu121",fontsize=16,color="burlywood",shape="triangle"];3244[label="xuu121/False",fontsize=10,color="white",style="solid",shape="box"];1737 -> 3244[label="",style="solid", color="burlywood", weight=9]; 3244 -> 1815[label="",style="solid", color="burlywood", weight=3]; 3245[label="xuu121/True",fontsize=10,color="white",style="solid",shape="box"];1737 -> 3245[label="",style="solid", color="burlywood", weight=9]; 3245 -> 1816[label="",style="solid", color="burlywood", weight=3]; 1739[label="primCmpFloat (Float xuu4600 (Pos xuu46010)) xuu480",fontsize=16,color="burlywood",shape="box"];3246[label="xuu480/Float xuu4800 xuu4801",fontsize=10,color="white",style="solid",shape="box"];1739 -> 3246[label="",style="solid", color="burlywood", weight=9]; 3246 -> 1817[label="",style="solid", color="burlywood", weight=3]; 1740[label="primCmpFloat (Float xuu4600 (Neg xuu46010)) xuu480",fontsize=16,color="burlywood",shape="box"];3247[label="xuu480/Float xuu4800 xuu4801",fontsize=10,color="white",style="solid",shape="box"];1740 -> 3247[label="",style="solid", color="burlywood", weight=9]; 3247 -> 1818[label="",style="solid", color="burlywood", weight=3]; 1741 -> 1819[label="",style="dashed", color="red", weight=0]; 1741[label="primCompAux xuu4600 xuu4800 (compare xuu4601 xuu4801)",fontsize=16,color="magenta"];1741 -> 1820[label="",style="dashed", color="magenta", weight=3]; 1742[label="GT",fontsize=16,color="green",shape="box"];1743[label="LT",fontsize=16,color="green",shape="box"];1744[label="EQ",fontsize=16,color="green",shape="box"];1746 -> 139[label="",style="dashed", color="red", weight=0]; 1746[label="xuu460 == xuu480",fontsize=16,color="magenta"];1746 -> 1821[label="",style="dashed", color="magenta", weight=3]; 1746 -> 1822[label="",style="dashed", color="magenta", weight=3]; 1745[label="compare2 xuu460 xuu480 xuu122",fontsize=16,color="burlywood",shape="triangle"];3248[label="xuu122/False",fontsize=10,color="white",style="solid",shape="box"];1745 -> 3248[label="",style="solid", color="burlywood", weight=9]; 3248 -> 1823[label="",style="solid", color="burlywood", weight=3]; 3249[label="xuu122/True",fontsize=10,color="white",style="solid",shape="box"];1745 -> 3249[label="",style="solid", color="burlywood", weight=9]; 3249 -> 1824[label="",style="solid", color="burlywood", weight=3]; 1748 -> 142[label="",style="dashed", color="red", weight=0]; 1748[label="xuu460 == xuu480",fontsize=16,color="magenta"];1748 -> 1825[label="",style="dashed", color="magenta", weight=3]; 1748 -> 1826[label="",style="dashed", color="magenta", weight=3]; 1747[label="compare2 xuu460 xuu480 xuu123",fontsize=16,color="burlywood",shape="triangle"];3250[label="xuu123/False",fontsize=10,color="white",style="solid",shape="box"];1747 -> 3250[label="",style="solid", color="burlywood", weight=9]; 3250 -> 1827[label="",style="solid", color="burlywood", weight=3]; 3251[label="xuu123/True",fontsize=10,color="white",style="solid",shape="box"];1747 -> 3251[label="",style="solid", color="burlywood", weight=9]; 3251 -> 1828[label="",style="solid", color="burlywood", weight=3]; 1749 -> 1082[label="",style="dashed", color="red", weight=0]; 1749[label="primCmpInt xuu4600 xuu4800",fontsize=16,color="magenta"];1749 -> 1829[label="",style="dashed", color="magenta", weight=3]; 1749 -> 1830[label="",style="dashed", color="magenta", weight=3]; 1751 -> 145[label="",style="dashed", color="red", weight=0]; 1751[label="xuu460 == xuu480",fontsize=16,color="magenta"];1751 -> 1831[label="",style="dashed", color="magenta", weight=3]; 1751 -> 1832[label="",style="dashed", color="magenta", weight=3]; 1750[label="compare2 xuu460 xuu480 xuu124",fontsize=16,color="burlywood",shape="triangle"];3252[label="xuu124/False",fontsize=10,color="white",style="solid",shape="box"];1750 -> 3252[label="",style="solid", color="burlywood", weight=9]; 3252 -> 1833[label="",style="solid", color="burlywood", weight=3]; 3253[label="xuu124/True",fontsize=10,color="white",style="solid",shape="box"];1750 -> 3253[label="",style="solid", color="burlywood", weight=9]; 3253 -> 1834[label="",style="solid", color="burlywood", weight=3]; 1838[label="xuu4610 < xuu4810",fontsize=16,color="blue",shape="box"];3254[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3254[label="",style="solid", color="blue", weight=9]; 3254 -> 1844[label="",style="solid", color="blue", weight=3]; 3255[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3255[label="",style="solid", color="blue", weight=9]; 3255 -> 1845[label="",style="solid", color="blue", weight=3]; 3256[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3256[label="",style="solid", color="blue", weight=9]; 3256 -> 1846[label="",style="solid", color="blue", weight=3]; 3257[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3257[label="",style="solid", color="blue", weight=9]; 3257 -> 1847[label="",style="solid", color="blue", weight=3]; 3258[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3258[label="",style="solid", color="blue", weight=9]; 3258 -> 1848[label="",style="solid", color="blue", weight=3]; 3259[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3259[label="",style="solid", color="blue", weight=9]; 3259 -> 1849[label="",style="solid", color="blue", weight=3]; 3260[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3260[label="",style="solid", color="blue", weight=9]; 3260 -> 1850[label="",style="solid", color="blue", weight=3]; 3261[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3261[label="",style="solid", color="blue", weight=9]; 3261 -> 1851[label="",style="solid", color="blue", weight=3]; 3262[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3262[label="",style="solid", color="blue", weight=9]; 3262 -> 1852[label="",style="solid", color="blue", weight=3]; 3263[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3263[label="",style="solid", color="blue", weight=9]; 3263 -> 1853[label="",style="solid", color="blue", weight=3]; 3264[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3264[label="",style="solid", color="blue", weight=9]; 3264 -> 1854[label="",style="solid", color="blue", weight=3]; 3265[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3265[label="",style="solid", color="blue", weight=9]; 3265 -> 1855[label="",style="solid", color="blue", weight=3]; 3266[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3266[label="",style="solid", color="blue", weight=9]; 3266 -> 1856[label="",style="solid", color="blue", weight=3]; 3267[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1838 -> 3267[label="",style="solid", color="blue", weight=9]; 3267 -> 1857[label="",style="solid", color="blue", weight=3]; 1839 -> 394[label="",style="dashed", color="red", weight=0]; 1839[label="xuu4610 == xuu4810 && xuu4611 <= xuu4811",fontsize=16,color="magenta"];1839 -> 1858[label="",style="dashed", color="magenta", weight=3]; 1839 -> 1859[label="",style="dashed", color="magenta", weight=3]; 1837[label="xuu131 || xuu132",fontsize=16,color="burlywood",shape="triangle"];3268[label="xuu131/False",fontsize=10,color="white",style="solid",shape="box"];1837 -> 3268[label="",style="solid", color="burlywood", weight=9]; 3268 -> 1860[label="",style="solid", color="burlywood", weight=3]; 3269[label="xuu131/True",fontsize=10,color="white",style="solid",shape="box"];1837 -> 3269[label="",style="solid", color="burlywood", weight=9]; 3269 -> 1861[label="",style="solid", color="burlywood", weight=3]; 1758 -> 139[label="",style="dashed", color="red", weight=0]; 1758[label="xuu119 == GT",fontsize=16,color="magenta"];1758 -> 1862[label="",style="dashed", color="magenta", weight=3]; 1758 -> 1863[label="",style="dashed", color="magenta", weight=3]; 1757[label="not xuu126",fontsize=16,color="burlywood",shape="triangle"];3270[label="xuu126/False",fontsize=10,color="white",style="solid",shape="box"];1757 -> 3270[label="",style="solid", color="burlywood", weight=9]; 3270 -> 1864[label="",style="solid", color="burlywood", weight=3]; 3271[label="xuu126/True",fontsize=10,color="white",style="solid",shape="box"];1757 -> 3271[label="",style="solid", color="burlywood", weight=9]; 3271 -> 1865[label="",style="solid", color="burlywood", weight=3]; 1759 -> 1446[label="",style="dashed", color="red", weight=0]; 1759[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1759 -> 1866[label="",style="dashed", color="magenta", weight=3]; 1759 -> 1867[label="",style="dashed", color="magenta", weight=3]; 1760 -> 1447[label="",style="dashed", color="red", weight=0]; 1760[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1760 -> 1868[label="",style="dashed", color="magenta", weight=3]; 1760 -> 1869[label="",style="dashed", color="magenta", weight=3]; 1761 -> 1448[label="",style="dashed", color="red", weight=0]; 1761[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1761 -> 1870[label="",style="dashed", color="magenta", weight=3]; 1761 -> 1871[label="",style="dashed", color="magenta", weight=3]; 1762 -> 1449[label="",style="dashed", color="red", weight=0]; 1762[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1762 -> 1872[label="",style="dashed", color="magenta", weight=3]; 1762 -> 1873[label="",style="dashed", color="magenta", weight=3]; 1763 -> 1450[label="",style="dashed", color="red", weight=0]; 1763[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1763 -> 1874[label="",style="dashed", color="magenta", weight=3]; 1763 -> 1875[label="",style="dashed", color="magenta", weight=3]; 1764 -> 1451[label="",style="dashed", color="red", weight=0]; 1764[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1764 -> 1876[label="",style="dashed", color="magenta", weight=3]; 1764 -> 1877[label="",style="dashed", color="magenta", weight=3]; 1765 -> 1452[label="",style="dashed", color="red", weight=0]; 1765[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1765 -> 1878[label="",style="dashed", color="magenta", weight=3]; 1765 -> 1879[label="",style="dashed", color="magenta", weight=3]; 1766 -> 1453[label="",style="dashed", color="red", weight=0]; 1766[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1766 -> 1880[label="",style="dashed", color="magenta", weight=3]; 1766 -> 1881[label="",style="dashed", color="magenta", weight=3]; 1767 -> 1454[label="",style="dashed", color="red", weight=0]; 1767[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1767 -> 1882[label="",style="dashed", color="magenta", weight=3]; 1767 -> 1883[label="",style="dashed", color="magenta", weight=3]; 1768 -> 1455[label="",style="dashed", color="red", weight=0]; 1768[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1768 -> 1884[label="",style="dashed", color="magenta", weight=3]; 1768 -> 1885[label="",style="dashed", color="magenta", weight=3]; 1769 -> 1456[label="",style="dashed", color="red", weight=0]; 1769[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1769 -> 1886[label="",style="dashed", color="magenta", weight=3]; 1769 -> 1887[label="",style="dashed", color="magenta", weight=3]; 1770 -> 1457[label="",style="dashed", color="red", weight=0]; 1770[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1770 -> 1888[label="",style="dashed", color="magenta", weight=3]; 1770 -> 1889[label="",style="dashed", color="magenta", weight=3]; 1771 -> 1458[label="",style="dashed", color="red", weight=0]; 1771[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1771 -> 1890[label="",style="dashed", color="magenta", weight=3]; 1771 -> 1891[label="",style="dashed", color="magenta", weight=3]; 1772 -> 1459[label="",style="dashed", color="red", weight=0]; 1772[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1772 -> 1892[label="",style="dashed", color="magenta", weight=3]; 1772 -> 1893[label="",style="dashed", color="magenta", weight=3]; 1773 -> 1446[label="",style="dashed", color="red", weight=0]; 1773[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1773 -> 1894[label="",style="dashed", color="magenta", weight=3]; 1773 -> 1895[label="",style="dashed", color="magenta", weight=3]; 1774 -> 1447[label="",style="dashed", color="red", weight=0]; 1774[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1774 -> 1896[label="",style="dashed", color="magenta", weight=3]; 1774 -> 1897[label="",style="dashed", color="magenta", weight=3]; 1775 -> 1448[label="",style="dashed", color="red", weight=0]; 1775[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1775 -> 1898[label="",style="dashed", color="magenta", weight=3]; 1775 -> 1899[label="",style="dashed", color="magenta", weight=3]; 1776 -> 1449[label="",style="dashed", color="red", weight=0]; 1776[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1776 -> 1900[label="",style="dashed", color="magenta", weight=3]; 1776 -> 1901[label="",style="dashed", color="magenta", weight=3]; 1777 -> 1450[label="",style="dashed", color="red", weight=0]; 1777[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1777 -> 1902[label="",style="dashed", color="magenta", weight=3]; 1777 -> 1903[label="",style="dashed", color="magenta", weight=3]; 1778 -> 1451[label="",style="dashed", color="red", weight=0]; 1778[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1778 -> 1904[label="",style="dashed", color="magenta", weight=3]; 1778 -> 1905[label="",style="dashed", color="magenta", weight=3]; 1779 -> 1452[label="",style="dashed", color="red", weight=0]; 1779[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1779 -> 1906[label="",style="dashed", color="magenta", weight=3]; 1779 -> 1907[label="",style="dashed", color="magenta", weight=3]; 1780 -> 1453[label="",style="dashed", color="red", weight=0]; 1780[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1780 -> 1908[label="",style="dashed", color="magenta", weight=3]; 1780 -> 1909[label="",style="dashed", color="magenta", weight=3]; 1781 -> 1454[label="",style="dashed", color="red", weight=0]; 1781[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1781 -> 1910[label="",style="dashed", color="magenta", weight=3]; 1781 -> 1911[label="",style="dashed", color="magenta", weight=3]; 1782 -> 1455[label="",style="dashed", color="red", weight=0]; 1782[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1782 -> 1912[label="",style="dashed", color="magenta", weight=3]; 1782 -> 1913[label="",style="dashed", color="magenta", weight=3]; 1783 -> 1456[label="",style="dashed", color="red", weight=0]; 1783[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1783 -> 1914[label="",style="dashed", color="magenta", weight=3]; 1783 -> 1915[label="",style="dashed", color="magenta", weight=3]; 1784 -> 1457[label="",style="dashed", color="red", weight=0]; 1784[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1784 -> 1916[label="",style="dashed", color="magenta", weight=3]; 1784 -> 1917[label="",style="dashed", color="magenta", weight=3]; 1785 -> 1458[label="",style="dashed", color="red", weight=0]; 1785[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1785 -> 1918[label="",style="dashed", color="magenta", weight=3]; 1785 -> 1919[label="",style="dashed", color="magenta", weight=3]; 1786 -> 1459[label="",style="dashed", color="red", weight=0]; 1786[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1786 -> 1920[label="",style="dashed", color="magenta", weight=3]; 1786 -> 1921[label="",style="dashed", color="magenta", weight=3]; 1840[label="xuu4610 < xuu4810",fontsize=16,color="blue",shape="box"];3272[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3272[label="",style="solid", color="blue", weight=9]; 3272 -> 1922[label="",style="solid", color="blue", weight=3]; 3273[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3273[label="",style="solid", color="blue", weight=9]; 3273 -> 1923[label="",style="solid", color="blue", weight=3]; 3274[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3274[label="",style="solid", color="blue", weight=9]; 3274 -> 1924[label="",style="solid", color="blue", weight=3]; 3275[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3275[label="",style="solid", color="blue", weight=9]; 3275 -> 1925[label="",style="solid", color="blue", weight=3]; 3276[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3276[label="",style="solid", color="blue", weight=9]; 3276 -> 1926[label="",style="solid", color="blue", weight=3]; 3277[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3277[label="",style="solid", color="blue", weight=9]; 3277 -> 1927[label="",style="solid", color="blue", weight=3]; 3278[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3278[label="",style="solid", color="blue", weight=9]; 3278 -> 1928[label="",style="solid", color="blue", weight=3]; 3279[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3279[label="",style="solid", color="blue", weight=9]; 3279 -> 1929[label="",style="solid", color="blue", weight=3]; 3280[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3280[label="",style="solid", color="blue", weight=9]; 3280 -> 1930[label="",style="solid", color="blue", weight=3]; 3281[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3281[label="",style="solid", color="blue", weight=9]; 3281 -> 1931[label="",style="solid", color="blue", weight=3]; 3282[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3282[label="",style="solid", color="blue", weight=9]; 3282 -> 1932[label="",style="solid", color="blue", weight=3]; 3283[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3283[label="",style="solid", color="blue", weight=9]; 3283 -> 1933[label="",style="solid", color="blue", weight=3]; 3284[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3284[label="",style="solid", color="blue", weight=9]; 3284 -> 1934[label="",style="solid", color="blue", weight=3]; 3285[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1840 -> 3285[label="",style="solid", color="blue", weight=9]; 3285 -> 1935[label="",style="solid", color="blue", weight=3]; 1841 -> 394[label="",style="dashed", color="red", weight=0]; 1841[label="xuu4610 == xuu4810 && (xuu4611 < xuu4811 || xuu4611 == xuu4811 && xuu4612 <= xuu4812)",fontsize=16,color="magenta"];1841 -> 1936[label="",style="dashed", color="magenta", weight=3]; 1841 -> 1937[label="",style="dashed", color="magenta", weight=3]; 1787 -> 1446[label="",style="dashed", color="red", weight=0]; 1787[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1787 -> 1938[label="",style="dashed", color="magenta", weight=3]; 1787 -> 1939[label="",style="dashed", color="magenta", weight=3]; 1788 -> 1447[label="",style="dashed", color="red", weight=0]; 1788[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1788 -> 1940[label="",style="dashed", color="magenta", weight=3]; 1788 -> 1941[label="",style="dashed", color="magenta", weight=3]; 1789 -> 1448[label="",style="dashed", color="red", weight=0]; 1789[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1789 -> 1942[label="",style="dashed", color="magenta", weight=3]; 1789 -> 1943[label="",style="dashed", color="magenta", weight=3]; 1790 -> 1449[label="",style="dashed", color="red", weight=0]; 1790[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1790 -> 1944[label="",style="dashed", color="magenta", weight=3]; 1790 -> 1945[label="",style="dashed", color="magenta", weight=3]; 1791 -> 1450[label="",style="dashed", color="red", weight=0]; 1791[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1791 -> 1946[label="",style="dashed", color="magenta", weight=3]; 1791 -> 1947[label="",style="dashed", color="magenta", weight=3]; 1792 -> 1451[label="",style="dashed", color="red", weight=0]; 1792[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1792 -> 1948[label="",style="dashed", color="magenta", weight=3]; 1792 -> 1949[label="",style="dashed", color="magenta", weight=3]; 1793 -> 1452[label="",style="dashed", color="red", weight=0]; 1793[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1793 -> 1950[label="",style="dashed", color="magenta", weight=3]; 1793 -> 1951[label="",style="dashed", color="magenta", weight=3]; 1794 -> 1453[label="",style="dashed", color="red", weight=0]; 1794[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1794 -> 1952[label="",style="dashed", color="magenta", weight=3]; 1794 -> 1953[label="",style="dashed", color="magenta", weight=3]; 1795 -> 1454[label="",style="dashed", color="red", weight=0]; 1795[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1795 -> 1954[label="",style="dashed", color="magenta", weight=3]; 1795 -> 1955[label="",style="dashed", color="magenta", weight=3]; 1796 -> 1455[label="",style="dashed", color="red", weight=0]; 1796[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1796 -> 1956[label="",style="dashed", color="magenta", weight=3]; 1796 -> 1957[label="",style="dashed", color="magenta", weight=3]; 1797 -> 1456[label="",style="dashed", color="red", weight=0]; 1797[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1797 -> 1958[label="",style="dashed", color="magenta", weight=3]; 1797 -> 1959[label="",style="dashed", color="magenta", weight=3]; 1798 -> 1457[label="",style="dashed", color="red", weight=0]; 1798[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1798 -> 1960[label="",style="dashed", color="magenta", weight=3]; 1798 -> 1961[label="",style="dashed", color="magenta", weight=3]; 1799 -> 1458[label="",style="dashed", color="red", weight=0]; 1799[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1799 -> 1962[label="",style="dashed", color="magenta", weight=3]; 1799 -> 1963[label="",style="dashed", color="magenta", weight=3]; 1800 -> 1459[label="",style="dashed", color="red", weight=0]; 1800[label="xuu4610 <= xuu4810",fontsize=16,color="magenta"];1800 -> 1964[label="",style="dashed", color="magenta", weight=3]; 1800 -> 1965[label="",style="dashed", color="magenta", weight=3]; 1801[label="GT",fontsize=16,color="green",shape="box"];1360[label="primPlusInt (Pos xuu3820) (Pos xuu940)",fontsize=16,color="black",shape="box"];1360 -> 1467[label="",style="solid", color="black", weight=3]; 1361[label="primPlusInt (Pos xuu3820) (Neg xuu940)",fontsize=16,color="black",shape="box"];1361 -> 1468[label="",style="solid", color="black", weight=3]; 1362[label="primPlusInt (Neg xuu3820) (Pos xuu940)",fontsize=16,color="black",shape="box"];1362 -> 1469[label="",style="solid", color="black", weight=3]; 1363[label="primPlusInt (Neg xuu3820) (Neg xuu940)",fontsize=16,color="black",shape="box"];1363 -> 1470[label="",style="solid", color="black", weight=3]; 1403[label="primCmpInt (Pos (Succ xuu4600)) (Pos xuu480)",fontsize=16,color="black",shape="box"];1403 -> 1473[label="",style="solid", color="black", weight=3]; 1404[label="primCmpInt (Pos (Succ xuu4600)) (Neg xuu480)",fontsize=16,color="black",shape="box"];1404 -> 1474[label="",style="solid", color="black", weight=3]; 1405[label="primCmpInt (Pos Zero) (Pos xuu480)",fontsize=16,color="burlywood",shape="box"];3286[label="xuu480/Succ xuu4800",fontsize=10,color="white",style="solid",shape="box"];1405 -> 3286[label="",style="solid", color="burlywood", weight=9]; 3286 -> 1475[label="",style="solid", color="burlywood", weight=3]; 3287[label="xuu480/Zero",fontsize=10,color="white",style="solid",shape="box"];1405 -> 3287[label="",style="solid", color="burlywood", weight=9]; 3287 -> 1476[label="",style="solid", color="burlywood", weight=3]; 1406[label="primCmpInt (Pos Zero) (Neg xuu480)",fontsize=16,color="burlywood",shape="box"];3288[label="xuu480/Succ xuu4800",fontsize=10,color="white",style="solid",shape="box"];1406 -> 3288[label="",style="solid", color="burlywood", weight=9]; 3288 -> 1477[label="",style="solid", color="burlywood", weight=3]; 3289[label="xuu480/Zero",fontsize=10,color="white",style="solid",shape="box"];1406 -> 3289[label="",style="solid", color="burlywood", weight=9]; 3289 -> 1478[label="",style="solid", color="burlywood", weight=3]; 1407[label="primCmpInt (Neg (Succ xuu4600)) (Pos xuu480)",fontsize=16,color="black",shape="box"];1407 -> 1479[label="",style="solid", color="black", weight=3]; 1408[label="primCmpInt (Neg (Succ xuu4600)) (Neg xuu480)",fontsize=16,color="black",shape="box"];1408 -> 1480[label="",style="solid", color="black", weight=3]; 1409[label="primCmpInt (Neg Zero) (Pos xuu480)",fontsize=16,color="burlywood",shape="box"];3290[label="xuu480/Succ xuu4800",fontsize=10,color="white",style="solid",shape="box"];1409 -> 3290[label="",style="solid", color="burlywood", weight=9]; 3290 -> 1481[label="",style="solid", color="burlywood", weight=3]; 3291[label="xuu480/Zero",fontsize=10,color="white",style="solid",shape="box"];1409 -> 3291[label="",style="solid", color="burlywood", weight=9]; 3291 -> 1482[label="",style="solid", color="burlywood", weight=3]; 1410[label="primCmpInt (Neg Zero) (Neg xuu480)",fontsize=16,color="burlywood",shape="box"];3292[label="xuu480/Succ xuu4800",fontsize=10,color="white",style="solid",shape="box"];1410 -> 3292[label="",style="solid", color="burlywood", weight=9]; 3292 -> 1483[label="",style="solid", color="burlywood", weight=3]; 3293[label="xuu480/Zero",fontsize=10,color="white",style="solid",shape="box"];1410 -> 3293[label="",style="solid", color="burlywood", weight=9]; 3293 -> 1484[label="",style="solid", color="burlywood", weight=3]; 1411 -> 876[label="",style="dashed", color="red", weight=0]; 1411[label="FiniteMap.mkBranchResult (xuu16,xuu17) xuu18 xuu38 xuu21",fontsize=16,color="magenta"];1412 -> 1485[label="",style="dashed", color="red", weight=0]; 1412[label="FiniteMap.mkBalBranch6MkBalBranch11 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 xuu380 xuu381 xuu382 xuu383 xuu384 (FiniteMap.sizeFM xuu384 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xuu383)",fontsize=16,color="magenta"];1412 -> 1486[label="",style="dashed", color="magenta", weight=3]; 1565[label="xuu213",fontsize=16,color="green",shape="box"];1566 -> 1230[label="",style="dashed", color="red", weight=0]; 1566[label="FiniteMap.sizeFM xuu214",fontsize=16,color="magenta"];1566 -> 1678[label="",style="dashed", color="magenta", weight=3]; 1567[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];1568[label="FiniteMap.mkBalBranch6MkBalBranch00 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu210 xuu211 xuu212 xuu213 xuu214 otherwise",fontsize=16,color="black",shape="box"];1568 -> 1679[label="",style="solid", color="black", weight=3]; 1569[label="FiniteMap.mkBalBranch6Single_L (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214)",fontsize=16,color="black",shape="box"];1569 -> 1680[label="",style="solid", color="black", weight=3]; 2776[label="xuu214",fontsize=16,color="green",shape="box"];2777[label="FiniteMap.mkBranchLeft_size xuu222 xuu210 xuu214",fontsize=16,color="black",shape="box"];2777 -> 2783[label="",style="solid", color="black", weight=3]; 2778[label="Pos (Succ Zero)",fontsize=16,color="green",shape="box"];1471[label="Succ (Succ (primPlusNat xuu980 xuu300000))",fontsize=16,color="green",shape="box"];1471 -> 1577[label="",style="dashed", color="green", weight=3]; 1472[label="Succ xuu300000",fontsize=16,color="green",shape="box"];1802[label="xuu480",fontsize=16,color="green",shape="box"];1803[label="xuu460",fontsize=16,color="green",shape="box"];1804[label="primCmpNat xuu4600 xuu4800",fontsize=16,color="burlywood",shape="triangle"];3294[label="xuu4600/Succ xuu46000",fontsize=10,color="white",style="solid",shape="box"];1804 -> 3294[label="",style="solid", color="burlywood", weight=9]; 3294 -> 1966[label="",style="solid", color="burlywood", weight=3]; 3295[label="xuu4600/Zero",fontsize=10,color="white",style="solid",shape="box"];1804 -> 3295[label="",style="solid", color="burlywood", weight=9]; 3295 -> 1967[label="",style="solid", color="burlywood", weight=3]; 1805 -> 1279[label="",style="dashed", color="red", weight=0]; 1805[label="compare (xuu4600 * xuu4801) (xuu4800 * xuu4601)",fontsize=16,color="magenta"];1805 -> 1968[label="",style="dashed", color="magenta", weight=3]; 1805 -> 1969[label="",style="dashed", color="magenta", weight=3]; 1806 -> 1512[label="",style="dashed", color="red", weight=0]; 1806[label="compare (xuu4600 * xuu4801) (xuu4800 * xuu4601)",fontsize=16,color="magenta"];1806 -> 1970[label="",style="dashed", color="magenta", weight=3]; 1806 -> 1971[label="",style="dashed", color="magenta", weight=3]; 1807[label="primCmpDouble (Double xuu4600 (Pos xuu46010)) (Double xuu4800 xuu4801)",fontsize=16,color="burlywood",shape="box"];3296[label="xuu4801/Pos xuu48010",fontsize=10,color="white",style="solid",shape="box"];1807 -> 3296[label="",style="solid", color="burlywood", weight=9]; 3296 -> 1972[label="",style="solid", color="burlywood", weight=3]; 3297[label="xuu4801/Neg xuu48010",fontsize=10,color="white",style="solid",shape="box"];1807 -> 3297[label="",style="solid", color="burlywood", weight=9]; 3297 -> 1973[label="",style="solid", color="burlywood", weight=3]; 1808[label="primCmpDouble (Double xuu4600 (Neg xuu46010)) (Double xuu4800 xuu4801)",fontsize=16,color="burlywood",shape="box"];3298[label="xuu4801/Pos xuu48010",fontsize=10,color="white",style="solid",shape="box"];1808 -> 3298[label="",style="solid", color="burlywood", weight=9]; 3298 -> 1974[label="",style="solid", color="burlywood", weight=3]; 3299[label="xuu4801/Neg xuu48010",fontsize=10,color="white",style="solid",shape="box"];1808 -> 3299[label="",style="solid", color="burlywood", weight=9]; 3299 -> 1975[label="",style="solid", color="burlywood", weight=3]; 1809[label="xuu480",fontsize=16,color="green",shape="box"];1810[label="xuu460",fontsize=16,color="green",shape="box"];1811[label="compare2 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];1811 -> 1976[label="",style="solid", color="black", weight=3]; 1812[label="compare2 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];1812 -> 1977[label="",style="solid", color="black", weight=3]; 1813[label="xuu480",fontsize=16,color="green",shape="box"];1814[label="xuu460",fontsize=16,color="green",shape="box"];1815[label="compare2 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];1815 -> 1978[label="",style="solid", color="black", weight=3]; 1816[label="compare2 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];1816 -> 1979[label="",style="solid", color="black", weight=3]; 1817[label="primCmpFloat (Float xuu4600 (Pos xuu46010)) (Float xuu4800 xuu4801)",fontsize=16,color="burlywood",shape="box"];3300[label="xuu4801/Pos xuu48010",fontsize=10,color="white",style="solid",shape="box"];1817 -> 3300[label="",style="solid", color="burlywood", weight=9]; 3300 -> 1980[label="",style="solid", color="burlywood", weight=3]; 3301[label="xuu4801/Neg xuu48010",fontsize=10,color="white",style="solid",shape="box"];1817 -> 3301[label="",style="solid", color="burlywood", weight=9]; 3301 -> 1981[label="",style="solid", color="burlywood", weight=3]; 1818[label="primCmpFloat (Float xuu4600 (Neg xuu46010)) (Float xuu4800 xuu4801)",fontsize=16,color="burlywood",shape="box"];3302[label="xuu4801/Pos xuu48010",fontsize=10,color="white",style="solid",shape="box"];1818 -> 3302[label="",style="solid", color="burlywood", weight=9]; 3302 -> 1982[label="",style="solid", color="burlywood", weight=3]; 3303[label="xuu4801/Neg xuu48010",fontsize=10,color="white",style="solid",shape="box"];1818 -> 3303[label="",style="solid", color="burlywood", weight=9]; 3303 -> 1983[label="",style="solid", color="burlywood", weight=3]; 1820 -> 1506[label="",style="dashed", color="red", weight=0]; 1820[label="compare xuu4601 xuu4801",fontsize=16,color="magenta"];1820 -> 1984[label="",style="dashed", color="magenta", weight=3]; 1820 -> 1985[label="",style="dashed", color="magenta", weight=3]; 1819[label="primCompAux xuu4600 xuu4800 xuu127",fontsize=16,color="black",shape="triangle"];1819 -> 1986[label="",style="solid", color="black", weight=3]; 1821[label="xuu480",fontsize=16,color="green",shape="box"];1822[label="xuu460",fontsize=16,color="green",shape="box"];1823[label="compare2 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];1823 -> 1987[label="",style="solid", color="black", weight=3]; 1824[label="compare2 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];1824 -> 1988[label="",style="solid", color="black", weight=3]; 1825[label="xuu480",fontsize=16,color="green",shape="box"];1826[label="xuu460",fontsize=16,color="green",shape="box"];1827[label="compare2 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];1827 -> 1989[label="",style="solid", color="black", weight=3]; 1828[label="compare2 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];1828 -> 1990[label="",style="solid", color="black", weight=3]; 1829[label="xuu4800",fontsize=16,color="green",shape="box"];1830[label="xuu4600",fontsize=16,color="green",shape="box"];1831[label="xuu480",fontsize=16,color="green",shape="box"];1832[label="xuu460",fontsize=16,color="green",shape="box"];1833[label="compare2 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];1833 -> 1991[label="",style="solid", color="black", weight=3]; 1834[label="compare2 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];1834 -> 1992[label="",style="solid", color="black", weight=3]; 1844 -> 1385[label="",style="dashed", color="red", weight=0]; 1844[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1844 -> 2010[label="",style="dashed", color="magenta", weight=3]; 1844 -> 2011[label="",style="dashed", color="magenta", weight=3]; 1845 -> 1386[label="",style="dashed", color="red", weight=0]; 1845[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1845 -> 2012[label="",style="dashed", color="magenta", weight=3]; 1845 -> 2013[label="",style="dashed", color="magenta", weight=3]; 1846 -> 1387[label="",style="dashed", color="red", weight=0]; 1846[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1846 -> 2014[label="",style="dashed", color="magenta", weight=3]; 1846 -> 2015[label="",style="dashed", color="magenta", weight=3]; 1847 -> 1388[label="",style="dashed", color="red", weight=0]; 1847[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1847 -> 2016[label="",style="dashed", color="magenta", weight=3]; 1847 -> 2017[label="",style="dashed", color="magenta", weight=3]; 1848 -> 1389[label="",style="dashed", color="red", weight=0]; 1848[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1848 -> 2018[label="",style="dashed", color="magenta", weight=3]; 1848 -> 2019[label="",style="dashed", color="magenta", weight=3]; 1849 -> 1390[label="",style="dashed", color="red", weight=0]; 1849[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1849 -> 2020[label="",style="dashed", color="magenta", weight=3]; 1849 -> 2021[label="",style="dashed", color="magenta", weight=3]; 1850 -> 1391[label="",style="dashed", color="red", weight=0]; 1850[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1850 -> 2022[label="",style="dashed", color="magenta", weight=3]; 1850 -> 2023[label="",style="dashed", color="magenta", weight=3]; 1851 -> 1392[label="",style="dashed", color="red", weight=0]; 1851[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1851 -> 2024[label="",style="dashed", color="magenta", weight=3]; 1851 -> 2025[label="",style="dashed", color="magenta", weight=3]; 1852 -> 1393[label="",style="dashed", color="red", weight=0]; 1852[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1852 -> 2026[label="",style="dashed", color="magenta", weight=3]; 1852 -> 2027[label="",style="dashed", color="magenta", weight=3]; 1853 -> 1394[label="",style="dashed", color="red", weight=0]; 1853[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1853 -> 2028[label="",style="dashed", color="magenta", weight=3]; 1853 -> 2029[label="",style="dashed", color="magenta", weight=3]; 1854 -> 1395[label="",style="dashed", color="red", weight=0]; 1854[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1854 -> 2030[label="",style="dashed", color="magenta", weight=3]; 1854 -> 2031[label="",style="dashed", color="magenta", weight=3]; 1855 -> 1396[label="",style="dashed", color="red", weight=0]; 1855[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1855 -> 2032[label="",style="dashed", color="magenta", weight=3]; 1855 -> 2033[label="",style="dashed", color="magenta", weight=3]; 1856 -> 1397[label="",style="dashed", color="red", weight=0]; 1856[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1856 -> 2034[label="",style="dashed", color="magenta", weight=3]; 1856 -> 2035[label="",style="dashed", color="magenta", weight=3]; 1857 -> 1398[label="",style="dashed", color="red", weight=0]; 1857[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1857 -> 2036[label="",style="dashed", color="magenta", weight=3]; 1857 -> 2037[label="",style="dashed", color="magenta", weight=3]; 1858[label="xuu4610 == xuu4810",fontsize=16,color="blue",shape="box"];3304[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3304[label="",style="solid", color="blue", weight=9]; 3304 -> 2038[label="",style="solid", color="blue", weight=3]; 3305[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3305[label="",style="solid", color="blue", weight=9]; 3305 -> 2039[label="",style="solid", color="blue", weight=3]; 3306[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3306[label="",style="solid", color="blue", weight=9]; 3306 -> 2040[label="",style="solid", color="blue", weight=3]; 3307[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3307[label="",style="solid", color="blue", weight=9]; 3307 -> 2041[label="",style="solid", color="blue", weight=3]; 3308[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3308[label="",style="solid", color="blue", weight=9]; 3308 -> 2042[label="",style="solid", color="blue", weight=3]; 3309[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3309[label="",style="solid", color="blue", weight=9]; 3309 -> 2043[label="",style="solid", color="blue", weight=3]; 3310[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3310[label="",style="solid", color="blue", weight=9]; 3310 -> 2044[label="",style="solid", color="blue", weight=3]; 3311[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3311[label="",style="solid", color="blue", weight=9]; 3311 -> 2045[label="",style="solid", color="blue", weight=3]; 3312[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3312[label="",style="solid", color="blue", weight=9]; 3312 -> 2046[label="",style="solid", color="blue", weight=3]; 3313[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3313[label="",style="solid", color="blue", weight=9]; 3313 -> 2047[label="",style="solid", color="blue", weight=3]; 3314[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3314[label="",style="solid", color="blue", weight=9]; 3314 -> 2048[label="",style="solid", color="blue", weight=3]; 3315[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3315[label="",style="solid", color="blue", weight=9]; 3315 -> 2049[label="",style="solid", color="blue", weight=3]; 3316[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3316[label="",style="solid", color="blue", weight=9]; 3316 -> 2050[label="",style="solid", color="blue", weight=3]; 3317[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1858 -> 3317[label="",style="solid", color="blue", weight=9]; 3317 -> 2051[label="",style="solid", color="blue", weight=3]; 1859[label="xuu4611 <= xuu4811",fontsize=16,color="blue",shape="box"];3318[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3318[label="",style="solid", color="blue", weight=9]; 3318 -> 2052[label="",style="solid", color="blue", weight=3]; 3319[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3319[label="",style="solid", color="blue", weight=9]; 3319 -> 2053[label="",style="solid", color="blue", weight=3]; 3320[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3320[label="",style="solid", color="blue", weight=9]; 3320 -> 2054[label="",style="solid", color="blue", weight=3]; 3321[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3321[label="",style="solid", color="blue", weight=9]; 3321 -> 2055[label="",style="solid", color="blue", weight=3]; 3322[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3322[label="",style="solid", color="blue", weight=9]; 3322 -> 2056[label="",style="solid", color="blue", weight=3]; 3323[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3323[label="",style="solid", color="blue", weight=9]; 3323 -> 2057[label="",style="solid", color="blue", weight=3]; 3324[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3324[label="",style="solid", color="blue", weight=9]; 3324 -> 2058[label="",style="solid", color="blue", weight=3]; 3325[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3325[label="",style="solid", color="blue", weight=9]; 3325 -> 2059[label="",style="solid", color="blue", weight=3]; 3326[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3326[label="",style="solid", color="blue", weight=9]; 3326 -> 2060[label="",style="solid", color="blue", weight=3]; 3327[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3327[label="",style="solid", color="blue", weight=9]; 3327 -> 2061[label="",style="solid", color="blue", weight=3]; 3328[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3328[label="",style="solid", color="blue", weight=9]; 3328 -> 2062[label="",style="solid", color="blue", weight=3]; 3329[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3329[label="",style="solid", color="blue", weight=9]; 3329 -> 2063[label="",style="solid", color="blue", weight=3]; 3330[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3330[label="",style="solid", color="blue", weight=9]; 3330 -> 2064[label="",style="solid", color="blue", weight=3]; 3331[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 3331[label="",style="solid", color="blue", weight=9]; 3331 -> 2065[label="",style="solid", color="blue", weight=3]; 1860[label="False || xuu132",fontsize=16,color="black",shape="box"];1860 -> 2066[label="",style="solid", color="black", weight=3]; 1861[label="True || xuu132",fontsize=16,color="black",shape="box"];1861 -> 2067[label="",style="solid", color="black", weight=3]; 1862[label="GT",fontsize=16,color="green",shape="box"];1863[label="xuu119",fontsize=16,color="green",shape="box"];1864[label="not False",fontsize=16,color="black",shape="box"];1864 -> 2068[label="",style="solid", color="black", weight=3]; 1865[label="not True",fontsize=16,color="black",shape="box"];1865 -> 2069[label="",style="solid", color="black", weight=3]; 1866[label="xuu4610",fontsize=16,color="green",shape="box"];1867[label="xuu4810",fontsize=16,color="green",shape="box"];1868[label="xuu4610",fontsize=16,color="green",shape="box"];1869[label="xuu4810",fontsize=16,color="green",shape="box"];1870[label="xuu4610",fontsize=16,color="green",shape="box"];1871[label="xuu4810",fontsize=16,color="green",shape="box"];1872[label="xuu4610",fontsize=16,color="green",shape="box"];1873[label="xuu4810",fontsize=16,color="green",shape="box"];1874[label="xuu4610",fontsize=16,color="green",shape="box"];1875[label="xuu4810",fontsize=16,color="green",shape="box"];1876[label="xuu4610",fontsize=16,color="green",shape="box"];1877[label="xuu4810",fontsize=16,color="green",shape="box"];1878[label="xuu4610",fontsize=16,color="green",shape="box"];1879[label="xuu4810",fontsize=16,color="green",shape="box"];1880[label="xuu4610",fontsize=16,color="green",shape="box"];1881[label="xuu4810",fontsize=16,color="green",shape="box"];1882[label="xuu4610",fontsize=16,color="green",shape="box"];1883[label="xuu4810",fontsize=16,color="green",shape="box"];1884[label="xuu4610",fontsize=16,color="green",shape="box"];1885[label="xuu4810",fontsize=16,color="green",shape="box"];1886[label="xuu4610",fontsize=16,color="green",shape="box"];1887[label="xuu4810",fontsize=16,color="green",shape="box"];1888[label="xuu4610",fontsize=16,color="green",shape="box"];1889[label="xuu4810",fontsize=16,color="green",shape="box"];1890[label="xuu4610",fontsize=16,color="green",shape="box"];1891[label="xuu4810",fontsize=16,color="green",shape="box"];1892[label="xuu4610",fontsize=16,color="green",shape="box"];1893[label="xuu4810",fontsize=16,color="green",shape="box"];1894[label="xuu4610",fontsize=16,color="green",shape="box"];1895[label="xuu4810",fontsize=16,color="green",shape="box"];1896[label="xuu4610",fontsize=16,color="green",shape="box"];1897[label="xuu4810",fontsize=16,color="green",shape="box"];1898[label="xuu4610",fontsize=16,color="green",shape="box"];1899[label="xuu4810",fontsize=16,color="green",shape="box"];1900[label="xuu4610",fontsize=16,color="green",shape="box"];1901[label="xuu4810",fontsize=16,color="green",shape="box"];1902[label="xuu4610",fontsize=16,color="green",shape="box"];1903[label="xuu4810",fontsize=16,color="green",shape="box"];1904[label="xuu4610",fontsize=16,color="green",shape="box"];1905[label="xuu4810",fontsize=16,color="green",shape="box"];1906[label="xuu4610",fontsize=16,color="green",shape="box"];1907[label="xuu4810",fontsize=16,color="green",shape="box"];1908[label="xuu4610",fontsize=16,color="green",shape="box"];1909[label="xuu4810",fontsize=16,color="green",shape="box"];1910[label="xuu4610",fontsize=16,color="green",shape="box"];1911[label="xuu4810",fontsize=16,color="green",shape="box"];1912[label="xuu4610",fontsize=16,color="green",shape="box"];1913[label="xuu4810",fontsize=16,color="green",shape="box"];1914[label="xuu4610",fontsize=16,color="green",shape="box"];1915[label="xuu4810",fontsize=16,color="green",shape="box"];1916[label="xuu4610",fontsize=16,color="green",shape="box"];1917[label="xuu4810",fontsize=16,color="green",shape="box"];1918[label="xuu4610",fontsize=16,color="green",shape="box"];1919[label="xuu4810",fontsize=16,color="green",shape="box"];1920[label="xuu4610",fontsize=16,color="green",shape="box"];1921[label="xuu4810",fontsize=16,color="green",shape="box"];1922 -> 1385[label="",style="dashed", color="red", weight=0]; 1922[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1922 -> 2070[label="",style="dashed", color="magenta", weight=3]; 1922 -> 2071[label="",style="dashed", color="magenta", weight=3]; 1923 -> 1386[label="",style="dashed", color="red", weight=0]; 1923[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1923 -> 2072[label="",style="dashed", color="magenta", weight=3]; 1923 -> 2073[label="",style="dashed", color="magenta", weight=3]; 1924 -> 1387[label="",style="dashed", color="red", weight=0]; 1924[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1924 -> 2074[label="",style="dashed", color="magenta", weight=3]; 1924 -> 2075[label="",style="dashed", color="magenta", weight=3]; 1925 -> 1388[label="",style="dashed", color="red", weight=0]; 1925[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1925 -> 2076[label="",style="dashed", color="magenta", weight=3]; 1925 -> 2077[label="",style="dashed", color="magenta", weight=3]; 1926 -> 1389[label="",style="dashed", color="red", weight=0]; 1926[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1926 -> 2078[label="",style="dashed", color="magenta", weight=3]; 1926 -> 2079[label="",style="dashed", color="magenta", weight=3]; 1927 -> 1390[label="",style="dashed", color="red", weight=0]; 1927[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1927 -> 2080[label="",style="dashed", color="magenta", weight=3]; 1927 -> 2081[label="",style="dashed", color="magenta", weight=3]; 1928 -> 1391[label="",style="dashed", color="red", weight=0]; 1928[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1928 -> 2082[label="",style="dashed", color="magenta", weight=3]; 1928 -> 2083[label="",style="dashed", color="magenta", weight=3]; 1929 -> 1392[label="",style="dashed", color="red", weight=0]; 1929[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1929 -> 2084[label="",style="dashed", color="magenta", weight=3]; 1929 -> 2085[label="",style="dashed", color="magenta", weight=3]; 1930 -> 1393[label="",style="dashed", color="red", weight=0]; 1930[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1930 -> 2086[label="",style="dashed", color="magenta", weight=3]; 1930 -> 2087[label="",style="dashed", color="magenta", weight=3]; 1931 -> 1394[label="",style="dashed", color="red", weight=0]; 1931[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1931 -> 2088[label="",style="dashed", color="magenta", weight=3]; 1931 -> 2089[label="",style="dashed", color="magenta", weight=3]; 1932 -> 1395[label="",style="dashed", color="red", weight=0]; 1932[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1932 -> 2090[label="",style="dashed", color="magenta", weight=3]; 1932 -> 2091[label="",style="dashed", color="magenta", weight=3]; 1933 -> 1396[label="",style="dashed", color="red", weight=0]; 1933[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1933 -> 2092[label="",style="dashed", color="magenta", weight=3]; 1933 -> 2093[label="",style="dashed", color="magenta", weight=3]; 1934 -> 1397[label="",style="dashed", color="red", weight=0]; 1934[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1934 -> 2094[label="",style="dashed", color="magenta", weight=3]; 1934 -> 2095[label="",style="dashed", color="magenta", weight=3]; 1935 -> 1398[label="",style="dashed", color="red", weight=0]; 1935[label="xuu4610 < xuu4810",fontsize=16,color="magenta"];1935 -> 2096[label="",style="dashed", color="magenta", weight=3]; 1935 -> 2097[label="",style="dashed", color="magenta", weight=3]; 1936[label="xuu4610 == xuu4810",fontsize=16,color="blue",shape="box"];3332[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3332[label="",style="solid", color="blue", weight=9]; 3332 -> 2098[label="",style="solid", color="blue", weight=3]; 3333[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3333[label="",style="solid", color="blue", weight=9]; 3333 -> 2099[label="",style="solid", color="blue", weight=3]; 3334[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3334[label="",style="solid", color="blue", weight=9]; 3334 -> 2100[label="",style="solid", color="blue", weight=3]; 3335[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3335[label="",style="solid", color="blue", weight=9]; 3335 -> 2101[label="",style="solid", color="blue", weight=3]; 3336[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3336[label="",style="solid", color="blue", weight=9]; 3336 -> 2102[label="",style="solid", color="blue", weight=3]; 3337[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3337[label="",style="solid", color="blue", weight=9]; 3337 -> 2103[label="",style="solid", color="blue", weight=3]; 3338[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3338[label="",style="solid", color="blue", weight=9]; 3338 -> 2104[label="",style="solid", color="blue", weight=3]; 3339[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3339[label="",style="solid", color="blue", weight=9]; 3339 -> 2105[label="",style="solid", color="blue", weight=3]; 3340[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3340[label="",style="solid", color="blue", weight=9]; 3340 -> 2106[label="",style="solid", color="blue", weight=3]; 3341[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3341[label="",style="solid", color="blue", weight=9]; 3341 -> 2107[label="",style="solid", color="blue", weight=3]; 3342[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3342[label="",style="solid", color="blue", weight=9]; 3342 -> 2108[label="",style="solid", color="blue", weight=3]; 3343[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3343[label="",style="solid", color="blue", weight=9]; 3343 -> 2109[label="",style="solid", color="blue", weight=3]; 3344[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3344[label="",style="solid", color="blue", weight=9]; 3344 -> 2110[label="",style="solid", color="blue", weight=3]; 3345[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1936 -> 3345[label="",style="solid", color="blue", weight=9]; 3345 -> 2111[label="",style="solid", color="blue", weight=3]; 1937 -> 1837[label="",style="dashed", color="red", weight=0]; 1937[label="xuu4611 < xuu4811 || xuu4611 == xuu4811 && xuu4612 <= xuu4812",fontsize=16,color="magenta"];1937 -> 2112[label="",style="dashed", color="magenta", weight=3]; 1937 -> 2113[label="",style="dashed", color="magenta", weight=3]; 1938[label="xuu4610",fontsize=16,color="green",shape="box"];1939[label="xuu4810",fontsize=16,color="green",shape="box"];1940[label="xuu4610",fontsize=16,color="green",shape="box"];1941[label="xuu4810",fontsize=16,color="green",shape="box"];1942[label="xuu4610",fontsize=16,color="green",shape="box"];1943[label="xuu4810",fontsize=16,color="green",shape="box"];1944[label="xuu4610",fontsize=16,color="green",shape="box"];1945[label="xuu4810",fontsize=16,color="green",shape="box"];1946[label="xuu4610",fontsize=16,color="green",shape="box"];1947[label="xuu4810",fontsize=16,color="green",shape="box"];1948[label="xuu4610",fontsize=16,color="green",shape="box"];1949[label="xuu4810",fontsize=16,color="green",shape="box"];1950[label="xuu4610",fontsize=16,color="green",shape="box"];1951[label="xuu4810",fontsize=16,color="green",shape="box"];1952[label="xuu4610",fontsize=16,color="green",shape="box"];1953[label="xuu4810",fontsize=16,color="green",shape="box"];1954[label="xuu4610",fontsize=16,color="green",shape="box"];1955[label="xuu4810",fontsize=16,color="green",shape="box"];1956[label="xuu4610",fontsize=16,color="green",shape="box"];1957[label="xuu4810",fontsize=16,color="green",shape="box"];1958[label="xuu4610",fontsize=16,color="green",shape="box"];1959[label="xuu4810",fontsize=16,color="green",shape="box"];1960[label="xuu4610",fontsize=16,color="green",shape="box"];1961[label="xuu4810",fontsize=16,color="green",shape="box"];1962[label="xuu4610",fontsize=16,color="green",shape="box"];1963[label="xuu4810",fontsize=16,color="green",shape="box"];1964[label="xuu4610",fontsize=16,color="green",shape="box"];1965[label="xuu4810",fontsize=16,color="green",shape="box"];1467[label="Pos (primPlusNat xuu3820 xuu940)",fontsize=16,color="green",shape="box"];1467 -> 1571[label="",style="dashed", color="green", weight=3]; 1468[label="primMinusNat xuu3820 xuu940",fontsize=16,color="burlywood",shape="triangle"];3346[label="xuu3820/Succ xuu38200",fontsize=10,color="white",style="solid",shape="box"];1468 -> 3346[label="",style="solid", color="burlywood", weight=9]; 3346 -> 1572[label="",style="solid", color="burlywood", weight=3]; 3347[label="xuu3820/Zero",fontsize=10,color="white",style="solid",shape="box"];1468 -> 3347[label="",style="solid", color="burlywood", weight=9]; 3347 -> 1573[label="",style="solid", color="burlywood", weight=3]; 1469 -> 1468[label="",style="dashed", color="red", weight=0]; 1469[label="primMinusNat xuu940 xuu3820",fontsize=16,color="magenta"];1469 -> 1574[label="",style="dashed", color="magenta", weight=3]; 1469 -> 1575[label="",style="dashed", color="magenta", weight=3]; 1470[label="Neg (primPlusNat xuu3820 xuu940)",fontsize=16,color="green",shape="box"];1470 -> 1576[label="",style="dashed", color="green", weight=3]; 1473[label="primCmpNat (Succ xuu4600) xuu480",fontsize=16,color="burlywood",shape="triangle"];3348[label="xuu480/Succ xuu4800",fontsize=10,color="white",style="solid",shape="box"];1473 -> 3348[label="",style="solid", color="burlywood", weight=9]; 3348 -> 1578[label="",style="solid", color="burlywood", weight=3]; 3349[label="xuu480/Zero",fontsize=10,color="white",style="solid",shape="box"];1473 -> 3349[label="",style="solid", color="burlywood", weight=9]; 3349 -> 1579[label="",style="solid", color="burlywood", weight=3]; 1474[label="GT",fontsize=16,color="green",shape="box"];1475[label="primCmpInt (Pos Zero) (Pos (Succ xuu4800))",fontsize=16,color="black",shape="box"];1475 -> 1580[label="",style="solid", color="black", weight=3]; 1476[label="primCmpInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];1476 -> 1581[label="",style="solid", color="black", weight=3]; 1477[label="primCmpInt (Pos Zero) (Neg (Succ xuu4800))",fontsize=16,color="black",shape="box"];1477 -> 1582[label="",style="solid", color="black", weight=3]; 1478[label="primCmpInt (Pos Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];1478 -> 1583[label="",style="solid", color="black", weight=3]; 1479[label="LT",fontsize=16,color="green",shape="box"];1480[label="primCmpNat xuu480 (Succ xuu4600)",fontsize=16,color="burlywood",shape="triangle"];3350[label="xuu480/Succ xuu4800",fontsize=10,color="white",style="solid",shape="box"];1480 -> 3350[label="",style="solid", color="burlywood", weight=9]; 3350 -> 1584[label="",style="solid", color="burlywood", weight=3]; 3351[label="xuu480/Zero",fontsize=10,color="white",style="solid",shape="box"];1480 -> 3351[label="",style="solid", color="burlywood", weight=9]; 3351 -> 1585[label="",style="solid", color="burlywood", weight=3]; 1481[label="primCmpInt (Neg Zero) (Pos (Succ xuu4800))",fontsize=16,color="black",shape="box"];1481 -> 1586[label="",style="solid", color="black", weight=3]; 1482[label="primCmpInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];1482 -> 1587[label="",style="solid", color="black", weight=3]; 1483[label="primCmpInt (Neg Zero) (Neg (Succ xuu4800))",fontsize=16,color="black",shape="box"];1483 -> 1588[label="",style="solid", color="black", weight=3]; 1484[label="primCmpInt (Neg Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];1484 -> 1589[label="",style="solid", color="black", weight=3]; 1486 -> 1386[label="",style="dashed", color="red", weight=0]; 1486[label="FiniteMap.sizeFM xuu384 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xuu383",fontsize=16,color="magenta"];1486 -> 1590[label="",style="dashed", color="magenta", weight=3]; 1486 -> 1591[label="",style="dashed", color="magenta", weight=3]; 1485[label="FiniteMap.mkBalBranch6MkBalBranch11 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 xuu380 xuu381 xuu382 xuu383 xuu384 xuu115",fontsize=16,color="burlywood",shape="triangle"];3352[label="xuu115/False",fontsize=10,color="white",style="solid",shape="box"];1485 -> 3352[label="",style="solid", color="burlywood", weight=9]; 3352 -> 1592[label="",style="solid", color="burlywood", weight=3]; 3353[label="xuu115/True",fontsize=10,color="white",style="solid",shape="box"];1485 -> 3353[label="",style="solid", color="burlywood", weight=9]; 3353 -> 1593[label="",style="solid", color="burlywood", weight=3]; 1678[label="xuu214",fontsize=16,color="green",shape="box"];1679[label="FiniteMap.mkBalBranch6MkBalBranch00 (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu210 xuu211 xuu212 xuu213 xuu214 True",fontsize=16,color="black",shape="box"];1679 -> 1993[label="",style="solid", color="black", weight=3]; 1680[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ Zero)))) xuu210 xuu211 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu214",fontsize=16,color="black",shape="box"];1680 -> 1994[label="",style="solid", color="black", weight=3]; 2783 -> 1230[label="",style="dashed", color="red", weight=0]; 2783[label="FiniteMap.sizeFM xuu222",fontsize=16,color="magenta"];2783 -> 2784[label="",style="dashed", color="magenta", weight=3]; 1577 -> 1571[label="",style="dashed", color="red", weight=0]; 1577[label="primPlusNat xuu980 xuu300000",fontsize=16,color="magenta"];1577 -> 1689[label="",style="dashed", color="magenta", weight=3]; 1577 -> 1690[label="",style="dashed", color="magenta", weight=3]; 1966[label="primCmpNat (Succ xuu46000) xuu4800",fontsize=16,color="burlywood",shape="box"];3354[label="xuu4800/Succ xuu48000",fontsize=10,color="white",style="solid",shape="box"];1966 -> 3354[label="",style="solid", color="burlywood", weight=9]; 3354 -> 2114[label="",style="solid", color="burlywood", weight=3]; 3355[label="xuu4800/Zero",fontsize=10,color="white",style="solid",shape="box"];1966 -> 3355[label="",style="solid", color="burlywood", weight=9]; 3355 -> 2115[label="",style="solid", color="burlywood", weight=3]; 1967[label="primCmpNat Zero xuu4800",fontsize=16,color="burlywood",shape="box"];3356[label="xuu4800/Succ xuu48000",fontsize=10,color="white",style="solid",shape="box"];1967 -> 3356[label="",style="solid", color="burlywood", weight=9]; 3356 -> 2116[label="",style="solid", color="burlywood", weight=3]; 3357[label="xuu4800/Zero",fontsize=10,color="white",style="solid",shape="box"];1967 -> 3357[label="",style="solid", color="burlywood", weight=9]; 3357 -> 2117[label="",style="solid", color="burlywood", weight=3]; 1968 -> 453[label="",style="dashed", color="red", weight=0]; 1968[label="xuu4800 * xuu4601",fontsize=16,color="magenta"];1968 -> 2118[label="",style="dashed", color="magenta", weight=3]; 1968 -> 2119[label="",style="dashed", color="magenta", weight=3]; 1969 -> 453[label="",style="dashed", color="red", weight=0]; 1969[label="xuu4600 * xuu4801",fontsize=16,color="magenta"];1969 -> 2120[label="",style="dashed", color="magenta", weight=3]; 1969 -> 2121[label="",style="dashed", color="magenta", weight=3]; 1970[label="xuu4600 * xuu4801",fontsize=16,color="burlywood",shape="triangle"];3358[label="xuu4600/Integer xuu46000",fontsize=10,color="white",style="solid",shape="box"];1970 -> 3358[label="",style="solid", color="burlywood", weight=9]; 3358 -> 2122[label="",style="solid", color="burlywood", weight=3]; 1971 -> 1970[label="",style="dashed", color="red", weight=0]; 1971[label="xuu4800 * xuu4601",fontsize=16,color="magenta"];1971 -> 2123[label="",style="dashed", color="magenta", weight=3]; 1971 -> 2124[label="",style="dashed", color="magenta", weight=3]; 1972[label="primCmpDouble (Double xuu4600 (Pos xuu46010)) (Double xuu4800 (Pos xuu48010))",fontsize=16,color="black",shape="box"];1972 -> 2125[label="",style="solid", color="black", weight=3]; 1973[label="primCmpDouble (Double xuu4600 (Pos xuu46010)) (Double xuu4800 (Neg xuu48010))",fontsize=16,color="black",shape="box"];1973 -> 2126[label="",style="solid", color="black", weight=3]; 1974[label="primCmpDouble (Double xuu4600 (Neg xuu46010)) (Double xuu4800 (Pos xuu48010))",fontsize=16,color="black",shape="box"];1974 -> 2127[label="",style="solid", color="black", weight=3]; 1975[label="primCmpDouble (Double xuu4600 (Neg xuu46010)) (Double xuu4800 (Neg xuu48010))",fontsize=16,color="black",shape="box"];1975 -> 2128[label="",style="solid", color="black", weight=3]; 1976 -> 2129[label="",style="dashed", color="red", weight=0]; 1976[label="compare1 xuu460 xuu480 (xuu460 <= xuu480)",fontsize=16,color="magenta"];1976 -> 2130[label="",style="dashed", color="magenta", weight=3]; 1977[label="EQ",fontsize=16,color="green",shape="box"];1978 -> 2131[label="",style="dashed", color="red", weight=0]; 1978[label="compare1 xuu460 xuu480 (xuu460 <= xuu480)",fontsize=16,color="magenta"];1978 -> 2132[label="",style="dashed", color="magenta", weight=3]; 1979[label="EQ",fontsize=16,color="green",shape="box"];1980[label="primCmpFloat (Float xuu4600 (Pos xuu46010)) (Float xuu4800 (Pos xuu48010))",fontsize=16,color="black",shape="box"];1980 -> 2133[label="",style="solid", color="black", weight=3]; 1981[label="primCmpFloat (Float xuu4600 (Pos xuu46010)) (Float xuu4800 (Neg xuu48010))",fontsize=16,color="black",shape="box"];1981 -> 2134[label="",style="solid", color="black", weight=3]; 1982[label="primCmpFloat (Float xuu4600 (Neg xuu46010)) (Float xuu4800 (Pos xuu48010))",fontsize=16,color="black",shape="box"];1982 -> 2135[label="",style="solid", color="black", weight=3]; 1983[label="primCmpFloat (Float xuu4600 (Neg xuu46010)) (Float xuu4800 (Neg xuu48010))",fontsize=16,color="black",shape="box"];1983 -> 2136[label="",style="solid", color="black", weight=3]; 1984[label="xuu4601",fontsize=16,color="green",shape="box"];1985[label="xuu4801",fontsize=16,color="green",shape="box"];1986 -> 2137[label="",style="dashed", color="red", weight=0]; 1986[label="primCompAux0 xuu127 (compare xuu4600 xuu4800)",fontsize=16,color="magenta"];1986 -> 2138[label="",style="dashed", color="magenta", weight=3]; 1986 -> 2139[label="",style="dashed", color="magenta", weight=3]; 1987 -> 2140[label="",style="dashed", color="red", weight=0]; 1987[label="compare1 xuu460 xuu480 (xuu460 <= xuu480)",fontsize=16,color="magenta"];1987 -> 2141[label="",style="dashed", color="magenta", weight=3]; 1988[label="EQ",fontsize=16,color="green",shape="box"];1989 -> 2142[label="",style="dashed", color="red", weight=0]; 1989[label="compare1 xuu460 xuu480 (xuu460 <= xuu480)",fontsize=16,color="magenta"];1989 -> 2143[label="",style="dashed", color="magenta", weight=3]; 1990[label="EQ",fontsize=16,color="green",shape="box"];1991 -> 2144[label="",style="dashed", color="red", weight=0]; 1991[label="compare1 xuu460 xuu480 (xuu460 <= xuu480)",fontsize=16,color="magenta"];1991 -> 2145[label="",style="dashed", color="magenta", weight=3]; 1992[label="EQ",fontsize=16,color="green",shape="box"];2010[label="xuu4610",fontsize=16,color="green",shape="box"];2011[label="xuu4810",fontsize=16,color="green",shape="box"];2012[label="xuu4610",fontsize=16,color="green",shape="box"];2013[label="xuu4810",fontsize=16,color="green",shape="box"];2014[label="xuu4610",fontsize=16,color="green",shape="box"];2015[label="xuu4810",fontsize=16,color="green",shape="box"];2016[label="xuu4610",fontsize=16,color="green",shape="box"];2017[label="xuu4810",fontsize=16,color="green",shape="box"];2018[label="xuu4610",fontsize=16,color="green",shape="box"];2019[label="xuu4810",fontsize=16,color="green",shape="box"];2020[label="xuu4610",fontsize=16,color="green",shape="box"];2021[label="xuu4810",fontsize=16,color="green",shape="box"];2022[label="xuu4610",fontsize=16,color="green",shape="box"];2023[label="xuu4810",fontsize=16,color="green",shape="box"];2024[label="xuu4610",fontsize=16,color="green",shape="box"];2025[label="xuu4810",fontsize=16,color="green",shape="box"];2026[label="xuu4610",fontsize=16,color="green",shape="box"];2027[label="xuu4810",fontsize=16,color="green",shape="box"];2028[label="xuu4610",fontsize=16,color="green",shape="box"];2029[label="xuu4810",fontsize=16,color="green",shape="box"];2030[label="xuu4610",fontsize=16,color="green",shape="box"];2031[label="xuu4810",fontsize=16,color="green",shape="box"];2032[label="xuu4610",fontsize=16,color="green",shape="box"];2033[label="xuu4810",fontsize=16,color="green",shape="box"];2034[label="xuu4610",fontsize=16,color="green",shape="box"];2035[label="xuu4810",fontsize=16,color="green",shape="box"];2036[label="xuu4610",fontsize=16,color="green",shape="box"];2037[label="xuu4810",fontsize=16,color="green",shape="box"];2038 -> 137[label="",style="dashed", color="red", weight=0]; 2038[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2038 -> 2146[label="",style="dashed", color="magenta", weight=3]; 2038 -> 2147[label="",style="dashed", color="magenta", weight=3]; 2039 -> 150[label="",style="dashed", color="red", weight=0]; 2039[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2039 -> 2148[label="",style="dashed", color="magenta", weight=3]; 2039 -> 2149[label="",style="dashed", color="magenta", weight=3]; 2040 -> 144[label="",style="dashed", color="red", weight=0]; 2040[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2040 -> 2150[label="",style="dashed", color="magenta", weight=3]; 2040 -> 2151[label="",style="dashed", color="magenta", weight=3]; 2041 -> 140[label="",style="dashed", color="red", weight=0]; 2041[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2041 -> 2152[label="",style="dashed", color="magenta", weight=3]; 2041 -> 2153[label="",style="dashed", color="magenta", weight=3]; 2042 -> 143[label="",style="dashed", color="red", weight=0]; 2042[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2042 -> 2154[label="",style="dashed", color="magenta", weight=3]; 2042 -> 2155[label="",style="dashed", color="magenta", weight=3]; 2043 -> 147[label="",style="dashed", color="red", weight=0]; 2043[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2043 -> 2156[label="",style="dashed", color="magenta", weight=3]; 2043 -> 2157[label="",style="dashed", color="magenta", weight=3]; 2044 -> 149[label="",style="dashed", color="red", weight=0]; 2044[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2044 -> 2158[label="",style="dashed", color="magenta", weight=3]; 2044 -> 2159[label="",style="dashed", color="magenta", weight=3]; 2045 -> 138[label="",style="dashed", color="red", weight=0]; 2045[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2045 -> 2160[label="",style="dashed", color="magenta", weight=3]; 2045 -> 2161[label="",style="dashed", color="magenta", weight=3]; 2046 -> 141[label="",style="dashed", color="red", weight=0]; 2046[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2046 -> 2162[label="",style="dashed", color="magenta", weight=3]; 2046 -> 2163[label="",style="dashed", color="magenta", weight=3]; 2047 -> 146[label="",style="dashed", color="red", weight=0]; 2047[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2047 -> 2164[label="",style="dashed", color="magenta", weight=3]; 2047 -> 2165[label="",style="dashed", color="magenta", weight=3]; 2048 -> 139[label="",style="dashed", color="red", weight=0]; 2048[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2048 -> 2166[label="",style="dashed", color="magenta", weight=3]; 2048 -> 2167[label="",style="dashed", color="magenta", weight=3]; 2049 -> 142[label="",style="dashed", color="red", weight=0]; 2049[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2049 -> 2168[label="",style="dashed", color="magenta", weight=3]; 2049 -> 2169[label="",style="dashed", color="magenta", weight=3]; 2050 -> 148[label="",style="dashed", color="red", weight=0]; 2050[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2050 -> 2170[label="",style="dashed", color="magenta", weight=3]; 2050 -> 2171[label="",style="dashed", color="magenta", weight=3]; 2051 -> 145[label="",style="dashed", color="red", weight=0]; 2051[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2051 -> 2172[label="",style="dashed", color="magenta", weight=3]; 2051 -> 2173[label="",style="dashed", color="magenta", weight=3]; 2052 -> 1446[label="",style="dashed", color="red", weight=0]; 2052[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2052 -> 2174[label="",style="dashed", color="magenta", weight=3]; 2052 -> 2175[label="",style="dashed", color="magenta", weight=3]; 2053 -> 1447[label="",style="dashed", color="red", weight=0]; 2053[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2053 -> 2176[label="",style="dashed", color="magenta", weight=3]; 2053 -> 2177[label="",style="dashed", color="magenta", weight=3]; 2054 -> 1448[label="",style="dashed", color="red", weight=0]; 2054[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2054 -> 2178[label="",style="dashed", color="magenta", weight=3]; 2054 -> 2179[label="",style="dashed", color="magenta", weight=3]; 2055 -> 1449[label="",style="dashed", color="red", weight=0]; 2055[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2055 -> 2180[label="",style="dashed", color="magenta", weight=3]; 2055 -> 2181[label="",style="dashed", color="magenta", weight=3]; 2056 -> 1450[label="",style="dashed", color="red", weight=0]; 2056[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2056 -> 2182[label="",style="dashed", color="magenta", weight=3]; 2056 -> 2183[label="",style="dashed", color="magenta", weight=3]; 2057 -> 1451[label="",style="dashed", color="red", weight=0]; 2057[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2057 -> 2184[label="",style="dashed", color="magenta", weight=3]; 2057 -> 2185[label="",style="dashed", color="magenta", weight=3]; 2058 -> 1452[label="",style="dashed", color="red", weight=0]; 2058[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2058 -> 2186[label="",style="dashed", color="magenta", weight=3]; 2058 -> 2187[label="",style="dashed", color="magenta", weight=3]; 2059 -> 1453[label="",style="dashed", color="red", weight=0]; 2059[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2059 -> 2188[label="",style="dashed", color="magenta", weight=3]; 2059 -> 2189[label="",style="dashed", color="magenta", weight=3]; 2060 -> 1454[label="",style="dashed", color="red", weight=0]; 2060[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2060 -> 2190[label="",style="dashed", color="magenta", weight=3]; 2060 -> 2191[label="",style="dashed", color="magenta", weight=3]; 2061 -> 1455[label="",style="dashed", color="red", weight=0]; 2061[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2061 -> 2192[label="",style="dashed", color="magenta", weight=3]; 2061 -> 2193[label="",style="dashed", color="magenta", weight=3]; 2062 -> 1456[label="",style="dashed", color="red", weight=0]; 2062[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2062 -> 2194[label="",style="dashed", color="magenta", weight=3]; 2062 -> 2195[label="",style="dashed", color="magenta", weight=3]; 2063 -> 1457[label="",style="dashed", color="red", weight=0]; 2063[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2063 -> 2196[label="",style="dashed", color="magenta", weight=3]; 2063 -> 2197[label="",style="dashed", color="magenta", weight=3]; 2064 -> 1458[label="",style="dashed", color="red", weight=0]; 2064[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2064 -> 2198[label="",style="dashed", color="magenta", weight=3]; 2064 -> 2199[label="",style="dashed", color="magenta", weight=3]; 2065 -> 1459[label="",style="dashed", color="red", weight=0]; 2065[label="xuu4611 <= xuu4811",fontsize=16,color="magenta"];2065 -> 2200[label="",style="dashed", color="magenta", weight=3]; 2065 -> 2201[label="",style="dashed", color="magenta", weight=3]; 2066[label="xuu132",fontsize=16,color="green",shape="box"];2067[label="True",fontsize=16,color="green",shape="box"];2068[label="True",fontsize=16,color="green",shape="box"];2069[label="False",fontsize=16,color="green",shape="box"];2070[label="xuu4610",fontsize=16,color="green",shape="box"];2071[label="xuu4810",fontsize=16,color="green",shape="box"];2072[label="xuu4610",fontsize=16,color="green",shape="box"];2073[label="xuu4810",fontsize=16,color="green",shape="box"];2074[label="xuu4610",fontsize=16,color="green",shape="box"];2075[label="xuu4810",fontsize=16,color="green",shape="box"];2076[label="xuu4610",fontsize=16,color="green",shape="box"];2077[label="xuu4810",fontsize=16,color="green",shape="box"];2078[label="xuu4610",fontsize=16,color="green",shape="box"];2079[label="xuu4810",fontsize=16,color="green",shape="box"];2080[label="xuu4610",fontsize=16,color="green",shape="box"];2081[label="xuu4810",fontsize=16,color="green",shape="box"];2082[label="xuu4610",fontsize=16,color="green",shape="box"];2083[label="xuu4810",fontsize=16,color="green",shape="box"];2084[label="xuu4610",fontsize=16,color="green",shape="box"];2085[label="xuu4810",fontsize=16,color="green",shape="box"];2086[label="xuu4610",fontsize=16,color="green",shape="box"];2087[label="xuu4810",fontsize=16,color="green",shape="box"];2088[label="xuu4610",fontsize=16,color="green",shape="box"];2089[label="xuu4810",fontsize=16,color="green",shape="box"];2090[label="xuu4610",fontsize=16,color="green",shape="box"];2091[label="xuu4810",fontsize=16,color="green",shape="box"];2092[label="xuu4610",fontsize=16,color="green",shape="box"];2093[label="xuu4810",fontsize=16,color="green",shape="box"];2094[label="xuu4610",fontsize=16,color="green",shape="box"];2095[label="xuu4810",fontsize=16,color="green",shape="box"];2096[label="xuu4610",fontsize=16,color="green",shape="box"];2097[label="xuu4810",fontsize=16,color="green",shape="box"];2098 -> 137[label="",style="dashed", color="red", weight=0]; 2098[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2098 -> 2202[label="",style="dashed", color="magenta", weight=3]; 2098 -> 2203[label="",style="dashed", color="magenta", weight=3]; 2099 -> 150[label="",style="dashed", color="red", weight=0]; 2099[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2099 -> 2204[label="",style="dashed", color="magenta", weight=3]; 2099 -> 2205[label="",style="dashed", color="magenta", weight=3]; 2100 -> 144[label="",style="dashed", color="red", weight=0]; 2100[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2100 -> 2206[label="",style="dashed", color="magenta", weight=3]; 2100 -> 2207[label="",style="dashed", color="magenta", weight=3]; 2101 -> 140[label="",style="dashed", color="red", weight=0]; 2101[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2101 -> 2208[label="",style="dashed", color="magenta", weight=3]; 2101 -> 2209[label="",style="dashed", color="magenta", weight=3]; 2102 -> 143[label="",style="dashed", color="red", weight=0]; 2102[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2102 -> 2210[label="",style="dashed", color="magenta", weight=3]; 2102 -> 2211[label="",style="dashed", color="magenta", weight=3]; 2103 -> 147[label="",style="dashed", color="red", weight=0]; 2103[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2103 -> 2212[label="",style="dashed", color="magenta", weight=3]; 2103 -> 2213[label="",style="dashed", color="magenta", weight=3]; 2104 -> 149[label="",style="dashed", color="red", weight=0]; 2104[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2104 -> 2214[label="",style="dashed", color="magenta", weight=3]; 2104 -> 2215[label="",style="dashed", color="magenta", weight=3]; 2105 -> 138[label="",style="dashed", color="red", weight=0]; 2105[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2105 -> 2216[label="",style="dashed", color="magenta", weight=3]; 2105 -> 2217[label="",style="dashed", color="magenta", weight=3]; 2106 -> 141[label="",style="dashed", color="red", weight=0]; 2106[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2106 -> 2218[label="",style="dashed", color="magenta", weight=3]; 2106 -> 2219[label="",style="dashed", color="magenta", weight=3]; 2107 -> 146[label="",style="dashed", color="red", weight=0]; 2107[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2107 -> 2220[label="",style="dashed", color="magenta", weight=3]; 2107 -> 2221[label="",style="dashed", color="magenta", weight=3]; 2108 -> 139[label="",style="dashed", color="red", weight=0]; 2108[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2108 -> 2222[label="",style="dashed", color="magenta", weight=3]; 2108 -> 2223[label="",style="dashed", color="magenta", weight=3]; 2109 -> 142[label="",style="dashed", color="red", weight=0]; 2109[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2109 -> 2224[label="",style="dashed", color="magenta", weight=3]; 2109 -> 2225[label="",style="dashed", color="magenta", weight=3]; 2110 -> 148[label="",style="dashed", color="red", weight=0]; 2110[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2110 -> 2226[label="",style="dashed", color="magenta", weight=3]; 2110 -> 2227[label="",style="dashed", color="magenta", weight=3]; 2111 -> 145[label="",style="dashed", color="red", weight=0]; 2111[label="xuu4610 == xuu4810",fontsize=16,color="magenta"];2111 -> 2228[label="",style="dashed", color="magenta", weight=3]; 2111 -> 2229[label="",style="dashed", color="magenta", weight=3]; 2112[label="xuu4611 < xuu4811",fontsize=16,color="blue",shape="box"];3359[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3359[label="",style="solid", color="blue", weight=9]; 3359 -> 2230[label="",style="solid", color="blue", weight=3]; 3360[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3360[label="",style="solid", color="blue", weight=9]; 3360 -> 2231[label="",style="solid", color="blue", weight=3]; 3361[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3361[label="",style="solid", color="blue", weight=9]; 3361 -> 2232[label="",style="solid", color="blue", weight=3]; 3362[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3362[label="",style="solid", color="blue", weight=9]; 3362 -> 2233[label="",style="solid", color="blue", weight=3]; 3363[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3363[label="",style="solid", color="blue", weight=9]; 3363 -> 2234[label="",style="solid", color="blue", weight=3]; 3364[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3364[label="",style="solid", color="blue", weight=9]; 3364 -> 2235[label="",style="solid", color="blue", weight=3]; 3365[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3365[label="",style="solid", color="blue", weight=9]; 3365 -> 2236[label="",style="solid", color="blue", weight=3]; 3366[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3366[label="",style="solid", color="blue", weight=9]; 3366 -> 2237[label="",style="solid", color="blue", weight=3]; 3367[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3367[label="",style="solid", color="blue", weight=9]; 3367 -> 2238[label="",style="solid", color="blue", weight=3]; 3368[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3368[label="",style="solid", color="blue", weight=9]; 3368 -> 2239[label="",style="solid", color="blue", weight=3]; 3369[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3369[label="",style="solid", color="blue", weight=9]; 3369 -> 2240[label="",style="solid", color="blue", weight=3]; 3370[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3370[label="",style="solid", color="blue", weight=9]; 3370 -> 2241[label="",style="solid", color="blue", weight=3]; 3371[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3371[label="",style="solid", color="blue", weight=9]; 3371 -> 2242[label="",style="solid", color="blue", weight=3]; 3372[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2112 -> 3372[label="",style="solid", color="blue", weight=9]; 3372 -> 2243[label="",style="solid", color="blue", weight=3]; 2113 -> 394[label="",style="dashed", color="red", weight=0]; 2113[label="xuu4611 == xuu4811 && xuu4612 <= xuu4812",fontsize=16,color="magenta"];2113 -> 2244[label="",style="dashed", color="magenta", weight=3]; 2113 -> 2245[label="",style="dashed", color="magenta", weight=3]; 1571[label="primPlusNat xuu3820 xuu940",fontsize=16,color="burlywood",shape="triangle"];3373[label="xuu3820/Succ xuu38200",fontsize=10,color="white",style="solid",shape="box"];1571 -> 3373[label="",style="solid", color="burlywood", weight=9]; 3373 -> 1681[label="",style="solid", color="burlywood", weight=3]; 3374[label="xuu3820/Zero",fontsize=10,color="white",style="solid",shape="box"];1571 -> 3374[label="",style="solid", color="burlywood", weight=9]; 3374 -> 1682[label="",style="solid", color="burlywood", weight=3]; 1572[label="primMinusNat (Succ xuu38200) xuu940",fontsize=16,color="burlywood",shape="box"];3375[label="xuu940/Succ xuu9400",fontsize=10,color="white",style="solid",shape="box"];1572 -> 3375[label="",style="solid", color="burlywood", weight=9]; 3375 -> 1683[label="",style="solid", color="burlywood", weight=3]; 3376[label="xuu940/Zero",fontsize=10,color="white",style="solid",shape="box"];1572 -> 3376[label="",style="solid", color="burlywood", weight=9]; 3376 -> 1684[label="",style="solid", color="burlywood", weight=3]; 1573[label="primMinusNat Zero xuu940",fontsize=16,color="burlywood",shape="box"];3377[label="xuu940/Succ xuu9400",fontsize=10,color="white",style="solid",shape="box"];1573 -> 3377[label="",style="solid", color="burlywood", weight=9]; 3377 -> 1685[label="",style="solid", color="burlywood", weight=3]; 3378[label="xuu940/Zero",fontsize=10,color="white",style="solid",shape="box"];1573 -> 3378[label="",style="solid", color="burlywood", weight=9]; 3378 -> 1686[label="",style="solid", color="burlywood", weight=3]; 1574[label="xuu940",fontsize=16,color="green",shape="box"];1575[label="xuu3820",fontsize=16,color="green",shape="box"];1576 -> 1571[label="",style="dashed", color="red", weight=0]; 1576[label="primPlusNat xuu3820 xuu940",fontsize=16,color="magenta"];1576 -> 1687[label="",style="dashed", color="magenta", weight=3]; 1576 -> 1688[label="",style="dashed", color="magenta", weight=3]; 1578[label="primCmpNat (Succ xuu4600) (Succ xuu4800)",fontsize=16,color="black",shape="box"];1578 -> 1691[label="",style="solid", color="black", weight=3]; 1579[label="primCmpNat (Succ xuu4600) Zero",fontsize=16,color="black",shape="box"];1579 -> 1692[label="",style="solid", color="black", weight=3]; 1580 -> 1480[label="",style="dashed", color="red", weight=0]; 1580[label="primCmpNat Zero (Succ xuu4800)",fontsize=16,color="magenta"];1580 -> 1693[label="",style="dashed", color="magenta", weight=3]; 1580 -> 1694[label="",style="dashed", color="magenta", weight=3]; 1581[label="EQ",fontsize=16,color="green",shape="box"];1582[label="GT",fontsize=16,color="green",shape="box"];1583[label="EQ",fontsize=16,color="green",shape="box"];1584[label="primCmpNat (Succ xuu4800) (Succ xuu4600)",fontsize=16,color="black",shape="box"];1584 -> 1695[label="",style="solid", color="black", weight=3]; 1585[label="primCmpNat Zero (Succ xuu4600)",fontsize=16,color="black",shape="box"];1585 -> 1696[label="",style="solid", color="black", weight=3]; 1586[label="LT",fontsize=16,color="green",shape="box"];1587[label="EQ",fontsize=16,color="green",shape="box"];1588 -> 1473[label="",style="dashed", color="red", weight=0]; 1588[label="primCmpNat (Succ xuu4800) Zero",fontsize=16,color="magenta"];1588 -> 1697[label="",style="dashed", color="magenta", weight=3]; 1588 -> 1698[label="",style="dashed", color="magenta", weight=3]; 1589[label="EQ",fontsize=16,color="green",shape="box"];1590 -> 1230[label="",style="dashed", color="red", weight=0]; 1590[label="FiniteMap.sizeFM xuu384",fontsize=16,color="magenta"];1590 -> 1699[label="",style="dashed", color="magenta", weight=3]; 1591 -> 453[label="",style="dashed", color="red", weight=0]; 1591[label="Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xuu383",fontsize=16,color="magenta"];1591 -> 1700[label="",style="dashed", color="magenta", weight=3]; 1591 -> 1701[label="",style="dashed", color="magenta", weight=3]; 1592[label="FiniteMap.mkBalBranch6MkBalBranch11 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 xuu380 xuu381 xuu382 xuu383 xuu384 False",fontsize=16,color="black",shape="box"];1592 -> 1702[label="",style="solid", color="black", weight=3]; 1593[label="FiniteMap.mkBalBranch6MkBalBranch11 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 xuu380 xuu381 xuu382 xuu383 xuu384 True",fontsize=16,color="black",shape="box"];1593 -> 1703[label="",style="solid", color="black", weight=3]; 1993[label="FiniteMap.mkBalBranch6Double_L (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 xuu213 xuu214)",fontsize=16,color="burlywood",shape="box"];3379[label="xuu213/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1993 -> 3379[label="",style="solid", color="burlywood", weight=9]; 3379 -> 2246[label="",style="solid", color="burlywood", weight=3]; 3380[label="xuu213/FiniteMap.Branch xuu2130 xuu2131 xuu2132 xuu2133 xuu2134",fontsize=10,color="white",style="solid",shape="box"];1993 -> 3380[label="",style="solid", color="burlywood", weight=9]; 3380 -> 2247[label="",style="solid", color="burlywood", weight=3]; 1994[label="FiniteMap.mkBranchResult xuu210 xuu211 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu214",fontsize=16,color="black",shape="box"];1994 -> 2248[label="",style="solid", color="black", weight=3]; 2784[label="xuu222",fontsize=16,color="green",shape="box"];1689[label="xuu980",fontsize=16,color="green",shape="box"];1690[label="xuu300000",fontsize=16,color="green",shape="box"];2114[label="primCmpNat (Succ xuu46000) (Succ xuu48000)",fontsize=16,color="black",shape="box"];2114 -> 2249[label="",style="solid", color="black", weight=3]; 2115[label="primCmpNat (Succ xuu46000) Zero",fontsize=16,color="black",shape="box"];2115 -> 2250[label="",style="solid", color="black", weight=3]; 2116[label="primCmpNat Zero (Succ xuu48000)",fontsize=16,color="black",shape="box"];2116 -> 2251[label="",style="solid", color="black", weight=3]; 2117[label="primCmpNat Zero Zero",fontsize=16,color="black",shape="box"];2117 -> 2252[label="",style="solid", color="black", weight=3]; 2118[label="xuu4601",fontsize=16,color="green",shape="box"];2119[label="xuu4800",fontsize=16,color="green",shape="box"];2120[label="xuu4801",fontsize=16,color="green",shape="box"];2121[label="xuu4600",fontsize=16,color="green",shape="box"];2122[label="Integer xuu46000 * xuu4801",fontsize=16,color="burlywood",shape="box"];3381[label="xuu4801/Integer xuu48010",fontsize=10,color="white",style="solid",shape="box"];2122 -> 3381[label="",style="solid", color="burlywood", weight=9]; 3381 -> 2253[label="",style="solid", color="burlywood", weight=3]; 2123[label="xuu4601",fontsize=16,color="green",shape="box"];2124[label="xuu4800",fontsize=16,color="green",shape="box"];2125 -> 1279[label="",style="dashed", color="red", weight=0]; 2125[label="compare (xuu4600 * Pos xuu48010) (Pos xuu46010 * xuu4800)",fontsize=16,color="magenta"];2125 -> 2254[label="",style="dashed", color="magenta", weight=3]; 2125 -> 2255[label="",style="dashed", color="magenta", weight=3]; 2126 -> 1279[label="",style="dashed", color="red", weight=0]; 2126[label="compare (xuu4600 * Pos xuu48010) (Neg xuu46010 * xuu4800)",fontsize=16,color="magenta"];2126 -> 2256[label="",style="dashed", color="magenta", weight=3]; 2126 -> 2257[label="",style="dashed", color="magenta", weight=3]; 2127 -> 1279[label="",style="dashed", color="red", weight=0]; 2127[label="compare (xuu4600 * Neg xuu48010) (Pos xuu46010 * xuu4800)",fontsize=16,color="magenta"];2127 -> 2258[label="",style="dashed", color="magenta", weight=3]; 2127 -> 2259[label="",style="dashed", color="magenta", weight=3]; 2128 -> 1279[label="",style="dashed", color="red", weight=0]; 2128[label="compare (xuu4600 * Neg xuu48010) (Neg xuu46010 * xuu4800)",fontsize=16,color="magenta"];2128 -> 2260[label="",style="dashed", color="magenta", weight=3]; 2128 -> 2261[label="",style="dashed", color="magenta", weight=3]; 2130 -> 1452[label="",style="dashed", color="red", weight=0]; 2130[label="xuu460 <= xuu480",fontsize=16,color="magenta"];2130 -> 2262[label="",style="dashed", color="magenta", weight=3]; 2130 -> 2263[label="",style="dashed", color="magenta", weight=3]; 2129[label="compare1 xuu460 xuu480 xuu133",fontsize=16,color="burlywood",shape="triangle"];3382[label="xuu133/False",fontsize=10,color="white",style="solid",shape="box"];2129 -> 3382[label="",style="solid", color="burlywood", weight=9]; 3382 -> 2264[label="",style="solid", color="burlywood", weight=3]; 3383[label="xuu133/True",fontsize=10,color="white",style="solid",shape="box"];2129 -> 3383[label="",style="solid", color="burlywood", weight=9]; 3383 -> 2265[label="",style="solid", color="burlywood", weight=3]; 2132 -> 1453[label="",style="dashed", color="red", weight=0]; 2132[label="xuu460 <= xuu480",fontsize=16,color="magenta"];2132 -> 2266[label="",style="dashed", color="magenta", weight=3]; 2132 -> 2267[label="",style="dashed", color="magenta", weight=3]; 2131[label="compare1 xuu460 xuu480 xuu134",fontsize=16,color="burlywood",shape="triangle"];3384[label="xuu134/False",fontsize=10,color="white",style="solid",shape="box"];2131 -> 3384[label="",style="solid", color="burlywood", weight=9]; 3384 -> 2268[label="",style="solid", color="burlywood", weight=3]; 3385[label="xuu134/True",fontsize=10,color="white",style="solid",shape="box"];2131 -> 3385[label="",style="solid", color="burlywood", weight=9]; 3385 -> 2269[label="",style="solid", color="burlywood", weight=3]; 2133 -> 1279[label="",style="dashed", color="red", weight=0]; 2133[label="compare (xuu4600 * Pos xuu48010) (Pos xuu46010 * xuu4800)",fontsize=16,color="magenta"];2133 -> 2270[label="",style="dashed", color="magenta", weight=3]; 2133 -> 2271[label="",style="dashed", color="magenta", weight=3]; 2134 -> 1279[label="",style="dashed", color="red", weight=0]; 2134[label="compare (xuu4600 * Pos xuu48010) (Neg xuu46010 * xuu4800)",fontsize=16,color="magenta"];2134 -> 2272[label="",style="dashed", color="magenta", weight=3]; 2134 -> 2273[label="",style="dashed", color="magenta", weight=3]; 2135 -> 1279[label="",style="dashed", color="red", weight=0]; 2135[label="compare (xuu4600 * Neg xuu48010) (Pos xuu46010 * xuu4800)",fontsize=16,color="magenta"];2135 -> 2274[label="",style="dashed", color="magenta", weight=3]; 2135 -> 2275[label="",style="dashed", color="magenta", weight=3]; 2136 -> 1279[label="",style="dashed", color="red", weight=0]; 2136[label="compare (xuu4600 * Neg xuu48010) (Neg xuu46010 * xuu4800)",fontsize=16,color="magenta"];2136 -> 2276[label="",style="dashed", color="magenta", weight=3]; 2136 -> 2277[label="",style="dashed", color="magenta", weight=3]; 2138[label="xuu127",fontsize=16,color="green",shape="box"];2139[label="compare xuu4600 xuu4800",fontsize=16,color="blue",shape="box"];3386[label="compare :: ((@2) a b) -> ((@2) a b) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3386[label="",style="solid", color="blue", weight=9]; 3386 -> 2278[label="",style="solid", color="blue", weight=3]; 3387[label="compare :: Int -> Int -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3387[label="",style="solid", color="blue", weight=9]; 3387 -> 2279[label="",style="solid", color="blue", weight=3]; 3388[label="compare :: Char -> Char -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3388[label="",style="solid", color="blue", weight=9]; 3388 -> 2280[label="",style="solid", color="blue", weight=3]; 3389[label="compare :: () -> () -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3389[label="",style="solid", color="blue", weight=9]; 3389 -> 2281[label="",style="solid", color="blue", weight=3]; 3390[label="compare :: (Ratio a) -> (Ratio a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3390[label="",style="solid", color="blue", weight=9]; 3390 -> 2282[label="",style="solid", color="blue", weight=3]; 3391[label="compare :: Double -> Double -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3391[label="",style="solid", color="blue", weight=9]; 3391 -> 2283[label="",style="solid", color="blue", weight=3]; 3392[label="compare :: (Either a b) -> (Either a b) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3392[label="",style="solid", color="blue", weight=9]; 3392 -> 2284[label="",style="solid", color="blue", weight=3]; 3393[label="compare :: ((@3) a b c) -> ((@3) a b c) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3393[label="",style="solid", color="blue", weight=9]; 3393 -> 2285[label="",style="solid", color="blue", weight=3]; 3394[label="compare :: Float -> Float -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3394[label="",style="solid", color="blue", weight=9]; 3394 -> 2286[label="",style="solid", color="blue", weight=3]; 3395[label="compare :: ([] a) -> ([] a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3395[label="",style="solid", color="blue", weight=9]; 3395 -> 2287[label="",style="solid", color="blue", weight=3]; 3396[label="compare :: Ordering -> Ordering -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3396[label="",style="solid", color="blue", weight=9]; 3396 -> 2288[label="",style="solid", color="blue", weight=3]; 3397[label="compare :: (Maybe a) -> (Maybe a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3397[label="",style="solid", color="blue", weight=9]; 3397 -> 2289[label="",style="solid", color="blue", weight=3]; 3398[label="compare :: Integer -> Integer -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3398[label="",style="solid", color="blue", weight=9]; 3398 -> 2290[label="",style="solid", color="blue", weight=3]; 3399[label="compare :: Bool -> Bool -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2139 -> 3399[label="",style="solid", color="blue", weight=9]; 3399 -> 2291[label="",style="solid", color="blue", weight=3]; 2137[label="primCompAux0 xuu138 xuu139",fontsize=16,color="burlywood",shape="triangle"];3400[label="xuu139/LT",fontsize=10,color="white",style="solid",shape="box"];2137 -> 3400[label="",style="solid", color="burlywood", weight=9]; 3400 -> 2292[label="",style="solid", color="burlywood", weight=3]; 3401[label="xuu139/EQ",fontsize=10,color="white",style="solid",shape="box"];2137 -> 3401[label="",style="solid", color="burlywood", weight=9]; 3401 -> 2293[label="",style="solid", color="burlywood", weight=3]; 3402[label="xuu139/GT",fontsize=10,color="white",style="solid",shape="box"];2137 -> 3402[label="",style="solid", color="burlywood", weight=9]; 3402 -> 2294[label="",style="solid", color="burlywood", weight=3]; 2141 -> 1456[label="",style="dashed", color="red", weight=0]; 2141[label="xuu460 <= xuu480",fontsize=16,color="magenta"];2141 -> 2295[label="",style="dashed", color="magenta", weight=3]; 2141 -> 2296[label="",style="dashed", color="magenta", weight=3]; 2140[label="compare1 xuu460 xuu480 xuu140",fontsize=16,color="burlywood",shape="triangle"];3403[label="xuu140/False",fontsize=10,color="white",style="solid",shape="box"];2140 -> 3403[label="",style="solid", color="burlywood", weight=9]; 3403 -> 2297[label="",style="solid", color="burlywood", weight=3]; 3404[label="xuu140/True",fontsize=10,color="white",style="solid",shape="box"];2140 -> 3404[label="",style="solid", color="burlywood", weight=9]; 3404 -> 2298[label="",style="solid", color="burlywood", weight=3]; 2143 -> 1457[label="",style="dashed", color="red", weight=0]; 2143[label="xuu460 <= xuu480",fontsize=16,color="magenta"];2143 -> 2299[label="",style="dashed", color="magenta", weight=3]; 2143 -> 2300[label="",style="dashed", color="magenta", weight=3]; 2142[label="compare1 xuu460 xuu480 xuu141",fontsize=16,color="burlywood",shape="triangle"];3405[label="xuu141/False",fontsize=10,color="white",style="solid",shape="box"];2142 -> 3405[label="",style="solid", color="burlywood", weight=9]; 3405 -> 2301[label="",style="solid", color="burlywood", weight=3]; 3406[label="xuu141/True",fontsize=10,color="white",style="solid",shape="box"];2142 -> 3406[label="",style="solid", color="burlywood", weight=9]; 3406 -> 2302[label="",style="solid", color="burlywood", weight=3]; 2145 -> 1459[label="",style="dashed", color="red", weight=0]; 2145[label="xuu460 <= xuu480",fontsize=16,color="magenta"];2145 -> 2303[label="",style="dashed", color="magenta", weight=3]; 2145 -> 2304[label="",style="dashed", color="magenta", weight=3]; 2144[label="compare1 xuu460 xuu480 xuu142",fontsize=16,color="burlywood",shape="triangle"];3407[label="xuu142/False",fontsize=10,color="white",style="solid",shape="box"];2144 -> 3407[label="",style="solid", color="burlywood", weight=9]; 3407 -> 2305[label="",style="solid", color="burlywood", weight=3]; 3408[label="xuu142/True",fontsize=10,color="white",style="solid",shape="box"];2144 -> 3408[label="",style="solid", color="burlywood", weight=9]; 3408 -> 2306[label="",style="solid", color="burlywood", weight=3]; 2146[label="xuu4810",fontsize=16,color="green",shape="box"];2147[label="xuu4610",fontsize=16,color="green",shape="box"];2148[label="xuu4810",fontsize=16,color="green",shape="box"];2149[label="xuu4610",fontsize=16,color="green",shape="box"];2150[label="xuu4810",fontsize=16,color="green",shape="box"];2151[label="xuu4610",fontsize=16,color="green",shape="box"];2152[label="xuu4810",fontsize=16,color="green",shape="box"];2153[label="xuu4610",fontsize=16,color="green",shape="box"];2154[label="xuu4810",fontsize=16,color="green",shape="box"];2155[label="xuu4610",fontsize=16,color="green",shape="box"];2156[label="xuu4810",fontsize=16,color="green",shape="box"];2157[label="xuu4610",fontsize=16,color="green",shape="box"];2158[label="xuu4810",fontsize=16,color="green",shape="box"];2159[label="xuu4610",fontsize=16,color="green",shape="box"];2160[label="xuu4810",fontsize=16,color="green",shape="box"];2161[label="xuu4610",fontsize=16,color="green",shape="box"];2162[label="xuu4810",fontsize=16,color="green",shape="box"];2163[label="xuu4610",fontsize=16,color="green",shape="box"];2164[label="xuu4810",fontsize=16,color="green",shape="box"];2165[label="xuu4610",fontsize=16,color="green",shape="box"];2166[label="xuu4810",fontsize=16,color="green",shape="box"];2167[label="xuu4610",fontsize=16,color="green",shape="box"];2168[label="xuu4810",fontsize=16,color="green",shape="box"];2169[label="xuu4610",fontsize=16,color="green",shape="box"];2170[label="xuu4810",fontsize=16,color="green",shape="box"];2171[label="xuu4610",fontsize=16,color="green",shape="box"];2172[label="xuu4810",fontsize=16,color="green",shape="box"];2173[label="xuu4610",fontsize=16,color="green",shape="box"];2174[label="xuu4611",fontsize=16,color="green",shape="box"];2175[label="xuu4811",fontsize=16,color="green",shape="box"];2176[label="xuu4611",fontsize=16,color="green",shape="box"];2177[label="xuu4811",fontsize=16,color="green",shape="box"];2178[label="xuu4611",fontsize=16,color="green",shape="box"];2179[label="xuu4811",fontsize=16,color="green",shape="box"];2180[label="xuu4611",fontsize=16,color="green",shape="box"];2181[label="xuu4811",fontsize=16,color="green",shape="box"];2182[label="xuu4611",fontsize=16,color="green",shape="box"];2183[label="xuu4811",fontsize=16,color="green",shape="box"];2184[label="xuu4611",fontsize=16,color="green",shape="box"];2185[label="xuu4811",fontsize=16,color="green",shape="box"];2186[label="xuu4611",fontsize=16,color="green",shape="box"];2187[label="xuu4811",fontsize=16,color="green",shape="box"];2188[label="xuu4611",fontsize=16,color="green",shape="box"];2189[label="xuu4811",fontsize=16,color="green",shape="box"];2190[label="xuu4611",fontsize=16,color="green",shape="box"];2191[label="xuu4811",fontsize=16,color="green",shape="box"];2192[label="xuu4611",fontsize=16,color="green",shape="box"];2193[label="xuu4811",fontsize=16,color="green",shape="box"];2194[label="xuu4611",fontsize=16,color="green",shape="box"];2195[label="xuu4811",fontsize=16,color="green",shape="box"];2196[label="xuu4611",fontsize=16,color="green",shape="box"];2197[label="xuu4811",fontsize=16,color="green",shape="box"];2198[label="xuu4611",fontsize=16,color="green",shape="box"];2199[label="xuu4811",fontsize=16,color="green",shape="box"];2200[label="xuu4611",fontsize=16,color="green",shape="box"];2201[label="xuu4811",fontsize=16,color="green",shape="box"];2202[label="xuu4810",fontsize=16,color="green",shape="box"];2203[label="xuu4610",fontsize=16,color="green",shape="box"];2204[label="xuu4810",fontsize=16,color="green",shape="box"];2205[label="xuu4610",fontsize=16,color="green",shape="box"];2206[label="xuu4810",fontsize=16,color="green",shape="box"];2207[label="xuu4610",fontsize=16,color="green",shape="box"];2208[label="xuu4810",fontsize=16,color="green",shape="box"];2209[label="xuu4610",fontsize=16,color="green",shape="box"];2210[label="xuu4810",fontsize=16,color="green",shape="box"];2211[label="xuu4610",fontsize=16,color="green",shape="box"];2212[label="xuu4810",fontsize=16,color="green",shape="box"];2213[label="xuu4610",fontsize=16,color="green",shape="box"];2214[label="xuu4810",fontsize=16,color="green",shape="box"];2215[label="xuu4610",fontsize=16,color="green",shape="box"];2216[label="xuu4810",fontsize=16,color="green",shape="box"];2217[label="xuu4610",fontsize=16,color="green",shape="box"];2218[label="xuu4810",fontsize=16,color="green",shape="box"];2219[label="xuu4610",fontsize=16,color="green",shape="box"];2220[label="xuu4810",fontsize=16,color="green",shape="box"];2221[label="xuu4610",fontsize=16,color="green",shape="box"];2222[label="xuu4810",fontsize=16,color="green",shape="box"];2223[label="xuu4610",fontsize=16,color="green",shape="box"];2224[label="xuu4810",fontsize=16,color="green",shape="box"];2225[label="xuu4610",fontsize=16,color="green",shape="box"];2226[label="xuu4810",fontsize=16,color="green",shape="box"];2227[label="xuu4610",fontsize=16,color="green",shape="box"];2228[label="xuu4810",fontsize=16,color="green",shape="box"];2229[label="xuu4610",fontsize=16,color="green",shape="box"];2230 -> 1385[label="",style="dashed", color="red", weight=0]; 2230[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2230 -> 2324[label="",style="dashed", color="magenta", weight=3]; 2230 -> 2325[label="",style="dashed", color="magenta", weight=3]; 2231 -> 1386[label="",style="dashed", color="red", weight=0]; 2231[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2231 -> 2326[label="",style="dashed", color="magenta", weight=3]; 2231 -> 2327[label="",style="dashed", color="magenta", weight=3]; 2232 -> 1387[label="",style="dashed", color="red", weight=0]; 2232[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2232 -> 2328[label="",style="dashed", color="magenta", weight=3]; 2232 -> 2329[label="",style="dashed", color="magenta", weight=3]; 2233 -> 1388[label="",style="dashed", color="red", weight=0]; 2233[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2233 -> 2330[label="",style="dashed", color="magenta", weight=3]; 2233 -> 2331[label="",style="dashed", color="magenta", weight=3]; 2234 -> 1389[label="",style="dashed", color="red", weight=0]; 2234[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2234 -> 2332[label="",style="dashed", color="magenta", weight=3]; 2234 -> 2333[label="",style="dashed", color="magenta", weight=3]; 2235 -> 1390[label="",style="dashed", color="red", weight=0]; 2235[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2235 -> 2334[label="",style="dashed", color="magenta", weight=3]; 2235 -> 2335[label="",style="dashed", color="magenta", weight=3]; 2236 -> 1391[label="",style="dashed", color="red", weight=0]; 2236[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2236 -> 2336[label="",style="dashed", color="magenta", weight=3]; 2236 -> 2337[label="",style="dashed", color="magenta", weight=3]; 2237 -> 1392[label="",style="dashed", color="red", weight=0]; 2237[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2237 -> 2338[label="",style="dashed", color="magenta", weight=3]; 2237 -> 2339[label="",style="dashed", color="magenta", weight=3]; 2238 -> 1393[label="",style="dashed", color="red", weight=0]; 2238[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2238 -> 2340[label="",style="dashed", color="magenta", weight=3]; 2238 -> 2341[label="",style="dashed", color="magenta", weight=3]; 2239 -> 1394[label="",style="dashed", color="red", weight=0]; 2239[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2239 -> 2342[label="",style="dashed", color="magenta", weight=3]; 2239 -> 2343[label="",style="dashed", color="magenta", weight=3]; 2240 -> 1395[label="",style="dashed", color="red", weight=0]; 2240[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2240 -> 2344[label="",style="dashed", color="magenta", weight=3]; 2240 -> 2345[label="",style="dashed", color="magenta", weight=3]; 2241 -> 1396[label="",style="dashed", color="red", weight=0]; 2241[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2241 -> 2346[label="",style="dashed", color="magenta", weight=3]; 2241 -> 2347[label="",style="dashed", color="magenta", weight=3]; 2242 -> 1397[label="",style="dashed", color="red", weight=0]; 2242[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2242 -> 2348[label="",style="dashed", color="magenta", weight=3]; 2242 -> 2349[label="",style="dashed", color="magenta", weight=3]; 2243 -> 1398[label="",style="dashed", color="red", weight=0]; 2243[label="xuu4611 < xuu4811",fontsize=16,color="magenta"];2243 -> 2350[label="",style="dashed", color="magenta", weight=3]; 2243 -> 2351[label="",style="dashed", color="magenta", weight=3]; 2244[label="xuu4611 == xuu4811",fontsize=16,color="blue",shape="box"];3409[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3409[label="",style="solid", color="blue", weight=9]; 3409 -> 2352[label="",style="solid", color="blue", weight=3]; 3410[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3410[label="",style="solid", color="blue", weight=9]; 3410 -> 2353[label="",style="solid", color="blue", weight=3]; 3411[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3411[label="",style="solid", color="blue", weight=9]; 3411 -> 2354[label="",style="solid", color="blue", weight=3]; 3412[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3412[label="",style="solid", color="blue", weight=9]; 3412 -> 2355[label="",style="solid", color="blue", weight=3]; 3413[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3413[label="",style="solid", color="blue", weight=9]; 3413 -> 2356[label="",style="solid", color="blue", weight=3]; 3414[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3414[label="",style="solid", color="blue", weight=9]; 3414 -> 2357[label="",style="solid", color="blue", weight=3]; 3415[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3415[label="",style="solid", color="blue", weight=9]; 3415 -> 2358[label="",style="solid", color="blue", weight=3]; 3416[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3416[label="",style="solid", color="blue", weight=9]; 3416 -> 2359[label="",style="solid", color="blue", weight=3]; 3417[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3417[label="",style="solid", color="blue", weight=9]; 3417 -> 2360[label="",style="solid", color="blue", weight=3]; 3418[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3418[label="",style="solid", color="blue", weight=9]; 3418 -> 2361[label="",style="solid", color="blue", weight=3]; 3419[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3419[label="",style="solid", color="blue", weight=9]; 3419 -> 2362[label="",style="solid", color="blue", weight=3]; 3420[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3420[label="",style="solid", color="blue", weight=9]; 3420 -> 2363[label="",style="solid", color="blue", weight=3]; 3421[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3421[label="",style="solid", color="blue", weight=9]; 3421 -> 2364[label="",style="solid", color="blue", weight=3]; 3422[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2244 -> 3422[label="",style="solid", color="blue", weight=9]; 3422 -> 2365[label="",style="solid", color="blue", weight=3]; 2245[label="xuu4612 <= xuu4812",fontsize=16,color="blue",shape="box"];3423[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3423[label="",style="solid", color="blue", weight=9]; 3423 -> 2366[label="",style="solid", color="blue", weight=3]; 3424[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3424[label="",style="solid", color="blue", weight=9]; 3424 -> 2367[label="",style="solid", color="blue", weight=3]; 3425[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3425[label="",style="solid", color="blue", weight=9]; 3425 -> 2368[label="",style="solid", color="blue", weight=3]; 3426[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3426[label="",style="solid", color="blue", weight=9]; 3426 -> 2369[label="",style="solid", color="blue", weight=3]; 3427[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3427[label="",style="solid", color="blue", weight=9]; 3427 -> 2370[label="",style="solid", color="blue", weight=3]; 3428[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3428[label="",style="solid", color="blue", weight=9]; 3428 -> 2371[label="",style="solid", color="blue", weight=3]; 3429[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3429[label="",style="solid", color="blue", weight=9]; 3429 -> 2372[label="",style="solid", color="blue", weight=3]; 3430[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3430[label="",style="solid", color="blue", weight=9]; 3430 -> 2373[label="",style="solid", color="blue", weight=3]; 3431[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3431[label="",style="solid", color="blue", weight=9]; 3431 -> 2374[label="",style="solid", color="blue", weight=3]; 3432[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3432[label="",style="solid", color="blue", weight=9]; 3432 -> 2375[label="",style="solid", color="blue", weight=3]; 3433[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3433[label="",style="solid", color="blue", weight=9]; 3433 -> 2376[label="",style="solid", color="blue", weight=3]; 3434[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3434[label="",style="solid", color="blue", weight=9]; 3434 -> 2377[label="",style="solid", color="blue", weight=3]; 3435[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3435[label="",style="solid", color="blue", weight=9]; 3435 -> 2378[label="",style="solid", color="blue", weight=3]; 3436[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2245 -> 3436[label="",style="solid", color="blue", weight=9]; 3436 -> 2379[label="",style="solid", color="blue", weight=3]; 1681[label="primPlusNat (Succ xuu38200) xuu940",fontsize=16,color="burlywood",shape="box"];3437[label="xuu940/Succ xuu9400",fontsize=10,color="white",style="solid",shape="box"];1681 -> 3437[label="",style="solid", color="burlywood", weight=9]; 3437 -> 1995[label="",style="solid", color="burlywood", weight=3]; 3438[label="xuu940/Zero",fontsize=10,color="white",style="solid",shape="box"];1681 -> 3438[label="",style="solid", color="burlywood", weight=9]; 3438 -> 1996[label="",style="solid", color="burlywood", weight=3]; 1682[label="primPlusNat Zero xuu940",fontsize=16,color="burlywood",shape="box"];3439[label="xuu940/Succ xuu9400",fontsize=10,color="white",style="solid",shape="box"];1682 -> 3439[label="",style="solid", color="burlywood", weight=9]; 3439 -> 1997[label="",style="solid", color="burlywood", weight=3]; 3440[label="xuu940/Zero",fontsize=10,color="white",style="solid",shape="box"];1682 -> 3440[label="",style="solid", color="burlywood", weight=9]; 3440 -> 1998[label="",style="solid", color="burlywood", weight=3]; 1683[label="primMinusNat (Succ xuu38200) (Succ xuu9400)",fontsize=16,color="black",shape="box"];1683 -> 1999[label="",style="solid", color="black", weight=3]; 1684[label="primMinusNat (Succ xuu38200) Zero",fontsize=16,color="black",shape="box"];1684 -> 2000[label="",style="solid", color="black", weight=3]; 1685[label="primMinusNat Zero (Succ xuu9400)",fontsize=16,color="black",shape="box"];1685 -> 2001[label="",style="solid", color="black", weight=3]; 1686[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];1686 -> 2002[label="",style="solid", color="black", weight=3]; 1687[label="xuu3820",fontsize=16,color="green",shape="box"];1688[label="xuu940",fontsize=16,color="green",shape="box"];1691 -> 1804[label="",style="dashed", color="red", weight=0]; 1691[label="primCmpNat xuu4600 xuu4800",fontsize=16,color="magenta"];1691 -> 2003[label="",style="dashed", color="magenta", weight=3]; 1691 -> 2004[label="",style="dashed", color="magenta", weight=3]; 1692[label="GT",fontsize=16,color="green",shape="box"];1693[label="xuu4800",fontsize=16,color="green",shape="box"];1694[label="Zero",fontsize=16,color="green",shape="box"];1695 -> 1804[label="",style="dashed", color="red", weight=0]; 1695[label="primCmpNat xuu4800 xuu4600",fontsize=16,color="magenta"];1695 -> 2005[label="",style="dashed", color="magenta", weight=3]; 1695 -> 2006[label="",style="dashed", color="magenta", weight=3]; 1696[label="LT",fontsize=16,color="green",shape="box"];1697[label="Zero",fontsize=16,color="green",shape="box"];1698[label="xuu4800",fontsize=16,color="green",shape="box"];1699[label="xuu384",fontsize=16,color="green",shape="box"];1700 -> 1230[label="",style="dashed", color="red", weight=0]; 1700[label="FiniteMap.sizeFM xuu383",fontsize=16,color="magenta"];1700 -> 2007[label="",style="dashed", color="magenta", weight=3]; 1701[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];1702[label="FiniteMap.mkBalBranch6MkBalBranch10 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 xuu380 xuu381 xuu382 xuu383 xuu384 otherwise",fontsize=16,color="black",shape="box"];1702 -> 2008[label="",style="solid", color="black", weight=3]; 1703[label="FiniteMap.mkBalBranch6Single_R (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21",fontsize=16,color="black",shape="box"];1703 -> 2009[label="",style="solid", color="black", weight=3]; 2246[label="FiniteMap.mkBalBranch6Double_L (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 FiniteMap.EmptyFM xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 FiniteMap.EmptyFM xuu214)",fontsize=16,color="black",shape="box"];2246 -> 2380[label="",style="solid", color="black", weight=3]; 2247[label="FiniteMap.mkBalBranch6Double_L (xuu16,xuu17) xuu18 xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 (FiniteMap.Branch xuu2130 xuu2131 xuu2132 xuu2133 xuu2134) xuu214) xuu38 (FiniteMap.Branch xuu210 xuu211 xuu212 (FiniteMap.Branch xuu2130 xuu2131 xuu2132 xuu2133 xuu2134) xuu214)",fontsize=16,color="black",shape="box"];2247 -> 2381[label="",style="solid", color="black", weight=3]; 2248[label="FiniteMap.Branch xuu210 xuu211 (FiniteMap.mkBranchUnbox (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214 + FiniteMap.mkBranchRight_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214)) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu214",fontsize=16,color="green",shape="box"];2248 -> 2382[label="",style="dashed", color="green", weight=3]; 2248 -> 2383[label="",style="dashed", color="green", weight=3]; 2249 -> 1804[label="",style="dashed", color="red", weight=0]; 2249[label="primCmpNat xuu46000 xuu48000",fontsize=16,color="magenta"];2249 -> 2384[label="",style="dashed", color="magenta", weight=3]; 2249 -> 2385[label="",style="dashed", color="magenta", weight=3]; 2250[label="GT",fontsize=16,color="green",shape="box"];2251[label="LT",fontsize=16,color="green",shape="box"];2252[label="EQ",fontsize=16,color="green",shape="box"];2253[label="Integer xuu46000 * Integer xuu48010",fontsize=16,color="black",shape="box"];2253 -> 2386[label="",style="solid", color="black", weight=3]; 2254 -> 453[label="",style="dashed", color="red", weight=0]; 2254[label="Pos xuu46010 * xuu4800",fontsize=16,color="magenta"];2254 -> 2387[label="",style="dashed", color="magenta", weight=3]; 2254 -> 2388[label="",style="dashed", color="magenta", weight=3]; 2255 -> 453[label="",style="dashed", color="red", weight=0]; 2255[label="xuu4600 * Pos xuu48010",fontsize=16,color="magenta"];2255 -> 2389[label="",style="dashed", color="magenta", weight=3]; 2255 -> 2390[label="",style="dashed", color="magenta", weight=3]; 2256 -> 453[label="",style="dashed", color="red", weight=0]; 2256[label="Neg xuu46010 * xuu4800",fontsize=16,color="magenta"];2256 -> 2391[label="",style="dashed", color="magenta", weight=3]; 2256 -> 2392[label="",style="dashed", color="magenta", weight=3]; 2257 -> 453[label="",style="dashed", color="red", weight=0]; 2257[label="xuu4600 * Pos xuu48010",fontsize=16,color="magenta"];2257 -> 2393[label="",style="dashed", color="magenta", weight=3]; 2257 -> 2394[label="",style="dashed", color="magenta", weight=3]; 2258 -> 453[label="",style="dashed", color="red", weight=0]; 2258[label="Pos xuu46010 * xuu4800",fontsize=16,color="magenta"];2258 -> 2395[label="",style="dashed", color="magenta", weight=3]; 2258 -> 2396[label="",style="dashed", color="magenta", weight=3]; 2259 -> 453[label="",style="dashed", color="red", weight=0]; 2259[label="xuu4600 * Neg xuu48010",fontsize=16,color="magenta"];2259 -> 2397[label="",style="dashed", color="magenta", weight=3]; 2259 -> 2398[label="",style="dashed", color="magenta", weight=3]; 2260 -> 453[label="",style="dashed", color="red", weight=0]; 2260[label="Neg xuu46010 * xuu4800",fontsize=16,color="magenta"];2260 -> 2399[label="",style="dashed", color="magenta", weight=3]; 2260 -> 2400[label="",style="dashed", color="magenta", weight=3]; 2261 -> 453[label="",style="dashed", color="red", weight=0]; 2261[label="xuu4600 * Neg xuu48010",fontsize=16,color="magenta"];2261 -> 2401[label="",style="dashed", color="magenta", weight=3]; 2261 -> 2402[label="",style="dashed", color="magenta", weight=3]; 2262[label="xuu460",fontsize=16,color="green",shape="box"];2263[label="xuu480",fontsize=16,color="green",shape="box"];2264[label="compare1 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];2264 -> 2403[label="",style="solid", color="black", weight=3]; 2265[label="compare1 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2265 -> 2404[label="",style="solid", color="black", weight=3]; 2266[label="xuu460",fontsize=16,color="green",shape="box"];2267[label="xuu480",fontsize=16,color="green",shape="box"];2268[label="compare1 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];2268 -> 2405[label="",style="solid", color="black", weight=3]; 2269[label="compare1 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2269 -> 2406[label="",style="solid", color="black", weight=3]; 2270 -> 453[label="",style="dashed", color="red", weight=0]; 2270[label="Pos xuu46010 * xuu4800",fontsize=16,color="magenta"];2270 -> 2407[label="",style="dashed", color="magenta", weight=3]; 2270 -> 2408[label="",style="dashed", color="magenta", weight=3]; 2271 -> 453[label="",style="dashed", color="red", weight=0]; 2271[label="xuu4600 * Pos xuu48010",fontsize=16,color="magenta"];2271 -> 2409[label="",style="dashed", color="magenta", weight=3]; 2271 -> 2410[label="",style="dashed", color="magenta", weight=3]; 2272 -> 453[label="",style="dashed", color="red", weight=0]; 2272[label="Neg xuu46010 * xuu4800",fontsize=16,color="magenta"];2272 -> 2411[label="",style="dashed", color="magenta", weight=3]; 2272 -> 2412[label="",style="dashed", color="magenta", weight=3]; 2273 -> 453[label="",style="dashed", color="red", weight=0]; 2273[label="xuu4600 * Pos xuu48010",fontsize=16,color="magenta"];2273 -> 2413[label="",style="dashed", color="magenta", weight=3]; 2273 -> 2414[label="",style="dashed", color="magenta", weight=3]; 2274 -> 453[label="",style="dashed", color="red", weight=0]; 2274[label="Pos xuu46010 * xuu4800",fontsize=16,color="magenta"];2274 -> 2415[label="",style="dashed", color="magenta", weight=3]; 2274 -> 2416[label="",style="dashed", color="magenta", weight=3]; 2275 -> 453[label="",style="dashed", color="red", weight=0]; 2275[label="xuu4600 * Neg xuu48010",fontsize=16,color="magenta"];2275 -> 2417[label="",style="dashed", color="magenta", weight=3]; 2275 -> 2418[label="",style="dashed", color="magenta", weight=3]; 2276 -> 453[label="",style="dashed", color="red", weight=0]; 2276[label="Neg xuu46010 * xuu4800",fontsize=16,color="magenta"];2276 -> 2419[label="",style="dashed", color="magenta", weight=3]; 2276 -> 2420[label="",style="dashed", color="magenta", weight=3]; 2277 -> 453[label="",style="dashed", color="red", weight=0]; 2277[label="xuu4600 * Neg xuu48010",fontsize=16,color="magenta"];2277 -> 2421[label="",style="dashed", color="magenta", weight=3]; 2277 -> 2422[label="",style="dashed", color="magenta", weight=3]; 2278 -> 1488[label="",style="dashed", color="red", weight=0]; 2278[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2278 -> 2423[label="",style="dashed", color="magenta", weight=3]; 2278 -> 2424[label="",style="dashed", color="magenta", weight=3]; 2279 -> 1279[label="",style="dashed", color="red", weight=0]; 2279[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2279 -> 2425[label="",style="dashed", color="magenta", weight=3]; 2279 -> 2426[label="",style="dashed", color="magenta", weight=3]; 2280 -> 1492[label="",style="dashed", color="red", weight=0]; 2280[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2280 -> 2427[label="",style="dashed", color="magenta", weight=3]; 2280 -> 2428[label="",style="dashed", color="magenta", weight=3]; 2281 -> 1494[label="",style="dashed", color="red", weight=0]; 2281[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2281 -> 2429[label="",style="dashed", color="magenta", weight=3]; 2281 -> 2430[label="",style="dashed", color="magenta", weight=3]; 2282 -> 1496[label="",style="dashed", color="red", weight=0]; 2282[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2282 -> 2431[label="",style="dashed", color="magenta", weight=3]; 2282 -> 2432[label="",style="dashed", color="magenta", weight=3]; 2283 -> 1498[label="",style="dashed", color="red", weight=0]; 2283[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2283 -> 2433[label="",style="dashed", color="magenta", weight=3]; 2283 -> 2434[label="",style="dashed", color="magenta", weight=3]; 2284 -> 1500[label="",style="dashed", color="red", weight=0]; 2284[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2284 -> 2435[label="",style="dashed", color="magenta", weight=3]; 2284 -> 2436[label="",style="dashed", color="magenta", weight=3]; 2285 -> 1502[label="",style="dashed", color="red", weight=0]; 2285[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2285 -> 2437[label="",style="dashed", color="magenta", weight=3]; 2285 -> 2438[label="",style="dashed", color="magenta", weight=3]; 2286 -> 1504[label="",style="dashed", color="red", weight=0]; 2286[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2286 -> 2439[label="",style="dashed", color="magenta", weight=3]; 2286 -> 2440[label="",style="dashed", color="magenta", weight=3]; 2287 -> 1506[label="",style="dashed", color="red", weight=0]; 2287[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2287 -> 2441[label="",style="dashed", color="magenta", weight=3]; 2287 -> 2442[label="",style="dashed", color="magenta", weight=3]; 2288 -> 1508[label="",style="dashed", color="red", weight=0]; 2288[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2288 -> 2443[label="",style="dashed", color="magenta", weight=3]; 2288 -> 2444[label="",style="dashed", color="magenta", weight=3]; 2289 -> 1510[label="",style="dashed", color="red", weight=0]; 2289[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2289 -> 2445[label="",style="dashed", color="magenta", weight=3]; 2289 -> 2446[label="",style="dashed", color="magenta", weight=3]; 2290 -> 1512[label="",style="dashed", color="red", weight=0]; 2290[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2290 -> 2447[label="",style="dashed", color="magenta", weight=3]; 2290 -> 2448[label="",style="dashed", color="magenta", weight=3]; 2291 -> 1514[label="",style="dashed", color="red", weight=0]; 2291[label="compare xuu4600 xuu4800",fontsize=16,color="magenta"];2291 -> 2449[label="",style="dashed", color="magenta", weight=3]; 2291 -> 2450[label="",style="dashed", color="magenta", weight=3]; 2292[label="primCompAux0 xuu138 LT",fontsize=16,color="black",shape="box"];2292 -> 2451[label="",style="solid", color="black", weight=3]; 2293[label="primCompAux0 xuu138 EQ",fontsize=16,color="black",shape="box"];2293 -> 2452[label="",style="solid", color="black", weight=3]; 2294[label="primCompAux0 xuu138 GT",fontsize=16,color="black",shape="box"];2294 -> 2453[label="",style="solid", color="black", weight=3]; 2295[label="xuu460",fontsize=16,color="green",shape="box"];2296[label="xuu480",fontsize=16,color="green",shape="box"];2297[label="compare1 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];2297 -> 2454[label="",style="solid", color="black", weight=3]; 2298[label="compare1 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2298 -> 2455[label="",style="solid", color="black", weight=3]; 2299[label="xuu460",fontsize=16,color="green",shape="box"];2300[label="xuu480",fontsize=16,color="green",shape="box"];2301[label="compare1 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];2301 -> 2456[label="",style="solid", color="black", weight=3]; 2302[label="compare1 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2302 -> 2457[label="",style="solid", color="black", weight=3]; 2303[label="xuu460",fontsize=16,color="green",shape="box"];2304[label="xuu480",fontsize=16,color="green",shape="box"];2305[label="compare1 xuu460 xuu480 False",fontsize=16,color="black",shape="box"];2305 -> 2458[label="",style="solid", color="black", weight=3]; 2306[label="compare1 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2306 -> 2459[label="",style="solid", color="black", weight=3]; 2324[label="xuu4611",fontsize=16,color="green",shape="box"];2325[label="xuu4811",fontsize=16,color="green",shape="box"];2326[label="xuu4611",fontsize=16,color="green",shape="box"];2327[label="xuu4811",fontsize=16,color="green",shape="box"];2328[label="xuu4611",fontsize=16,color="green",shape="box"];2329[label="xuu4811",fontsize=16,color="green",shape="box"];2330[label="xuu4611",fontsize=16,color="green",shape="box"];2331[label="xuu4811",fontsize=16,color="green",shape="box"];2332[label="xuu4611",fontsize=16,color="green",shape="box"];2333[label="xuu4811",fontsize=16,color="green",shape="box"];2334[label="xuu4611",fontsize=16,color="green",shape="box"];2335[label="xuu4811",fontsize=16,color="green",shape="box"];2336[label="xuu4611",fontsize=16,color="green",shape="box"];2337[label="xuu4811",fontsize=16,color="green",shape="box"];2338[label="xuu4611",fontsize=16,color="green",shape="box"];2339[label="xuu4811",fontsize=16,color="green",shape="box"];2340[label="xuu4611",fontsize=16,color="green",shape="box"];2341[label="xuu4811",fontsize=16,color="green",shape="box"];2342[label="xuu4611",fontsize=16,color="green",shape="box"];2343[label="xuu4811",fontsize=16,color="green",shape="box"];2344[label="xuu4611",fontsize=16,color="green",shape="box"];2345[label="xuu4811",fontsize=16,color="green",shape="box"];2346[label="xuu4611",fontsize=16,color="green",shape="box"];2347[label="xuu4811",fontsize=16,color="green",shape="box"];2348[label="xuu4611",fontsize=16,color="green",shape="box"];2349[label="xuu4811",fontsize=16,color="green",shape="box"];2350[label="xuu4611",fontsize=16,color="green",shape="box"];2351[label="xuu4811",fontsize=16,color="green",shape="box"];2352 -> 137[label="",style="dashed", color="red", weight=0]; 2352[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2352 -> 2464[label="",style="dashed", color="magenta", weight=3]; 2352 -> 2465[label="",style="dashed", color="magenta", weight=3]; 2353 -> 150[label="",style="dashed", color="red", weight=0]; 2353[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2353 -> 2466[label="",style="dashed", color="magenta", weight=3]; 2353 -> 2467[label="",style="dashed", color="magenta", weight=3]; 2354 -> 144[label="",style="dashed", color="red", weight=0]; 2354[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2354 -> 2468[label="",style="dashed", color="magenta", weight=3]; 2354 -> 2469[label="",style="dashed", color="magenta", weight=3]; 2355 -> 140[label="",style="dashed", color="red", weight=0]; 2355[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2355 -> 2470[label="",style="dashed", color="magenta", weight=3]; 2355 -> 2471[label="",style="dashed", color="magenta", weight=3]; 2356 -> 143[label="",style="dashed", color="red", weight=0]; 2356[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2356 -> 2472[label="",style="dashed", color="magenta", weight=3]; 2356 -> 2473[label="",style="dashed", color="magenta", weight=3]; 2357 -> 147[label="",style="dashed", color="red", weight=0]; 2357[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2357 -> 2474[label="",style="dashed", color="magenta", weight=3]; 2357 -> 2475[label="",style="dashed", color="magenta", weight=3]; 2358 -> 149[label="",style="dashed", color="red", weight=0]; 2358[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2358 -> 2476[label="",style="dashed", color="magenta", weight=3]; 2358 -> 2477[label="",style="dashed", color="magenta", weight=3]; 2359 -> 138[label="",style="dashed", color="red", weight=0]; 2359[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2359 -> 2478[label="",style="dashed", color="magenta", weight=3]; 2359 -> 2479[label="",style="dashed", color="magenta", weight=3]; 2360 -> 141[label="",style="dashed", color="red", weight=0]; 2360[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2360 -> 2480[label="",style="dashed", color="magenta", weight=3]; 2360 -> 2481[label="",style="dashed", color="magenta", weight=3]; 2361 -> 146[label="",style="dashed", color="red", weight=0]; 2361[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2361 -> 2482[label="",style="dashed", color="magenta", weight=3]; 2361 -> 2483[label="",style="dashed", color="magenta", weight=3]; 2362 -> 139[label="",style="dashed", color="red", weight=0]; 2362[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2362 -> 2484[label="",style="dashed", color="magenta", weight=3]; 2362 -> 2485[label="",style="dashed", color="magenta", weight=3]; 2363 -> 142[label="",style="dashed", color="red", weight=0]; 2363[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2363 -> 2486[label="",style="dashed", color="magenta", weight=3]; 2363 -> 2487[label="",style="dashed", color="magenta", weight=3]; 2364 -> 148[label="",style="dashed", color="red", weight=0]; 2364[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2364 -> 2488[label="",style="dashed", color="magenta", weight=3]; 2364 -> 2489[label="",style="dashed", color="magenta", weight=3]; 2365 -> 145[label="",style="dashed", color="red", weight=0]; 2365[label="xuu4611 == xuu4811",fontsize=16,color="magenta"];2365 -> 2490[label="",style="dashed", color="magenta", weight=3]; 2365 -> 2491[label="",style="dashed", color="magenta", weight=3]; 2366 -> 1446[label="",style="dashed", color="red", weight=0]; 2366[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2366 -> 2492[label="",style="dashed", color="magenta", weight=3]; 2366 -> 2493[label="",style="dashed", color="magenta", weight=3]; 2367 -> 1447[label="",style="dashed", color="red", weight=0]; 2367[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2367 -> 2494[label="",style="dashed", color="magenta", weight=3]; 2367 -> 2495[label="",style="dashed", color="magenta", weight=3]; 2368 -> 1448[label="",style="dashed", color="red", weight=0]; 2368[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2368 -> 2496[label="",style="dashed", color="magenta", weight=3]; 2368 -> 2497[label="",style="dashed", color="magenta", weight=3]; 2369 -> 1449[label="",style="dashed", color="red", weight=0]; 2369[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2369 -> 2498[label="",style="dashed", color="magenta", weight=3]; 2369 -> 2499[label="",style="dashed", color="magenta", weight=3]; 2370 -> 1450[label="",style="dashed", color="red", weight=0]; 2370[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2370 -> 2500[label="",style="dashed", color="magenta", weight=3]; 2370 -> 2501[label="",style="dashed", color="magenta", weight=3]; 2371 -> 1451[label="",style="dashed", color="red", weight=0]; 2371[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2371 -> 2502[label="",style="dashed", color="magenta", weight=3]; 2371 -> 2503[label="",style="dashed", color="magenta", weight=3]; 2372 -> 1452[label="",style="dashed", color="red", weight=0]; 2372[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2372 -> 2504[label="",style="dashed", color="magenta", weight=3]; 2372 -> 2505[label="",style="dashed", color="magenta", weight=3]; 2373 -> 1453[label="",style="dashed", color="red", weight=0]; 2373[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2373 -> 2506[label="",style="dashed", color="magenta", weight=3]; 2373 -> 2507[label="",style="dashed", color="magenta", weight=3]; 2374 -> 1454[label="",style="dashed", color="red", weight=0]; 2374[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2374 -> 2508[label="",style="dashed", color="magenta", weight=3]; 2374 -> 2509[label="",style="dashed", color="magenta", weight=3]; 2375 -> 1455[label="",style="dashed", color="red", weight=0]; 2375[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2375 -> 2510[label="",style="dashed", color="magenta", weight=3]; 2375 -> 2511[label="",style="dashed", color="magenta", weight=3]; 2376 -> 1456[label="",style="dashed", color="red", weight=0]; 2376[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2376 -> 2512[label="",style="dashed", color="magenta", weight=3]; 2376 -> 2513[label="",style="dashed", color="magenta", weight=3]; 2377 -> 1457[label="",style="dashed", color="red", weight=0]; 2377[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2377 -> 2514[label="",style="dashed", color="magenta", weight=3]; 2377 -> 2515[label="",style="dashed", color="magenta", weight=3]; 2378 -> 1458[label="",style="dashed", color="red", weight=0]; 2378[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2378 -> 2516[label="",style="dashed", color="magenta", weight=3]; 2378 -> 2517[label="",style="dashed", color="magenta", weight=3]; 2379 -> 1459[label="",style="dashed", color="red", weight=0]; 2379[label="xuu4612 <= xuu4812",fontsize=16,color="magenta"];2379 -> 2518[label="",style="dashed", color="magenta", weight=3]; 2379 -> 2519[label="",style="dashed", color="magenta", weight=3]; 1995[label="primPlusNat (Succ xuu38200) (Succ xuu9400)",fontsize=16,color="black",shape="box"];1995 -> 2307[label="",style="solid", color="black", weight=3]; 1996[label="primPlusNat (Succ xuu38200) Zero",fontsize=16,color="black",shape="box"];1996 -> 2308[label="",style="solid", color="black", weight=3]; 1997[label="primPlusNat Zero (Succ xuu9400)",fontsize=16,color="black",shape="box"];1997 -> 2309[label="",style="solid", color="black", weight=3]; 1998[label="primPlusNat Zero Zero",fontsize=16,color="black",shape="box"];1998 -> 2310[label="",style="solid", color="black", weight=3]; 1999 -> 1468[label="",style="dashed", color="red", weight=0]; 1999[label="primMinusNat xuu38200 xuu9400",fontsize=16,color="magenta"];1999 -> 2311[label="",style="dashed", color="magenta", weight=3]; 1999 -> 2312[label="",style="dashed", color="magenta", weight=3]; 2000[label="Pos (Succ xuu38200)",fontsize=16,color="green",shape="box"];2001[label="Neg (Succ xuu9400)",fontsize=16,color="green",shape="box"];2002[label="Pos Zero",fontsize=16,color="green",shape="box"];2003[label="xuu4600",fontsize=16,color="green",shape="box"];2004[label="xuu4800",fontsize=16,color="green",shape="box"];2005[label="xuu4800",fontsize=16,color="green",shape="box"];2006[label="xuu4600",fontsize=16,color="green",shape="box"];2007[label="xuu383",fontsize=16,color="green",shape="box"];2008[label="FiniteMap.mkBalBranch6MkBalBranch10 (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 xuu380 xuu381 xuu382 xuu383 xuu384 True",fontsize=16,color="black",shape="box"];2008 -> 2313[label="",style="solid", color="black", weight=3]; 2009 -> 2314[label="",style="dashed", color="red", weight=0]; 2009[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) xuu380 xuu381 xuu383 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) (xuu16,xuu17) xuu18 xuu384 xuu21)",fontsize=16,color="magenta"];2009 -> 2315[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2316[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2317[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2318[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2319[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2320[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2321[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2322[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2323[label="",style="dashed", color="magenta", weight=3]; 2380[label="error []",fontsize=16,color="red",shape="box"];2381 -> 2520[label="",style="dashed", color="red", weight=0]; 2381[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) xuu2130 xuu2131 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu16,xuu17) xuu18 xuu38 xuu2133) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu210 xuu211 xuu2134 xuu214)",fontsize=16,color="magenta"];2381 -> 2521[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2522[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2523[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2524[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2525[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2526[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2527[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2528[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2529[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2530[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2531[label="",style="dashed", color="magenta", weight=3]; 2381 -> 2532[label="",style="dashed", color="magenta", weight=3]; 2382 -> 2674[label="",style="dashed", color="red", weight=0]; 2382[label="FiniteMap.mkBranchUnbox (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214 + FiniteMap.mkBranchRight_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214)",fontsize=16,color="magenta"];2382 -> 2679[label="",style="dashed", color="magenta", weight=3]; 2382 -> 2680[label="",style="dashed", color="magenta", weight=3]; 2382 -> 2681[label="",style="dashed", color="magenta", weight=3]; 2382 -> 2682[label="",style="dashed", color="magenta", weight=3]; 2383[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213",fontsize=16,color="black",shape="triangle"];2383 -> 2534[label="",style="solid", color="black", weight=3]; 2384[label="xuu46000",fontsize=16,color="green",shape="box"];2385[label="xuu48000",fontsize=16,color="green",shape="box"];2386[label="Integer (primMulInt xuu46000 xuu48010)",fontsize=16,color="green",shape="box"];2386 -> 2535[label="",style="dashed", color="green", weight=3]; 2387[label="xuu4800",fontsize=16,color="green",shape="box"];2388[label="Pos xuu46010",fontsize=16,color="green",shape="box"];2389[label="Pos xuu48010",fontsize=16,color="green",shape="box"];2390[label="xuu4600",fontsize=16,color="green",shape="box"];2391[label="xuu4800",fontsize=16,color="green",shape="box"];2392[label="Neg xuu46010",fontsize=16,color="green",shape="box"];2393[label="Pos xuu48010",fontsize=16,color="green",shape="box"];2394[label="xuu4600",fontsize=16,color="green",shape="box"];2395[label="xuu4800",fontsize=16,color="green",shape="box"];2396[label="Pos xuu46010",fontsize=16,color="green",shape="box"];2397[label="Neg xuu48010",fontsize=16,color="green",shape="box"];2398[label="xuu4600",fontsize=16,color="green",shape="box"];2399[label="xuu4800",fontsize=16,color="green",shape="box"];2400[label="Neg xuu46010",fontsize=16,color="green",shape="box"];2401[label="Neg xuu48010",fontsize=16,color="green",shape="box"];2402[label="xuu4600",fontsize=16,color="green",shape="box"];2403[label="compare0 xuu460 xuu480 otherwise",fontsize=16,color="black",shape="box"];2403 -> 2536[label="",style="solid", color="black", weight=3]; 2404[label="LT",fontsize=16,color="green",shape="box"];2405[label="compare0 xuu460 xuu480 otherwise",fontsize=16,color="black",shape="box"];2405 -> 2537[label="",style="solid", color="black", weight=3]; 2406[label="LT",fontsize=16,color="green",shape="box"];2407[label="xuu4800",fontsize=16,color="green",shape="box"];2408[label="Pos xuu46010",fontsize=16,color="green",shape="box"];2409[label="Pos xuu48010",fontsize=16,color="green",shape="box"];2410[label="xuu4600",fontsize=16,color="green",shape="box"];2411[label="xuu4800",fontsize=16,color="green",shape="box"];2412[label="Neg xuu46010",fontsize=16,color="green",shape="box"];2413[label="Pos xuu48010",fontsize=16,color="green",shape="box"];2414[label="xuu4600",fontsize=16,color="green",shape="box"];2415[label="xuu4800",fontsize=16,color="green",shape="box"];2416[label="Pos xuu46010",fontsize=16,color="green",shape="box"];2417[label="Neg xuu48010",fontsize=16,color="green",shape="box"];2418[label="xuu4600",fontsize=16,color="green",shape="box"];2419[label="xuu4800",fontsize=16,color="green",shape="box"];2420[label="Neg xuu46010",fontsize=16,color="green",shape="box"];2421[label="Neg xuu48010",fontsize=16,color="green",shape="box"];2422[label="xuu4600",fontsize=16,color="green",shape="box"];2423[label="xuu4600",fontsize=16,color="green",shape="box"];2424[label="xuu4800",fontsize=16,color="green",shape="box"];2425[label="xuu4800",fontsize=16,color="green",shape="box"];2426[label="xuu4600",fontsize=16,color="green",shape="box"];2427[label="xuu4600",fontsize=16,color="green",shape="box"];2428[label="xuu4800",fontsize=16,color="green",shape="box"];2429[label="xuu4600",fontsize=16,color="green",shape="box"];2430[label="xuu4800",fontsize=16,color="green",shape="box"];2431[label="xuu4600",fontsize=16,color="green",shape="box"];2432[label="xuu4800",fontsize=16,color="green",shape="box"];2433[label="xuu4600",fontsize=16,color="green",shape="box"];2434[label="xuu4800",fontsize=16,color="green",shape="box"];2435[label="xuu4600",fontsize=16,color="green",shape="box"];2436[label="xuu4800",fontsize=16,color="green",shape="box"];2437[label="xuu4600",fontsize=16,color="green",shape="box"];2438[label="xuu4800",fontsize=16,color="green",shape="box"];2439[label="xuu4600",fontsize=16,color="green",shape="box"];2440[label="xuu4800",fontsize=16,color="green",shape="box"];2441[label="xuu4600",fontsize=16,color="green",shape="box"];2442[label="xuu4800",fontsize=16,color="green",shape="box"];2443[label="xuu4600",fontsize=16,color="green",shape="box"];2444[label="xuu4800",fontsize=16,color="green",shape="box"];2445[label="xuu4600",fontsize=16,color="green",shape="box"];2446[label="xuu4800",fontsize=16,color="green",shape="box"];2447[label="xuu4600",fontsize=16,color="green",shape="box"];2448[label="xuu4800",fontsize=16,color="green",shape="box"];2449[label="xuu4600",fontsize=16,color="green",shape="box"];2450[label="xuu4800",fontsize=16,color="green",shape="box"];2451[label="LT",fontsize=16,color="green",shape="box"];2452[label="xuu138",fontsize=16,color="green",shape="box"];2453[label="GT",fontsize=16,color="green",shape="box"];2454[label="compare0 xuu460 xuu480 otherwise",fontsize=16,color="black",shape="box"];2454 -> 2538[label="",style="solid", color="black", weight=3]; 2455[label="LT",fontsize=16,color="green",shape="box"];2456[label="compare0 xuu460 xuu480 otherwise",fontsize=16,color="black",shape="box"];2456 -> 2539[label="",style="solid", color="black", weight=3]; 2457[label="LT",fontsize=16,color="green",shape="box"];2458[label="compare0 xuu460 xuu480 otherwise",fontsize=16,color="black",shape="box"];2458 -> 2540[label="",style="solid", color="black", weight=3]; 2459[label="LT",fontsize=16,color="green",shape="box"];2464[label="xuu4811",fontsize=16,color="green",shape="box"];2465[label="xuu4611",fontsize=16,color="green",shape="box"];2466[label="xuu4811",fontsize=16,color="green",shape="box"];2467[label="xuu4611",fontsize=16,color="green",shape="box"];2468[label="xuu4811",fontsize=16,color="green",shape="box"];2469[label="xuu4611",fontsize=16,color="green",shape="box"];2470[label="xuu4811",fontsize=16,color="green",shape="box"];2471[label="xuu4611",fontsize=16,color="green",shape="box"];2472[label="xuu4811",fontsize=16,color="green",shape="box"];2473[label="xuu4611",fontsize=16,color="green",shape="box"];2474[label="xuu4811",fontsize=16,color="green",shape="box"];2475[label="xuu4611",fontsize=16,color="green",shape="box"];2476[label="xuu4811",fontsize=16,color="green",shape="box"];2477[label="xuu4611",fontsize=16,color="green",shape="box"];2478[label="xuu4811",fontsize=16,color="green",shape="box"];2479[label="xuu4611",fontsize=16,color="green",shape="box"];2480[label="xuu4811",fontsize=16,color="green",shape="box"];2481[label="xuu4611",fontsize=16,color="green",shape="box"];2482[label="xuu4811",fontsize=16,color="green",shape="box"];2483[label="xuu4611",fontsize=16,color="green",shape="box"];2484[label="xuu4811",fontsize=16,color="green",shape="box"];2485[label="xuu4611",fontsize=16,color="green",shape="box"];2486[label="xuu4811",fontsize=16,color="green",shape="box"];2487[label="xuu4611",fontsize=16,color="green",shape="box"];2488[label="xuu4811",fontsize=16,color="green",shape="box"];2489[label="xuu4611",fontsize=16,color="green",shape="box"];2490[label="xuu4811",fontsize=16,color="green",shape="box"];2491[label="xuu4611",fontsize=16,color="green",shape="box"];2492[label="xuu4612",fontsize=16,color="green",shape="box"];2493[label="xuu4812",fontsize=16,color="green",shape="box"];2494[label="xuu4612",fontsize=16,color="green",shape="box"];2495[label="xuu4812",fontsize=16,color="green",shape="box"];2496[label="xuu4612",fontsize=16,color="green",shape="box"];2497[label="xuu4812",fontsize=16,color="green",shape="box"];2498[label="xuu4612",fontsize=16,color="green",shape="box"];2499[label="xuu4812",fontsize=16,color="green",shape="box"];2500[label="xuu4612",fontsize=16,color="green",shape="box"];2501[label="xuu4812",fontsize=16,color="green",shape="box"];2502[label="xuu4612",fontsize=16,color="green",shape="box"];2503[label="xuu4812",fontsize=16,color="green",shape="box"];2504[label="xuu4612",fontsize=16,color="green",shape="box"];2505[label="xuu4812",fontsize=16,color="green",shape="box"];2506[label="xuu4612",fontsize=16,color="green",shape="box"];2507[label="xuu4812",fontsize=16,color="green",shape="box"];2508[label="xuu4612",fontsize=16,color="green",shape="box"];2509[label="xuu4812",fontsize=16,color="green",shape="box"];2510[label="xuu4612",fontsize=16,color="green",shape="box"];2511[label="xuu4812",fontsize=16,color="green",shape="box"];2512[label="xuu4612",fontsize=16,color="green",shape="box"];2513[label="xuu4812",fontsize=16,color="green",shape="box"];2514[label="xuu4612",fontsize=16,color="green",shape="box"];2515[label="xuu4812",fontsize=16,color="green",shape="box"];2516[label="xuu4612",fontsize=16,color="green",shape="box"];2517[label="xuu4812",fontsize=16,color="green",shape="box"];2518[label="xuu4612",fontsize=16,color="green",shape="box"];2519[label="xuu4812",fontsize=16,color="green",shape="box"];2307[label="Succ (Succ (primPlusNat xuu38200 xuu9400))",fontsize=16,color="green",shape="box"];2307 -> 2460[label="",style="dashed", color="green", weight=3]; 2308[label="Succ xuu38200",fontsize=16,color="green",shape="box"];2309[label="Succ xuu9400",fontsize=16,color="green",shape="box"];2310[label="Zero",fontsize=16,color="green",shape="box"];2311[label="xuu38200",fontsize=16,color="green",shape="box"];2312[label="xuu9400",fontsize=16,color="green",shape="box"];2313[label="FiniteMap.mkBalBranch6Double_R (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 xuu384) xuu21",fontsize=16,color="burlywood",shape="box"];3441[label="xuu384/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2313 -> 3441[label="",style="solid", color="burlywood", weight=9]; 3441 -> 2461[label="",style="solid", color="burlywood", weight=3]; 3442[label="xuu384/FiniteMap.Branch xuu3840 xuu3841 xuu3842 xuu3843 xuu3844",fontsize=10,color="white",style="solid",shape="box"];2313 -> 3442[label="",style="solid", color="burlywood", weight=9]; 3442 -> 2462[label="",style="solid", color="burlywood", weight=3]; 2315[label="xuu21",fontsize=16,color="green",shape="box"];2316[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))",fontsize=16,color="green",shape="box"];2317[label="xuu380",fontsize=16,color="green",shape="box"];2318[label="xuu16",fontsize=16,color="green",shape="box"];2319[label="xuu384",fontsize=16,color="green",shape="box"];2320[label="xuu17",fontsize=16,color="green",shape="box"];2321[label="xuu18",fontsize=16,color="green",shape="box"];2322[label="xuu383",fontsize=16,color="green",shape="box"];2323[label="xuu381",fontsize=16,color="green",shape="box"];2314[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) xuu144 xuu145 xuu146 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152)",fontsize=16,color="black",shape="triangle"];2314 -> 2463[label="",style="solid", color="black", weight=3]; 2521[label="xuu214",fontsize=16,color="green",shape="box"];2522[label="xuu2133",fontsize=16,color="green",shape="box"];2523[label="xuu17",fontsize=16,color="green",shape="box"];2524[label="xuu38",fontsize=16,color="green",shape="box"];2525[label="xuu2131",fontsize=16,color="green",shape="box"];2526[label="xuu210",fontsize=16,color="green",shape="box"];2527[label="xuu16",fontsize=16,color="green",shape="box"];2528[label="xuu18",fontsize=16,color="green",shape="box"];2529[label="xuu2130",fontsize=16,color="green",shape="box"];2530[label="xuu211",fontsize=16,color="green",shape="box"];2531[label="xuu2134",fontsize=16,color="green",shape="box"];2532[label="Succ (Succ (Succ (Succ Zero)))",fontsize=16,color="green",shape="box"];2520[label="FiniteMap.mkBranch (Pos (Succ xuu154)) xuu155 xuu156 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165)",fontsize=16,color="black",shape="triangle"];2520 -> 2541[label="",style="solid", color="black", weight=3]; 2679[label="xuu214",fontsize=16,color="green",shape="box"];2680 -> 2696[label="",style="dashed", color="red", weight=0]; 2680[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214 + FiniteMap.mkBranchRight_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213) xuu210 xuu214",fontsize=16,color="magenta"];2680 -> 2701[label="",style="dashed", color="magenta", weight=3]; 2680 -> 2702[label="",style="dashed", color="magenta", weight=3]; 2681[label="xuu210",fontsize=16,color="green",shape="box"];2682 -> 2580[label="",style="dashed", color="red", weight=0]; 2682[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213",fontsize=16,color="magenta"];2682 -> 2712[label="",style="dashed", color="magenta", weight=3]; 2682 -> 2713[label="",style="dashed", color="magenta", weight=3]; 2682 -> 2714[label="",style="dashed", color="magenta", weight=3]; 2682 -> 2715[label="",style="dashed", color="magenta", weight=3]; 2682 -> 2716[label="",style="dashed", color="magenta", weight=3]; 2682 -> 2717[label="",style="dashed", color="magenta", weight=3]; 2534 -> 876[label="",style="dashed", color="red", weight=0]; 2534[label="FiniteMap.mkBranchResult (xuu16,xuu17) xuu18 xuu38 xuu213",fontsize=16,color="magenta"];2534 -> 2555[label="",style="dashed", color="magenta", weight=3]; 2535 -> 732[label="",style="dashed", color="red", weight=0]; 2535[label="primMulInt xuu46000 xuu48010",fontsize=16,color="magenta"];2535 -> 2556[label="",style="dashed", color="magenta", weight=3]; 2535 -> 2557[label="",style="dashed", color="magenta", weight=3]; 2536[label="compare0 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2536 -> 2558[label="",style="solid", color="black", weight=3]; 2537[label="compare0 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2537 -> 2559[label="",style="solid", color="black", weight=3]; 2538[label="compare0 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2538 -> 2560[label="",style="solid", color="black", weight=3]; 2539[label="compare0 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2539 -> 2561[label="",style="solid", color="black", weight=3]; 2540[label="compare0 xuu460 xuu480 True",fontsize=16,color="black",shape="box"];2540 -> 2562[label="",style="solid", color="black", weight=3]; 2460 -> 1571[label="",style="dashed", color="red", weight=0]; 2460[label="primPlusNat xuu38200 xuu9400",fontsize=16,color="magenta"];2460 -> 2542[label="",style="dashed", color="magenta", weight=3]; 2460 -> 2543[label="",style="dashed", color="magenta", weight=3]; 2461[label="FiniteMap.mkBalBranch6Double_R (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 FiniteMap.EmptyFM) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 FiniteMap.EmptyFM) xuu21",fontsize=16,color="black",shape="box"];2461 -> 2544[label="",style="solid", color="black", weight=3]; 2462[label="FiniteMap.mkBalBranch6Double_R (xuu16,xuu17) xuu18 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 (FiniteMap.Branch xuu3840 xuu3841 xuu3842 xuu3843 xuu3844)) xuu21 (FiniteMap.Branch xuu380 xuu381 xuu382 xuu383 (FiniteMap.Branch xuu3840 xuu3841 xuu3842 xuu3843 xuu3844)) xuu21",fontsize=16,color="black",shape="box"];2462 -> 2545[label="",style="solid", color="black", weight=3]; 2463[label="FiniteMap.mkBranchResult xuu144 xuu145 xuu146 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152)",fontsize=16,color="black",shape="triangle"];2463 -> 2546[label="",style="solid", color="black", weight=3]; 2541[label="FiniteMap.mkBranchResult xuu155 xuu156 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165)",fontsize=16,color="black",shape="box"];2541 -> 2563[label="",style="solid", color="black", weight=3]; 2701 -> 2580[label="",style="dashed", color="red", weight=0]; 2701[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213",fontsize=16,color="magenta"];2701 -> 2718[label="",style="dashed", color="magenta", weight=3]; 2701 -> 2719[label="",style="dashed", color="magenta", weight=3]; 2701 -> 2720[label="",style="dashed", color="magenta", weight=3]; 2701 -> 2721[label="",style="dashed", color="magenta", weight=3]; 2701 -> 2722[label="",style="dashed", color="magenta", weight=3]; 2701 -> 2723[label="",style="dashed", color="magenta", weight=3]; 2702 -> 2580[label="",style="dashed", color="red", weight=0]; 2702[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) (xuu16,xuu17) xuu18 xuu38 xuu213",fontsize=16,color="magenta"];2702 -> 2724[label="",style="dashed", color="magenta", weight=3]; 2702 -> 2725[label="",style="dashed", color="magenta", weight=3]; 2702 -> 2726[label="",style="dashed", color="magenta", weight=3]; 2702 -> 2727[label="",style="dashed", color="magenta", weight=3]; 2702 -> 2728[label="",style="dashed", color="magenta", weight=3]; 2702 -> 2729[label="",style="dashed", color="magenta", weight=3]; 2712[label="xuu213",fontsize=16,color="green",shape="box"];2713[label="Succ (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];2714[label="xuu16",fontsize=16,color="green",shape="box"];2715[label="xuu38",fontsize=16,color="green",shape="box"];2716[label="xuu17",fontsize=16,color="green",shape="box"];2717[label="xuu18",fontsize=16,color="green",shape="box"];2580[label="FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152",fontsize=16,color="black",shape="triangle"];2580 -> 2649[label="",style="solid", color="black", weight=3]; 2555[label="xuu213",fontsize=16,color="green",shape="box"];2556[label="xuu48010",fontsize=16,color="green",shape="box"];2557[label="xuu46000",fontsize=16,color="green",shape="box"];2558[label="GT",fontsize=16,color="green",shape="box"];2559[label="GT",fontsize=16,color="green",shape="box"];2560[label="GT",fontsize=16,color="green",shape="box"];2561[label="GT",fontsize=16,color="green",shape="box"];2562[label="GT",fontsize=16,color="green",shape="box"];2542[label="xuu38200",fontsize=16,color="green",shape="box"];2543[label="xuu9400",fontsize=16,color="green",shape="box"];2544[label="error []",fontsize=16,color="red",shape="box"];2545 -> 2613[label="",style="dashed", color="red", weight=0]; 2545[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) xuu3840 xuu3841 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) xuu380 xuu381 xuu383 xuu3843) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) (xuu16,xuu17) xuu18 xuu3844 xuu21)",fontsize=16,color="magenta"];2545 -> 2614[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2615[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2616[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2617[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2618[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2619[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2620[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2621[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2622[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2623[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2624[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2625[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2626[label="",style="dashed", color="magenta", weight=3]; 2545 -> 2627[label="",style="dashed", color="magenta", weight=3]; 2546[label="FiniteMap.Branch xuu144 xuu145 (FiniteMap.mkBranchUnbox xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152) (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152) + FiniteMap.mkBranchRight_size xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152))) xuu146 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152)",fontsize=16,color="green",shape="box"];2546 -> 2579[label="",style="dashed", color="green", weight=3]; 2546 -> 2580[label="",style="dashed", color="green", weight=3]; 2563[label="FiniteMap.Branch xuu155 xuu156 (FiniteMap.mkBranchUnbox (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165) (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165) + FiniteMap.mkBranchRight_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165))) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165)",fontsize=16,color="green",shape="box"];2563 -> 2581[label="",style="dashed", color="green", weight=3]; 2563 -> 2582[label="",style="dashed", color="green", weight=3]; 2563 -> 2583[label="",style="dashed", color="green", weight=3]; 2718[label="xuu213",fontsize=16,color="green",shape="box"];2719[label="Succ (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];2720[label="xuu16",fontsize=16,color="green",shape="box"];2721[label="xuu38",fontsize=16,color="green",shape="box"];2722[label="xuu17",fontsize=16,color="green",shape="box"];2723[label="xuu18",fontsize=16,color="green",shape="box"];2724[label="xuu213",fontsize=16,color="green",shape="box"];2725[label="Succ (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];2726[label="xuu16",fontsize=16,color="green",shape="box"];2727[label="xuu38",fontsize=16,color="green",shape="box"];2728[label="xuu17",fontsize=16,color="green",shape="box"];2729[label="xuu18",fontsize=16,color="green",shape="box"];2649 -> 876[label="",style="dashed", color="red", weight=0]; 2649[label="FiniteMap.mkBranchResult (xuu148,xuu149) xuu150 xuu151 xuu152",fontsize=16,color="magenta"];2649 -> 2730[label="",style="dashed", color="magenta", weight=3]; 2649 -> 2731[label="",style="dashed", color="magenta", weight=3]; 2649 -> 2732[label="",style="dashed", color="magenta", weight=3]; 2649 -> 2733[label="",style="dashed", color="magenta", weight=3]; 2649 -> 2734[label="",style="dashed", color="magenta", weight=3]; 2614[label="xuu3840",fontsize=16,color="green",shape="box"];2615[label="xuu383",fontsize=16,color="green",shape="box"];2616[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))",fontsize=16,color="green",shape="box"];2617[label="xuu3843",fontsize=16,color="green",shape="box"];2618[label="xuu380",fontsize=16,color="green",shape="box"];2619[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))",fontsize=16,color="green",shape="box"];2620[label="xuu17",fontsize=16,color="green",shape="box"];2621[label="xuu3841",fontsize=16,color="green",shape="box"];2622[label="xuu21",fontsize=16,color="green",shape="box"];2623[label="xuu3844",fontsize=16,color="green",shape="box"];2624[label="xuu16",fontsize=16,color="green",shape="box"];2625[label="xuu18",fontsize=16,color="green",shape="box"];2626[label="xuu381",fontsize=16,color="green",shape="box"];2627[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))",fontsize=16,color="green",shape="box"];2613[label="FiniteMap.mkBranch (Pos (Succ xuu196)) xuu197 xuu198 (FiniteMap.mkBranch (Pos (Succ xuu199)) xuu200 xuu201 xuu202 xuu203) (FiniteMap.mkBranch (Pos (Succ xuu204)) (xuu205,xuu206) xuu207 xuu208 xuu209)",fontsize=16,color="black",shape="triangle"];2613 -> 2645[label="",style="solid", color="black", weight=3]; 2579 -> 2674[label="",style="dashed", color="red", weight=0]; 2579[label="FiniteMap.mkBranchUnbox xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152) (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152) + FiniteMap.mkBranchRight_size xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152))",fontsize=16,color="magenta"];2579 -> 2683[label="",style="dashed", color="magenta", weight=3]; 2579 -> 2684[label="",style="dashed", color="magenta", weight=3]; 2581 -> 2674[label="",style="dashed", color="red", weight=0]; 2581[label="FiniteMap.mkBranchUnbox (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165) (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165) + FiniteMap.mkBranchRight_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165))",fontsize=16,color="magenta"];2581 -> 2685[label="",style="dashed", color="magenta", weight=3]; 2581 -> 2686[label="",style="dashed", color="magenta", weight=3]; 2581 -> 2687[label="",style="dashed", color="magenta", weight=3]; 2581 -> 2688[label="",style="dashed", color="magenta", weight=3]; 2582 -> 2580[label="",style="dashed", color="red", weight=0]; 2582[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161",fontsize=16,color="magenta"];2582 -> 2654[label="",style="dashed", color="magenta", weight=3]; 2582 -> 2655[label="",style="dashed", color="magenta", weight=3]; 2582 -> 2656[label="",style="dashed", color="magenta", weight=3]; 2582 -> 2657[label="",style="dashed", color="magenta", weight=3]; 2582 -> 2658[label="",style="dashed", color="magenta", weight=3]; 2582 -> 2659[label="",style="dashed", color="magenta", weight=3]; 2583[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165",fontsize=16,color="black",shape="triangle"];2583 -> 2660[label="",style="solid", color="black", weight=3]; 2730[label="xuu151",fontsize=16,color="green",shape="box"];2731[label="xuu148",fontsize=16,color="green",shape="box"];2732[label="xuu149",fontsize=16,color="green",shape="box"];2733[label="xuu150",fontsize=16,color="green",shape="box"];2734[label="xuu152",fontsize=16,color="green",shape="box"];2645 -> 2463[label="",style="dashed", color="red", weight=0]; 2645[label="FiniteMap.mkBranchResult xuu197 xuu198 (FiniteMap.mkBranch (Pos (Succ xuu199)) xuu200 xuu201 xuu202 xuu203) (FiniteMap.mkBranch (Pos (Succ xuu204)) (xuu205,xuu206) xuu207 xuu208 xuu209)",fontsize=16,color="magenta"];2645 -> 2661[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2662[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2663[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2664[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2665[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2666[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2667[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2668[label="",style="dashed", color="magenta", weight=3]; 2645 -> 2669[label="",style="dashed", color="magenta", weight=3]; 2683 -> 2580[label="",style="dashed", color="red", weight=0]; 2683[label="FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152",fontsize=16,color="magenta"];2684 -> 2696[label="",style="dashed", color="red", weight=0]; 2684[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152) + FiniteMap.mkBranchRight_size xuu146 xuu144 (FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152)",fontsize=16,color="magenta"];2684 -> 2703[label="",style="dashed", color="magenta", weight=3]; 2684 -> 2704[label="",style="dashed", color="magenta", weight=3]; 2684 -> 2705[label="",style="dashed", color="magenta", weight=3]; 2684 -> 2706[label="",style="dashed", color="magenta", weight=3]; 2685 -> 2583[label="",style="dashed", color="red", weight=0]; 2685[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165",fontsize=16,color="magenta"];2686 -> 2696[label="",style="dashed", color="red", weight=0]; 2686[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165) + FiniteMap.mkBranchRight_size (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161) xuu155 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165)",fontsize=16,color="magenta"];2686 -> 2707[label="",style="dashed", color="magenta", weight=3]; 2686 -> 2708[label="",style="dashed", color="magenta", weight=3]; 2686 -> 2709[label="",style="dashed", color="magenta", weight=3]; 2686 -> 2710[label="",style="dashed", color="magenta", weight=3]; 2687[label="xuu155",fontsize=16,color="green",shape="box"];2688 -> 2580[label="",style="dashed", color="red", weight=0]; 2688[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161",fontsize=16,color="magenta"];2688 -> 2735[label="",style="dashed", color="magenta", weight=3]; 2688 -> 2736[label="",style="dashed", color="magenta", weight=3]; 2688 -> 2737[label="",style="dashed", color="magenta", weight=3]; 2688 -> 2738[label="",style="dashed", color="magenta", weight=3]; 2688 -> 2739[label="",style="dashed", color="magenta", weight=3]; 2688 -> 2740[label="",style="dashed", color="magenta", weight=3]; 2654[label="xuu161",fontsize=16,color="green",shape="box"];2655[label="Succ (Succ (Succ (Succ (Succ Zero))))",fontsize=16,color="green",shape="box"];2656[label="xuu157",fontsize=16,color="green",shape="box"];2657[label="xuu160",fontsize=16,color="green",shape="box"];2658[label="xuu158",fontsize=16,color="green",shape="box"];2659[label="xuu159",fontsize=16,color="green",shape="box"];2660[label="FiniteMap.mkBranchResult xuu162 xuu163 xuu164 xuu165",fontsize=16,color="black",shape="triangle"];2660 -> 2741[label="",style="solid", color="black", weight=3]; 2661[label="xuu209",fontsize=16,color="green",shape="box"];2662[label="xuu204",fontsize=16,color="green",shape="box"];2663[label="xuu197",fontsize=16,color="green",shape="box"];2664[label="xuu205",fontsize=16,color="green",shape="box"];2665[label="xuu208",fontsize=16,color="green",shape="box"];2666[label="xuu206",fontsize=16,color="green",shape="box"];2667[label="xuu207",fontsize=16,color="green",shape="box"];2668[label="FiniteMap.mkBranch (Pos (Succ xuu199)) xuu200 xuu201 xuu202 xuu203",fontsize=16,color="black",shape="triangle"];2668 -> 2742[label="",style="solid", color="black", weight=3]; 2669[label="xuu198",fontsize=16,color="green",shape="box"];2703[label="xuu146",fontsize=16,color="green",shape="box"];2704[label="xuu144",fontsize=16,color="green",shape="box"];2705[label="xuu146",fontsize=16,color="green",shape="box"];2706 -> 2668[label="",style="dashed", color="red", weight=0]; 2706[label="FiniteMap.mkBranch (Pos (Succ xuu147)) (xuu148,xuu149) xuu150 xuu151 xuu152",fontsize=16,color="magenta"];2706 -> 2743[label="",style="dashed", color="magenta", weight=3]; 2706 -> 2744[label="",style="dashed", color="magenta", weight=3]; 2706 -> 2745[label="",style="dashed", color="magenta", weight=3]; 2706 -> 2746[label="",style="dashed", color="magenta", weight=3]; 2706 -> 2747[label="",style="dashed", color="magenta", weight=3]; 2707 -> 2668[label="",style="dashed", color="red", weight=0]; 2707[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161",fontsize=16,color="magenta"];2707 -> 2748[label="",style="dashed", color="magenta", weight=3]; 2707 -> 2749[label="",style="dashed", color="magenta", weight=3]; 2707 -> 2750[label="",style="dashed", color="magenta", weight=3]; 2707 -> 2751[label="",style="dashed", color="magenta", weight=3]; 2707 -> 2752[label="",style="dashed", color="magenta", weight=3]; 2708[label="xuu155",fontsize=16,color="green",shape="box"];2709 -> 2668[label="",style="dashed", color="red", weight=0]; 2709[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) (xuu157,xuu158) xuu159 xuu160 xuu161",fontsize=16,color="magenta"];2709 -> 2753[label="",style="dashed", color="magenta", weight=3]; 2709 -> 2754[label="",style="dashed", color="magenta", weight=3]; 2709 -> 2755[label="",style="dashed", color="magenta", weight=3]; 2709 -> 2756[label="",style="dashed", color="magenta", weight=3]; 2709 -> 2757[label="",style="dashed", color="magenta", weight=3]; 2710 -> 2668[label="",style="dashed", color="red", weight=0]; 2710[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xuu162 xuu163 xuu164 xuu165",fontsize=16,color="magenta"];2710 -> 2758[label="",style="dashed", color="magenta", weight=3]; 2710 -> 2759[label="",style="dashed", color="magenta", weight=3]; 2710 -> 2760[label="",style="dashed", color="magenta", weight=3]; 2710 -> 2761[label="",style="dashed", color="magenta", weight=3]; 2710 -> 2762[label="",style="dashed", color="magenta", weight=3]; 2735[label="xuu161",fontsize=16,color="green",shape="box"];2736[label="Succ (Succ (Succ (Succ (Succ Zero))))",fontsize=16,color="green",shape="box"];2737[label="xuu157",fontsize=16,color="green",shape="box"];2738[label="xuu160",fontsize=16,color="green",shape="box"];2739[label="xuu158",fontsize=16,color="green",shape="box"];2740[label="xuu159",fontsize=16,color="green",shape="box"];2741[label="FiniteMap.Branch xuu162 xuu163 (FiniteMap.mkBranchUnbox xuu164 xuu162 xuu165 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu164 xuu162 xuu165 + FiniteMap.mkBranchRight_size xuu164 xuu162 xuu165)) xuu164 xuu165",fontsize=16,color="green",shape="box"];2741 -> 2765[label="",style="dashed", color="green", weight=3]; 2742 -> 2660[label="",style="dashed", color="red", weight=0]; 2742[label="FiniteMap.mkBranchResult xuu200 xuu201 xuu202 xuu203",fontsize=16,color="magenta"];2742 -> 2766[label="",style="dashed", color="magenta", weight=3]; 2742 -> 2767[label="",style="dashed", color="magenta", weight=3]; 2742 -> 2768[label="",style="dashed", color="magenta", weight=3]; 2742 -> 2769[label="",style="dashed", color="magenta", weight=3]; 2743[label="xuu151",fontsize=16,color="green",shape="box"];2744[label="xuu152",fontsize=16,color="green",shape="box"];2745[label="(xuu148,xuu149)",fontsize=16,color="green",shape="box"];2746[label="xuu147",fontsize=16,color="green",shape="box"];2747[label="xuu150",fontsize=16,color="green",shape="box"];2748[label="xuu160",fontsize=16,color="green",shape="box"];2749[label="xuu161",fontsize=16,color="green",shape="box"];2750[label="(xuu157,xuu158)",fontsize=16,color="green",shape="box"];2751[label="Succ (Succ (Succ (Succ (Succ Zero))))",fontsize=16,color="green",shape="box"];2752[label="xuu159",fontsize=16,color="green",shape="box"];2753[label="xuu160",fontsize=16,color="green",shape="box"];2754[label="xuu161",fontsize=16,color="green",shape="box"];2755[label="(xuu157,xuu158)",fontsize=16,color="green",shape="box"];2756[label="Succ (Succ (Succ (Succ (Succ Zero))))",fontsize=16,color="green",shape="box"];2757[label="xuu159",fontsize=16,color="green",shape="box"];2758[label="xuu164",fontsize=16,color="green",shape="box"];2759[label="xuu165",fontsize=16,color="green",shape="box"];2760[label="xuu162",fontsize=16,color="green",shape="box"];2761[label="Succ (Succ (Succ (Succ (Succ (Succ Zero)))))",fontsize=16,color="green",shape="box"];2762[label="xuu163",fontsize=16,color="green",shape="box"];2765 -> 2674[label="",style="dashed", color="red", weight=0]; 2765[label="FiniteMap.mkBranchUnbox xuu164 xuu162 xuu165 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu164 xuu162 xuu165 + FiniteMap.mkBranchRight_size xuu164 xuu162 xuu165)",fontsize=16,color="magenta"];2765 -> 2772[label="",style="dashed", color="magenta", weight=3]; 2765 -> 2773[label="",style="dashed", color="magenta", weight=3]; 2765 -> 2774[label="",style="dashed", color="magenta", weight=3]; 2765 -> 2775[label="",style="dashed", color="magenta", weight=3]; 2766[label="xuu203",fontsize=16,color="green",shape="box"];2767[label="xuu200",fontsize=16,color="green",shape="box"];2768[label="xuu201",fontsize=16,color="green",shape="box"];2769[label="xuu202",fontsize=16,color="green",shape="box"];2772[label="xuu165",fontsize=16,color="green",shape="box"];2773 -> 2696[label="",style="dashed", color="red", weight=0]; 2773[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xuu164 xuu162 xuu165 + FiniteMap.mkBranchRight_size xuu164 xuu162 xuu165",fontsize=16,color="magenta"];2773 -> 2779[label="",style="dashed", color="magenta", weight=3]; 2773 -> 2780[label="",style="dashed", color="magenta", weight=3]; 2773 -> 2781[label="",style="dashed", color="magenta", weight=3]; 2773 -> 2782[label="",style="dashed", color="magenta", weight=3]; 2774[label="xuu162",fontsize=16,color="green",shape="box"];2775[label="xuu164",fontsize=16,color="green",shape="box"];2779[label="xuu164",fontsize=16,color="green",shape="box"];2780[label="xuu162",fontsize=16,color="green",shape="box"];2781[label="xuu164",fontsize=16,color="green",shape="box"];2782[label="xuu165",fontsize=16,color="green",shape="box"];} ---------------------------------------- (16) Complex Obligation (AND) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: new_primCmpNat(Succ(xuu46000), Succ(xuu48000)) -> new_primCmpNat(xuu46000, xuu48000) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primCmpNat(Succ(xuu46000), Succ(xuu48000)) -> new_primCmpNat(xuu46000, xuu48000) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(xuu3, :(xuu40, xuu41), h, ba, bb) -> new_foldl(new_addListToFM_CAdd(xuu3, xuu40, h, ba, bb), xuu41, h, ba, bb) The TRS R consists of the following rules: new_ltEs7(xuu461, xuu481) -> new_fsEs(new_compare18(xuu461, xuu481)) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xuu4600)), Pos(xuu480)) -> LT new_esEs24(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs5(Right(xuu40000), Right(xuu3000), ff, app(ty_Ratio, ccf)) -> new_esEs13(xuu40000, xuu3000, ccf) new_pePe(True, xuu132) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Ordering, fg) -> new_esEs8(xuu40000, xuu3000) new_mkBalBranch6Size_l(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be) -> new_sizeFM(xuu38, bc, bd, be) new_esEs25(xuu4610, xuu4810, app(app(app(ty_@3, dbd), dbe), dbf)) -> new_esEs6(xuu4610, xuu4810, dbd, dbe, dbf) new_esEs22(xuu40002, xuu3002, ty_Double) -> new_esEs14(xuu40002, xuu3002) new_primCmpNat0(xuu4600, Succ(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_ltEs20(xuu4612, xuu4812, ty_Ordering) -> new_ltEs15(xuu4612, xuu4812) new_lt21(xuu4611, xuu4811, ty_@0) -> new_lt4(xuu4611, xuu4811) new_esEs5(Right(xuu40000), Right(xuu3000), ff, app(ty_[], ccg)) -> new_esEs16(xuu40000, xuu3000, ccg) new_esEs17(Integer(xuu40000), Integer(xuu3000)) -> new_primEqInt(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, app(app(ty_Either, df), dg)) -> new_ltEs11(xuu4611, xuu4811, df, dg) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, app(app(ty_@2, che), chf)) -> new_ltEs4(xuu4610, xuu4810, che, chf) new_mkBalBranch6Size_r(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be) -> new_sizeFM(xuu21, bc, bd, be) new_compare112(xuu460, xuu480, True, bfh) -> LT new_esEs18(True, True) -> True new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Ratio, cbd), fg) -> new_esEs13(xuu40000, xuu3000, cbd) new_lt19(xuu460, xuu480, app(ty_[], cdf)) -> new_lt14(xuu460, xuu480, cdf) new_compare(:(xuu4600, xuu4601), [], cdf) -> GT new_compare14(xuu460, xuu480) -> new_compare26(xuu460, xuu480, new_esEs18(xuu460, xuu480)) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_ltEs16(Nothing, Nothing, cef) -> True new_primCmpInt(Pos(Zero), Neg(Succ(xuu4800))) -> GT new_compare(:(xuu4600, xuu4601), :(xuu4800, xuu4801), cdf) -> new_primCompAux0(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, cdf), cdf) new_compare23(@2(xuu460, xuu461), @2(xuu480, xuu481), False, cdg, cdh) -> new_compare16(xuu460, xuu461, xuu480, xuu481, new_lt19(xuu460, xuu480, cdg), new_asAs(new_esEs19(xuu460, xuu480, cdg), new_ltEs19(xuu461, xuu481, cdh)), cdg, cdh) new_ltEs20(xuu4612, xuu4812, ty_Float) -> new_ltEs13(xuu4612, xuu4812) new_esEs24(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_@0) -> new_esEs12(xuu460, xuu480) new_ltEs18(True, False) -> False new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Maybe, bgf)) -> new_esEs7(xuu40000, xuu3000, bgf) new_ltEs16(Just(xuu4610), Nothing, cef) -> False new_esEs5(Left(xuu40000), Left(xuu3000), ty_Char, fg) -> new_esEs11(xuu40000, xuu3000) new_compare210(xuu460, xuu480, True, cdb, cdc, cdd) -> EQ new_compare29(xuu4600, xuu4800, app(app(ty_@2, dga), dgb)) -> new_compare11(xuu4600, xuu4800, dga, dgb) new_esEs29(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs28(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_ltEs8(xuu461, xuu481) -> new_fsEs(new_compare6(xuu461, xuu481)) new_mkBranch3(xuu199, xuu200, xuu201, xuu202, xuu203, gc, gd, ge) -> new_mkBranchResult1(xuu200, xuu201, xuu202, xuu203, gc, gd, ge) new_compare111(xuu107, xuu108, xuu109, xuu110, False, dee, def) -> GT new_lt21(xuu4611, xuu4811, app(ty_Ratio, dcc)) -> new_lt9(xuu4611, xuu4811, dcc) new_compare27(xuu460, xuu480, False) -> new_compare110(xuu460, xuu480, new_ltEs15(xuu460, xuu480)) new_ltEs19(xuu461, xuu481, app(ty_Maybe, cef)) -> new_ltEs16(xuu461, xuu481, cef) new_compare113(xuu460, xuu480, False) -> GT new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_ltEs15(EQ, LT) -> False new_esEs20(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_primCmpNat1(Succ(xuu46000), Succ(xuu48000)) -> new_primCmpNat1(xuu46000, xuu48000) new_esEs25(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs23(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs23(xuu40000, xuu3000, app(app(ty_Either, bea), beb)) -> new_esEs5(xuu40000, xuu3000, bea, beb) new_ltEs19(xuu461, xuu481, ty_Ordering) -> new_ltEs15(xuu461, xuu481) new_addToFM_C10(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, bc, bd, be) -> new_mkBalBranch(xuu16, xuu17, xuu18, xuu20, new_addToFM_C0(xuu21, @2(xuu22, xuu23), xuu24, bc, bd, be), bc, bd, be) new_mkBranch1(xuu147, xuu148, xuu149, xuu150, xuu151, xuu152, gf, gg, gh) -> new_mkBranchResult(xuu148, xuu149, xuu150, xuu151, xuu152, gf, gg, gh) new_compare26(xuu460, xuu480, True) -> EQ new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(xuu400000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xuu30000))) -> False new_ltEs15(GT, LT) -> False new_mkBalBranch6MkBalBranch01(xuu16, xuu17, xuu18, xuu38, xuu210, xuu211, xuu212, Branch(xuu2130, xuu2131, xuu2132, xuu2133, xuu2134), xuu214, False, bc, bd, be) -> new_mkBranch0(Succ(Succ(Succ(Succ(Zero)))), xuu2130, xuu2131, xuu16, xuu17, xuu18, xuu38, xuu2133, xuu210, xuu211, xuu2134, xuu214, bc, bd, be) new_fsEs(xuu119) -> new_not(new_esEs8(xuu119, GT)) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, app(app(app(ty_@3, bhe), bhf), bhg)) -> new_esEs6(xuu40000, xuu3000, bhe, bhf, bhg) new_esEs24(xuu40001, xuu3001, app(app(ty_@2, bec), bed)) -> new_esEs4(xuu40001, xuu3001, bec, bed) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_esEs8(EQ, EQ) -> True new_esEs23(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_Either, dfb), dfc)) -> new_ltEs11(xuu4610, xuu4810, dfb, dfc) new_compare19(xuu460, xuu480, True, ha, hb) -> LT new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Integer, ceb) -> new_ltEs17(xuu4610, xuu4810) new_primEqNat0(Succ(xuu400000), Succ(xuu30000)) -> new_primEqNat0(xuu400000, xuu30000) new_esEs19(xuu460, xuu480, ty_Float) -> new_esEs15(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, app(ty_Ratio, bce)) -> new_esEs13(xuu40002, xuu3002, bce) new_esEs5(Right(xuu40000), Right(xuu3000), ff, app(app(ty_@2, cbh), cca)) -> new_esEs4(xuu40000, xuu3000, cbh, cca) new_ltEs20(xuu4612, xuu4812, app(ty_Ratio, dde)) -> new_ltEs9(xuu4612, xuu4812, dde) new_esEs31(xuu4000, xuu300, ty_Float) -> new_esEs15(xuu4000, xuu300) new_esEs25(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Int) -> new_esEs10(xuu40000, xuu3000) new_mkBranchResult1(xuu162, xuu163, xuu164, xuu165, bfe, bff, bfg) -> Branch(xuu162, xuu163, new_mkBranchUnbox(xuu164, xuu162, xuu165, new_ps(xuu164, xuu162, xuu165, xuu164, bfe, bff, bfg), bfe, bff, bfg), xuu164, xuu165) new_not(True) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_[], cbe), fg) -> new_esEs16(xuu40000, xuu3000, cbe) new_primCompAux00(xuu138, LT) -> LT new_esEs21(xuu40001, xuu3001, app(app(app(ty_@3, bag), bah), bba)) -> new_esEs6(xuu40001, xuu3001, bag, bah, bba) new_ltEs9(xuu461, xuu481, gb) -> new_fsEs(new_compare8(xuu461, xuu481, gb)) new_esEs6(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eg, eh, fa) -> new_asAs(new_esEs20(xuu40000, xuu3000, eg), new_asAs(new_esEs21(xuu40001, xuu3001, eh), new_esEs22(xuu40002, xuu3002, fa))) new_ltEs20(xuu4612, xuu4812, ty_Integer) -> new_ltEs17(xuu4612, xuu4812) new_esEs22(xuu40002, xuu3002, ty_Bool) -> new_esEs18(xuu40002, xuu3002) new_esEs5(Left(xuu40000), Left(xuu3000), ty_@0, fg) -> new_esEs12(xuu40000, xuu3000) new_esEs23(xuu40000, xuu3000, app(ty_Ratio, bdg)) -> new_esEs13(xuu40000, xuu3000, bdg) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Bool, ceb) -> new_ltEs18(xuu4610, xuu4810) new_esEs20(xuu40000, xuu3000, app(app(app(ty_@3, he), hf), hg)) -> new_esEs6(xuu40000, xuu3000, he, hf, hg) new_esEs19(xuu460, xuu480, ty_Ordering) -> new_esEs8(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(app(app(ty_@3, dgf), dgg), dgh)) -> new_compare28(xuu4600, xuu4800, dgf, dgg, dgh) new_esEs19(xuu460, xuu480, app(app(ty_@2, fh), ga)) -> new_esEs4(xuu460, xuu480, fh, ga) new_esEs31(xuu4000, xuu300, ty_@0) -> new_esEs12(xuu4000, xuu300) new_lt13(xuu460, xuu480) -> new_esEs8(new_compare9(xuu460, xuu480), LT) new_primEqNat0(Succ(xuu400000), Zero) -> False new_primEqNat0(Zero, Succ(xuu30000)) -> False new_esEs32(xuu34, xuu36, app(ty_[], cfh)) -> new_esEs16(xuu34, xuu36, cfh) new_ltEs20(xuu4612, xuu4812, ty_Int) -> new_ltEs6(xuu4612, xuu4812) new_addToFM_C0(Branch(@2(xuu300, xuu301), xuu31, xuu32, xuu33, xuu34), @2(xuu4000, xuu4001), xuu401, h, ba, bb) -> new_addToFM_C20(xuu300, xuu301, xuu31, xuu32, xuu33, xuu34, xuu4000, xuu4001, xuu401, new_esEs30(xuu4000, xuu4001, xuu300, xuu301, new_esEs31(xuu4000, xuu300, h), h, ba), h, ba, bb) new_mkBranch5(xuu162, xuu163, xuu164, xuu165, bfe, bff, bfg) -> new_mkBranchResult1(xuu162, xuu163, xuu164, xuu165, bfe, bff, bfg) new_ltEs19(xuu461, xuu481, ty_Int) -> new_ltEs6(xuu461, xuu481) new_esEs27(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_ltEs15(GT, EQ) -> False new_ltEs5(xuu4611, xuu4811, ty_Bool) -> new_ltEs18(xuu4611, xuu4811) new_primCmpInt0(Branch(xuu380, xuu381, xuu382, xuu383, xuu384), xuu16, xuu17, xuu18, xuu21, bc, bd, be) -> new_primCmpInt(new_primPlusInt(xuu382, new_mkBalBranch6Size_r(xuu16, xuu17, xuu18, Branch(xuu380, xuu381, xuu382, xuu383, xuu384), xuu21, bc, bd, be)), Pos(Succ(Succ(Zero)))) new_lt20(xuu4610, xuu4810, app(ty_[], dbg)) -> new_lt14(xuu4610, xuu4810, dbg) new_primCompAux00(xuu138, GT) -> GT new_lt19(xuu460, xuu480, app(ty_Ratio, cde)) -> new_lt9(xuu460, xuu480, cde) new_addToFM_C10(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, bc, bd, be) -> Branch(@2(xuu22, xuu23), xuu24, xuu19, xuu20, xuu21) new_primMinusNat0(Succ(xuu38200), Zero) -> Pos(Succ(xuu38200)) new_compare110(xuu460, xuu480, True) -> LT new_ltEs19(xuu461, xuu481, ty_Float) -> new_ltEs13(xuu461, xuu481) new_esEs32(xuu34, xuu36, ty_Double) -> new_esEs14(xuu34, xuu36) new_primCmpNat2(Zero, xuu4600) -> LT new_esEs23(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs27(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs20(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_mkBalBranch6MkBalBranch11(xuu16, xuu17, xuu18, xuu380, xuu381, xuu382, xuu383, EmptyFM, xuu21, False, bc, bd, be) -> error([]) new_esEs28(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_ltEs20(xuu4612, xuu4812, app(app(ty_@2, ddc), ddd)) -> new_ltEs4(xuu4612, xuu4812, ddc, ddd) new_primCmpInt(Pos(Succ(xuu4600)), Neg(xuu480)) -> GT new_esEs20(xuu40000, xuu3000, app(app(ty_@2, hc), hd)) -> new_esEs4(xuu40000, xuu3000, hc, hd) new_ltEs11(Left(xuu4610), Right(xuu4810), cea, ceb) -> True new_compare24(xuu460, xuu480, False, ha, hb) -> new_compare19(xuu460, xuu480, new_ltEs11(xuu460, xuu480, ha, hb), ha, hb) new_ltEs20(xuu4612, xuu4812, app(app(app(ty_@3, ddh), dea), deb)) -> new_ltEs12(xuu4612, xuu4812, ddh, dea, deb) new_ltEs20(xuu4612, xuu4812, ty_Double) -> new_ltEs10(xuu4612, xuu4812) new_compare29(xuu4600, xuu4800, app(ty_Maybe, dhb)) -> new_compare15(xuu4600, xuu4800, dhb) new_esEs7(Just(xuu40000), Just(xuu3000), ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs29(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs26(xuu4611, xuu4811, ty_Double) -> new_esEs14(xuu4611, xuu4811) new_primPlusNat1(Succ(xuu38200), Succ(xuu9400)) -> Succ(Succ(new_primPlusNat1(xuu38200, xuu9400))) new_lt5(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_esEs31(xuu4000, xuu300, app(app(app(ty_@3, eg), eh), fa)) -> new_esEs6(xuu4000, xuu300, eg, eh, fa) new_lt5(xuu4610, xuu4810, app(app(ty_@2, bh), ca)) -> new_lt6(xuu4610, xuu4810, bh, ca) new_esEs24(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_lt6(xuu460, xuu480, fh, ga) -> new_esEs8(new_compare11(xuu460, xuu480, fh, ga), LT) new_esEs19(xuu460, xuu480, app(app(app(ty_@3, cdb), cdc), cdd)) -> new_esEs6(xuu460, xuu480, cdb, cdc, cdd) new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_[], dfg)) -> new_ltEs14(xuu4610, xuu4810, dfg) new_lt5(xuu4610, xuu4810, app(ty_Ratio, cb)) -> new_lt9(xuu4610, xuu4810, cb) new_ltEs19(xuu461, xuu481, app(app(app(ty_@3, cec), ced), cee)) -> new_ltEs12(xuu461, xuu481, cec, ced, cee) new_ltEs19(xuu461, xuu481, ty_Double) -> new_ltEs10(xuu461, xuu481) new_ltEs10(xuu461, xuu481) -> new_fsEs(new_compare13(xuu461, xuu481)) new_ltEs19(xuu461, xuu481, app(app(ty_@2, bf), bg)) -> new_ltEs4(xuu461, xuu481, bf, bg) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_esEs5(Right(xuu40000), Right(xuu3000), ff, app(ty_Maybe, cce)) -> new_esEs7(xuu40000, xuu3000, cce) new_compare11(xuu460, xuu480, fh, ga) -> new_compare23(xuu460, xuu480, new_esEs4(xuu460, xuu480, fh, ga), fh, ga) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_lt20(xuu4610, xuu4810, app(app(ty_Either, dbb), dbc)) -> new_lt11(xuu4610, xuu4810, dbb, dbc) new_ltEs19(xuu461, xuu481, ty_Char) -> new_ltEs7(xuu461, xuu481) new_pePe(False, xuu132) -> xuu132 new_lt20(xuu4610, xuu4810, app(app(app(ty_@3, dbd), dbe), dbf)) -> new_lt12(xuu4610, xuu4810, dbd, dbe, dbf) new_esEs7(Nothing, Just(xuu3000), fb) -> False new_esEs7(Just(xuu40000), Nothing, fb) -> False new_esEs20(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt17(xuu460, xuu480) -> new_esEs8(new_compare7(xuu460, xuu480), LT) new_esEs29(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt11(xuu460, xuu480, ha, hb) -> new_esEs8(new_compare30(xuu460, xuu480, ha, hb), LT) new_esEs20(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_primMinusNat0(Succ(xuu38200), Succ(xuu9400)) -> new_primMinusNat0(xuu38200, xuu9400) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_Either, bha), bhb)) -> new_esEs5(xuu40000, xuu3000, bha, bhb) new_esEs22(xuu40002, xuu3002, ty_Float) -> new_esEs15(xuu40002, xuu3002) new_ltEs18(False, False) -> True new_esEs26(xuu4611, xuu4811, ty_@0) -> new_esEs12(xuu4611, xuu4811) new_esEs32(xuu34, xuu36, ty_Bool) -> new_esEs18(xuu34, xuu36) new_esEs25(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs19(xuu461, xuu481, ty_Integer) -> new_ltEs17(xuu461, xuu481) new_lt5(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_compare17(xuu89, xuu88) -> new_primCmpInt(xuu89, xuu88) new_esEs11(Char(xuu40000), Char(xuu3000)) -> new_primEqNat0(xuu40000, xuu3000) new_compare7(Integer(xuu4600), Integer(xuu4800)) -> new_primCmpInt(xuu4600, xuu4800) new_ltEs14(xuu461, xuu481, cae) -> new_fsEs(new_compare(xuu461, xuu481, cae)) new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_compare23(xuu46, xuu48, True, cdg, cdh) -> EQ new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_@2, caf), cag), fg) -> new_esEs4(xuu40000, xuu3000, caf, cag) new_mkBalBranch6MkBalBranch01(xuu16, xuu17, xuu18, xuu38, xuu210, xuu211, xuu212, xuu213, xuu214, True, bc, bd, be) -> Branch(xuu210, xuu211, new_mkBranchUnbox(new_mkBranch1(Succ(Succ(Succ(Zero))), xuu16, xuu17, xuu18, xuu38, xuu213, bc, bd, be), xuu210, xuu214, new_ps(new_mkBranch1(Succ(Succ(Succ(Zero))), xuu16, xuu17, xuu18, xuu38, xuu213, bc, bd, be), xuu210, xuu214, new_mkBranch1(Succ(Succ(Succ(Zero))), xuu16, xuu17, xuu18, xuu38, xuu213, bc, bd, be), bc, bd, be), bc, bd, be), new_mkBranch(xuu16, xuu17, xuu18, xuu38, xuu213, bc, bd, be), xuu214) new_esEs21(xuu40001, xuu3001, app(app(ty_@2, bae), baf)) -> new_esEs4(xuu40001, xuu3001, bae, baf) new_primEqInt(Pos(Zero), Neg(Succ(xuu30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xuu30000))) -> False new_esEs32(xuu34, xuu36, app(app(app(ty_@3, cfc), cfd), cfe)) -> new_esEs6(xuu34, xuu36, cfc, cfd, cfe) new_esEs7(Nothing, Nothing, fb) -> True new_compare16(xuu107, xuu108, xuu109, xuu110, True, xuu112, dee, def) -> new_compare111(xuu107, xuu108, xuu109, xuu110, True, dee, def) new_esEs21(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_lt18(xuu460, xuu480) -> new_esEs8(new_compare14(xuu460, xuu480), LT) new_lt5(xuu4610, xuu4810, app(app(ty_Either, cc), cd)) -> new_lt11(xuu4610, xuu4810, cc, cd) new_esEs25(xuu4610, xuu4810, app(app(ty_@2, dag), dah)) -> new_esEs4(xuu4610, xuu4810, dag, dah) new_ltEs5(xuu4611, xuu4811, ty_Char) -> new_ltEs7(xuu4611, xuu4811) new_mkBalBranch6MkBalBranch3(xuu16, xuu17, xuu18, Branch(xuu380, xuu381, xuu382, xuu383, xuu384), xuu21, True, bc, bd, be) -> new_mkBalBranch6MkBalBranch11(xuu16, xuu17, xuu18, xuu380, xuu381, xuu382, xuu383, xuu384, xuu21, new_lt7(new_sizeFM(xuu384, bc, bd, be), new_sr(Pos(Succ(Succ(Zero))), new_sizeFM(xuu383, bc, bd, be))), bc, bd, be) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Double, ceb) -> new_ltEs10(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, ty_Int) -> new_lt7(xuu4611, xuu4811) new_lt7(xuu460, xuu480) -> new_esEs8(new_compare17(xuu460, xuu480), LT) new_esEs26(xuu4611, xuu4811, app(ty_[], dda)) -> new_esEs16(xuu4611, xuu4811, dda) new_primCmpInt0(EmptyFM, xuu16, xuu17, xuu18, xuu21, bc, bd, be) -> new_primCmpInt(new_primPlusInt(Pos(Zero), new_mkBalBranch6Size_r(xuu16, xuu17, xuu18, EmptyFM, xuu21, bc, bd, be)), Pos(Succ(Succ(Zero)))) new_lt16(xuu460, xuu480, bfh) -> new_esEs8(new_compare15(xuu460, xuu480, bfh), LT) new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_esEs24(xuu40001, xuu3001, app(app(ty_Either, bfc), bfd)) -> new_esEs5(xuu40001, xuu3001, bfc, bfd) new_primEqInt(Neg(Succ(xuu400000)), Neg(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_esEs25(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_ltEs19(xuu461, xuu481, app(ty_[], cae)) -> new_ltEs14(xuu461, xuu481, cae) new_primCmpInt(Neg(Zero), Pos(Succ(xuu4800))) -> LT new_emptyFM(h, ba, bb) -> EmptyFM new_lt19(xuu460, xuu480, app(app(app(ty_@3, cdb), cdc), cdd)) -> new_lt12(xuu460, xuu480, cdb, cdc, cdd) new_primMulInt(Pos(xuu400010), Pos(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_lt5(xuu4610, xuu4810, app(app(app(ty_@3, ce), cf), cg)) -> new_lt12(xuu4610, xuu4810, ce, cf, cg) new_esEs25(xuu4610, xuu4810, app(ty_Maybe, dbh)) -> new_esEs7(xuu4610, xuu4810, dbh) new_esEs31(xuu4000, xuu300, ty_Double) -> new_esEs14(xuu4000, xuu300) new_esEs20(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(app(ty_@2, bh), ca)) -> new_esEs4(xuu4610, xuu4810, bh, ca) new_lt19(xuu460, xuu480, app(app(ty_Either, ha), hb)) -> new_lt11(xuu460, xuu480, ha, hb) new_ltEs4(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), bf, bg) -> new_pePe(new_lt5(xuu4610, xuu4810, bf), new_asAs(new_esEs9(xuu4610, xuu4810, bf), new_ltEs5(xuu4611, xuu4811, bg))) new_compare10(xuu460, xuu480) -> new_compare27(xuu460, xuu480, new_esEs8(xuu460, xuu480)) new_esEs32(xuu34, xuu36, app(app(ty_Either, cga), cgb)) -> new_esEs5(xuu34, xuu36, cga, cgb) new_esEs9(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, ty_Bool) -> new_compare14(xuu4600, xuu4800) new_esEs29(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(ty_Ratio, cb)) -> new_esEs13(xuu4610, xuu4810, cb) new_esEs24(xuu40001, xuu3001, app(app(app(ty_@3, bee), bef), beg)) -> new_esEs6(xuu40001, xuu3001, bee, bef, beg) new_lt19(xuu460, xuu480, ty_Double) -> new_lt10(xuu460, xuu480) new_primMulNat0(Succ(xuu4000100), Zero) -> Zero new_primMulNat0(Zero, Succ(xuu300000)) -> Zero new_primPlusNat0(Zero, xuu300000) -> Succ(xuu300000) new_ltEs11(Right(xuu4610), Left(xuu4810), cea, ceb) -> False new_ltEs20(xuu4612, xuu4812, ty_Bool) -> new_ltEs18(xuu4612, xuu4812) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(app(ty_@3, bgc), bgd), bge)) -> new_esEs6(xuu40000, xuu3000, bgc, bgd, bge) new_mkBranch0(xuu154, xuu155, xuu156, xuu157, xuu158, xuu159, xuu160, xuu161, xuu162, xuu163, xuu164, xuu165, bfe, bff, bfg) -> Branch(xuu155, xuu156, new_mkBranchUnbox(new_mkBranch1(Succ(Succ(Succ(Succ(Succ(Zero))))), xuu157, xuu158, xuu159, xuu160, xuu161, bfe, bff, bfg), xuu155, new_mkBranch5(xuu162, xuu163, xuu164, xuu165, bfe, bff, bfg), new_ps(new_mkBranch3(Succ(Succ(Succ(Succ(Succ(Zero))))), @2(xuu157, xuu158), xuu159, xuu160, xuu161, bfe, bff, bfg), xuu155, new_mkBranch3(Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))), xuu162, xuu163, xuu164, xuu165, bfe, bff, bfg), new_mkBranch3(Succ(Succ(Succ(Succ(Succ(Zero))))), @2(xuu157, xuu158), xuu159, xuu160, xuu161, bfe, bff, bfg), bfe, bff, bfg), bfe, bff, bfg), new_mkBranch1(Succ(Succ(Succ(Succ(Succ(Zero))))), xuu157, xuu158, xuu159, xuu160, xuu161, bfe, bff, bfg), new_mkBranch5(xuu162, xuu163, xuu164, xuu165, bfe, bff, bfg)) new_esEs23(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_primPlusInt(Pos(xuu3820), Pos(xuu940)) -> Pos(new_primPlusNat1(xuu3820, xuu940)) new_esEs22(xuu40002, xuu3002, app(ty_Maybe, bcd)) -> new_esEs7(xuu40002, xuu3002, bcd) new_esEs14(Double(xuu40000, xuu40001), Double(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_ltEs17(xuu461, xuu481) -> new_fsEs(new_compare7(xuu461, xuu481)) new_ltEs5(xuu4611, xuu4811, app(ty_[], ec)) -> new_ltEs14(xuu4611, xuu4811, ec) new_esEs23(xuu40000, xuu3000, app(ty_Maybe, bdf)) -> new_esEs7(xuu40000, xuu3000, bdf) new_lt21(xuu4611, xuu4811, app(ty_[], dda)) -> new_lt14(xuu4611, xuu4811, dda) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_Either, cbf), cbg), fg) -> new_esEs5(xuu40000, xuu3000, cbf, cbg) new_ps(xuu222, xuu210, xuu214, xuu221, bc, bd, be) -> new_primPlusInt(new_primPlusInt(Pos(Succ(Zero)), new_sizeFM(xuu222, bc, bd, be)), new_sizeFM(xuu214, bc, bd, be)) new_esEs32(xuu34, xuu36, ty_Int) -> new_esEs10(xuu34, xuu36) new_esEs21(xuu40001, xuu3001, app(app(ty_Either, bbe), bbf)) -> new_esEs5(xuu40001, xuu3001, bbe, bbf) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs15(Float(xuu40000, xuu40001), Float(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_esEs8(LT, LT) -> True new_ltEs20(xuu4612, xuu4812, app(ty_Maybe, ded)) -> new_ltEs16(xuu4612, xuu4812, ded) new_mkBalBranch6MkBalBranch5(xuu16, xuu17, xuu18, xuu38, xuu21, False, bc, bd, be) -> new_mkBalBranch6MkBalBranch4(xuu16, xuu17, xuu18, xuu38, xuu21, new_gt(new_mkBalBranch6Size_r(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be), new_sr(new_sIZE_RATIO, new_mkBalBranch6Size_l(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be))), bc, bd, be) new_mkBalBranch6MkBalBranch01(xuu16, xuu17, xuu18, xuu38, xuu210, xuu211, xuu212, EmptyFM, xuu214, False, bc, bd, be) -> error([]) new_mkBalBranch6MkBalBranch4(xuu16, xuu17, xuu18, xuu38, Branch(xuu210, xuu211, xuu212, xuu213, xuu214), True, bc, bd, be) -> new_mkBalBranch6MkBalBranch01(xuu16, xuu17, xuu18, xuu38, xuu210, xuu211, xuu212, xuu213, xuu214, new_lt7(new_sizeFM(xuu213, bc, bd, be), new_sr(Pos(Succ(Succ(Zero))), new_sizeFM(xuu214, bc, bd, be))), bc, bd, be) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Integer) -> new_esEs17(xuu4000, xuu300) new_primPlusNat1(Succ(xuu38200), Zero) -> Succ(xuu38200) new_primPlusNat1(Zero, Succ(xuu9400)) -> Succ(xuu9400) new_esEs22(xuu40002, xuu3002, app(app(app(ty_@3, bca), bcb), bcc)) -> new_esEs6(xuu40002, xuu3002, bca, bcb, bcc) new_esEs9(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_@2, bga), bgb)) -> new_esEs4(xuu40000, xuu3000, bga, bgb) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Int) -> new_compare17(new_sr(xuu4600, xuu4801), new_sr(xuu4800, xuu4601)) new_esEs9(xuu4610, xuu4810, app(app(app(ty_@3, ce), cf), cg)) -> new_esEs6(xuu4610, xuu4810, ce, cf, cg) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_Either, cgf), cgg), ceb) -> new_ltEs11(xuu4610, xuu4810, cgf, cgg) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Ordering, ceb) -> new_ltEs15(xuu4610, xuu4810) new_primCompAux0(xuu4600, xuu4800, xuu127, cdf) -> new_primCompAux00(xuu127, new_compare29(xuu4600, xuu4800, cdf)) new_esEs19(xuu460, xuu480, ty_Integer) -> new_esEs17(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(ty_Ratio, dgc)) -> new_compare8(xuu4600, xuu4800, dgc) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Integer) -> new_compare7(new_sr0(xuu4600, xuu4801), new_sr0(xuu4800, xuu4601)) new_esEs29(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, app(ty_[], dae)) -> new_ltEs14(xuu4610, xuu4810, dae) new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_compare26(xuu460, xuu480, False) -> new_compare113(xuu460, xuu480, new_ltEs18(xuu460, xuu480)) new_esEs24(xuu40001, xuu3001, app(ty_Maybe, beh)) -> new_esEs7(xuu40001, xuu3001, beh) new_mkBranch2(xuu196, xuu197, xuu198, xuu199, xuu200, xuu201, xuu202, xuu203, xuu204, xuu205, xuu206, xuu207, xuu208, xuu209, gc, gd, ge) -> new_mkBranchResult0(xuu197, xuu198, new_mkBranch3(xuu199, xuu200, xuu201, xuu202, xuu203, gc, gd, ge), xuu204, xuu205, xuu206, xuu207, xuu208, xuu209, gc, gd, ge) new_mkBalBranch6MkBalBranch3(xuu16, xuu17, xuu18, EmptyFM, xuu21, True, bc, bd, be) -> error([]) new_compare12(xuu460, xuu480, False, cdb, cdc, cdd) -> GT new_compare29(xuu4600, xuu4800, ty_Int) -> new_compare17(xuu4600, xuu4800) new_esEs32(xuu34, xuu36, app(ty_Ratio, cfg)) -> new_esEs13(xuu34, xuu36, cfg) new_lt14(xuu460, xuu480, cdf) -> new_esEs8(new_compare(xuu460, xuu480, cdf), LT) new_compare19(xuu460, xuu480, False, ha, hb) -> GT new_esEs23(xuu40000, xuu3000, app(app(app(ty_@3, bdc), bdd), bde)) -> new_esEs6(xuu40000, xuu3000, bdc, bdd, bde) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16([], [], fd) -> True new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Maybe, dfh)) -> new_ltEs16(xuu4610, xuu4810, dfh) new_primMulInt(Neg(xuu400010), Neg(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_esEs32(xuu34, xuu36, ty_Float) -> new_esEs15(xuu34, xuu36) new_esEs29(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_compare25(xuu460, xuu480, True, bfh) -> EQ new_esEs9(xuu4610, xuu4810, app(app(ty_Either, cc), cd)) -> new_esEs5(xuu4610, xuu4810, cc, cd) new_ltEs5(xuu4611, xuu4811, ty_@0) -> new_ltEs8(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, app(ty_Ratio, bbc)) -> new_esEs13(xuu40001, xuu3001, bbc) new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_compare([], :(xuu4800, xuu4801), cdf) -> LT new_esEs31(xuu4000, xuu300, ty_Int) -> new_esEs10(xuu4000, xuu300) new_lt21(xuu4611, xuu4811, app(app(app(ty_@3, dcf), dcg), dch)) -> new_lt12(xuu4611, xuu4811, dcf, dcg, dch) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_@2, cgc), cgd), ceb) -> new_ltEs4(xuu4610, xuu4810, cgc, cgd) new_ltEs19(xuu461, xuu481, ty_@0) -> new_ltEs8(xuu461, xuu481) new_ltEs15(EQ, GT) -> True new_esEs22(xuu40002, xuu3002, app(app(ty_Either, bcg), bch)) -> new_esEs5(xuu40002, xuu3002, bcg, bch) new_esEs23(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt21(xuu4611, xuu4811, app(app(ty_Either, dcd), dce)) -> new_lt11(xuu4611, xuu4811, dcd, dce) new_esEs19(xuu460, xuu480, ty_Int) -> new_esEs10(xuu460, xuu480) new_esEs23(xuu40000, xuu3000, app(app(ty_@2, bda), bdb)) -> new_esEs4(xuu40000, xuu3000, bda, bdb) new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs21(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, app(app(app(ty_@3, dh), ea), eb)) -> new_ltEs12(xuu4611, xuu4811, dh, ea, eb) new_primMulInt(Pos(xuu400010), Neg(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_primMulInt(Neg(xuu400010), Pos(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_esEs19(xuu460, xuu480, ty_Bool) -> new_esEs18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, app(app(app(ty_@3, dab), dac), dad)) -> new_ltEs12(xuu4610, xuu4810, dab, dac, dad) new_esEs19(xuu460, xuu480, app(app(ty_Either, ha), hb)) -> new_esEs5(xuu460, xuu480, ha, hb) new_esEs22(xuu40002, xuu3002, ty_Ordering) -> new_esEs8(xuu40002, xuu3002) new_lt21(xuu4611, xuu4811, ty_Double) -> new_lt10(xuu4611, xuu4811) new_esEs5(Right(xuu40000), Right(xuu3000), ff, app(app(app(ty_@3, ccb), ccc), ccd)) -> new_esEs6(xuu40000, xuu3000, ccb, ccc, ccd) new_ltEs20(xuu4612, xuu4812, ty_@0) -> new_ltEs8(xuu4612, xuu4812) new_compare16(xuu107, xuu108, xuu109, xuu110, False, xuu112, dee, def) -> new_compare111(xuu107, xuu108, xuu109, xuu110, xuu112, dee, def) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, app(ty_Ratio, chg)) -> new_ltEs9(xuu4610, xuu4810, chg) new_primCmpInt(Pos(Succ(xuu4600)), Pos(xuu480)) -> new_primCmpNat0(xuu4600, xuu480) new_esEs22(xuu40002, xuu3002, app(app(ty_@2, bbg), bbh)) -> new_esEs4(xuu40002, xuu3002, bbg, bbh) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_@2, deg), deh)) -> new_ltEs4(xuu4610, xuu4810, deg, deh) new_lt8(xuu460, xuu480) -> new_esEs8(new_compare18(xuu460, xuu480), LT) new_lt21(xuu4611, xuu4811, ty_Float) -> new_lt13(xuu4611, xuu4811) new_lt21(xuu4611, xuu4811, ty_Ordering) -> new_lt15(xuu4611, xuu4811) new_primCmpNat1(Succ(xuu46000), Zero) -> GT new_esEs9(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt10(xuu460, xuu480) -> new_esEs8(new_compare13(xuu460, xuu480), LT) new_esEs25(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs18(False, True) -> True new_primPlusInt(Neg(xuu3820), Neg(xuu940)) -> Neg(new_primPlusNat1(xuu3820, xuu940)) new_ltEs20(xuu4612, xuu4812, app(app(ty_Either, ddf), ddg)) -> new_ltEs11(xuu4612, xuu4812, ddf, ddg) new_compare29(xuu4600, xuu4800, ty_@0) -> new_compare6(xuu4600, xuu4800) new_esEs21(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_sr0(Integer(xuu46000), Integer(xuu48010)) -> Integer(new_primMulInt(xuu46000, xuu48010)) new_esEs24(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, ty_Double) -> new_ltEs10(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Integer) -> new_lt17(xuu460, xuu480) new_ltEs15(LT, GT) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Double, fg) -> new_esEs14(xuu40000, xuu3000) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Char, ceb) -> new_ltEs7(xuu4610, xuu4810) new_primCmpNat0(xuu4600, Zero) -> GT new_ltEs5(xuu4611, xuu4811, ty_Ordering) -> new_ltEs15(xuu4611, xuu4811) new_esEs20(xuu40000, xuu3000, app(ty_Ratio, baa)) -> new_esEs13(xuu40000, xuu3000, baa) new_esEs23(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Bool) -> new_esEs18(xuu4000, xuu300) new_esEs26(xuu4611, xuu4811, ty_Char) -> new_esEs11(xuu4611, xuu4811) new_esEs25(xuu4610, xuu4810, app(ty_Ratio, dba)) -> new_esEs13(xuu4610, xuu4810, dba) new_compare111(xuu107, xuu108, xuu109, xuu110, True, dee, def) -> LT new_asAs(True, xuu63) -> xuu63 new_ltEs5(xuu4611, xuu4811, app(ty_Maybe, ed)) -> new_ltEs16(xuu4611, xuu4811, ed) new_compare12(xuu460, xuu480, True, cdb, cdc, cdd) -> LT new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Ratio, dfa)) -> new_ltEs9(xuu4610, xuu4810, dfa) new_compare113(xuu460, xuu480, True) -> LT new_lt9(xuu460, xuu480, cde) -> new_esEs8(new_compare8(xuu460, xuu480, cde), LT) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_mkBranch(xuu16, xuu17, xuu18, xuu38, xuu213, bc, bd, be) -> new_mkBranchResult(xuu16, xuu17, xuu18, xuu38, xuu213, bc, bd, be) new_addToFM_C0(EmptyFM, xuu400, xuu401, h, ba, bb) -> Branch(xuu400, xuu401, Pos(Succ(Zero)), new_emptyFM(h, ba, bb), new_emptyFM(h, ba, bb)) new_compare29(xuu4600, xuu4800, ty_Float) -> new_compare9(xuu4600, xuu4800) new_esEs19(xuu460, xuu480, app(ty_Ratio, cde)) -> new_esEs13(xuu460, xuu480, cde) new_esEs26(xuu4611, xuu4811, ty_Integer) -> new_esEs17(xuu4611, xuu4811) new_esEs9(xuu4610, xuu4810, app(ty_Maybe, db)) -> new_esEs7(xuu4610, xuu4810, db) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_primMinusNat0(Zero, Zero) -> Pos(Zero) new_mkBranch4(xuu144, xuu145, xuu146, xuu147, xuu148, xuu149, xuu150, xuu151, xuu152, gf, gg, gh) -> new_mkBranchResult0(xuu144, xuu145, xuu146, xuu147, xuu148, xuu149, xuu150, xuu151, xuu152, gf, gg, gh) new_esEs29(xuu40000, xuu3000, app(ty_[], cab)) -> new_esEs16(xuu40000, xuu3000, cab) new_lt21(xuu4611, xuu4811, ty_Char) -> new_lt8(xuu4611, xuu4811) new_esEs31(xuu4000, xuu300, app(ty_Ratio, fc)) -> new_esEs13(xuu4000, xuu300, fc) new_esEs18(False, False) -> True new_primPlusInt(Pos(xuu3820), Neg(xuu940)) -> new_primMinusNat0(xuu3820, xuu940) new_primPlusInt(Neg(xuu3820), Pos(xuu940)) -> new_primMinusNat0(xuu940, xuu3820) new_esEs20(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs32(xuu34, xuu36, ty_Char) -> new_esEs11(xuu34, xuu36) new_compare24(xuu460, xuu480, True, ha, hb) -> EQ new_esEs21(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, app(app(ty_Either, chh), daa)) -> new_ltEs11(xuu4610, xuu4810, chh, daa) new_esEs29(xuu40000, xuu3000, app(app(ty_Either, cac), cad)) -> new_esEs5(xuu40000, xuu3000, cac, cad) new_compare110(xuu460, xuu480, False) -> GT new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Ratio, cge), ceb) -> new_ltEs9(xuu4610, xuu4810, cge) new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_compare29(xuu4600, xuu4800, app(app(ty_Either, dgd), dge)) -> new_compare30(xuu4600, xuu4800, dgd, dge) new_primCompAux00(xuu138, EQ) -> xuu138 new_ltEs5(xuu4611, xuu4811, ty_Int) -> new_ltEs6(xuu4611, xuu4811) new_sr(xuu40001, xuu3000) -> new_primMulInt(xuu40001, xuu3000) new_lt19(xuu460, xuu480, ty_Ordering) -> new_lt15(xuu460, xuu480) new_esEs32(xuu34, xuu36, ty_Integer) -> new_esEs17(xuu34, xuu36) new_primMulNat0(Zero, Zero) -> Zero new_primCmpInt(Neg(Succ(xuu4600)), Neg(xuu480)) -> new_primCmpNat2(xuu480, xuu4600) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(app(ty_@3, dfd), dfe), dff)) -> new_ltEs12(xuu4610, xuu4810, dfd, dfe, dff) new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Maybe, chd), ceb) -> new_ltEs16(xuu4610, xuu4810, chd) new_lt21(xuu4611, xuu4811, app(ty_Maybe, ddb)) -> new_lt16(xuu4611, xuu4811, ddb) new_esEs9(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, app(app(ty_@2, dc), dd)) -> new_ltEs4(xuu4611, xuu4811, dc, dd) new_esEs21(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_lt19(xuu460, xuu480, ty_Char) -> new_lt8(xuu460, xuu480) new_esEs23(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs24(xuu40001, xuu3001, app(ty_[], bfb)) -> new_esEs16(xuu40001, xuu3001, bfb) new_ltEs20(xuu4612, xuu4812, app(ty_[], dec)) -> new_ltEs14(xuu4612, xuu4812, dec) new_mkBalBranch6MkBalBranch4(xuu16, xuu17, xuu18, xuu38, EmptyFM, True, bc, bd, be) -> error([]) new_sizeFM(Branch(xuu210, xuu211, xuu212, xuu213, xuu214), bc, bd, be) -> xuu212 new_primCmpInt(Neg(Zero), Neg(Succ(xuu4800))) -> new_primCmpNat0(xuu4800, Zero) new_primCmpNat1(Zero, Zero) -> EQ new_ltEs19(xuu461, xuu481, ty_Bool) -> new_ltEs18(xuu461, xuu481) new_lt5(xuu4610, xuu4810, app(ty_[], da)) -> new_lt14(xuu4610, xuu4810, da) new_esEs31(xuu4000, xuu300, app(ty_Maybe, fb)) -> new_esEs7(xuu4000, xuu300, fb) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, app(ty_Maybe, daf)) -> new_ltEs16(xuu4610, xuu4810, daf) new_esEs20(xuu40000, xuu3000, app(app(ty_Either, bac), bad)) -> new_esEs5(xuu40000, xuu3000, bac, bad) new_compare210(xuu460, xuu480, False, cdb, cdc, cdd) -> new_compare12(xuu460, xuu480, new_ltEs12(xuu460, xuu480, cdb, cdc, cdd), cdb, cdc, cdd) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_mkBalBranch6MkBalBranch11(xuu16, xuu17, xuu18, xuu380, xuu381, xuu382, xuu383, xuu384, xuu21, True, bc, bd, be) -> new_mkBranch4(xuu380, xuu381, xuu383, Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))))), xuu16, xuu17, xuu18, xuu384, xuu21, bc, bd, be) new_esEs5(Right(xuu40000), Right(xuu3000), ff, app(app(ty_Either, cch), cda)) -> new_esEs5(xuu40000, xuu3000, cch, cda) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_lt19(xuu460, xuu480, app(app(ty_@2, fh), ga)) -> new_lt6(xuu460, xuu480, fh, ga) new_ltEs15(EQ, EQ) -> True new_esEs19(xuu460, xuu480, ty_Double) -> new_esEs14(xuu460, xuu480) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_@0, ceb) -> new_ltEs8(xuu4610, xuu4810) new_addListToFM_CAdd(xuu3, @2(xuu400, xuu401), h, ba, bb) -> new_addToFM_C0(xuu3, xuu400, xuu401, h, ba, bb) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs24(xuu40001, xuu3001, app(ty_Ratio, bfa)) -> new_esEs13(xuu40001, xuu3001, bfa) new_compare29(xuu4600, xuu4800, ty_Ordering) -> new_compare10(xuu4600, xuu4800) new_esEs32(xuu34, xuu36, ty_Ordering) -> new_esEs8(xuu34, xuu36) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, ty_Integer) -> new_ltEs17(xuu4611, xuu4811) new_mkBranchResult(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be) -> Branch(@2(xuu16, xuu17), xuu18, new_mkBranchUnbox(xuu38, @2(xuu16, xuu17), xuu21, new_ps(xuu38, @2(xuu16, xuu17), xuu21, xuu38, bc, bd, be), bc, bd, be), xuu38, xuu21) new_lt15(xuu460, xuu480) -> new_esEs8(new_compare10(xuu460, xuu480), LT) new_compare25(xuu460, xuu480, False, bfh) -> new_compare112(xuu460, xuu480, new_ltEs16(xuu460, xuu480, bfh), bfh) new_esEs20(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt19(xuu460, xuu480, ty_Int) -> new_lt7(xuu460, xuu480) new_lt20(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs22(xuu40002, xuu3002, ty_Integer) -> new_esEs17(xuu40002, xuu3002) new_compare15(xuu460, xuu480, bfh) -> new_compare25(xuu460, xuu480, new_esEs7(xuu460, xuu480, bfh), bfh) new_ltEs20(xuu4612, xuu4812, ty_Char) -> new_ltEs7(xuu4612, xuu4812) new_esEs29(xuu40000, xuu3000, app(ty_Ratio, caa)) -> new_esEs13(xuu40000, xuu3000, caa) new_primEqInt(Neg(Succ(xuu400000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xuu30000))) -> False new_ltEs19(xuu461, xuu481, app(app(ty_Either, cea), ceb)) -> new_ltEs11(xuu461, xuu481, cea, ceb) new_compare([], [], cdf) -> EQ new_esEs30(xuu33, xuu34, xuu35, xuu36, False, ceg, ceh) -> new_esEs8(new_compare23(@2(xuu33, xuu34), @2(xuu35, xuu36), False, ceg, ceh), LT) new_ltEs15(LT, EQ) -> True new_esEs22(xuu40002, xuu3002, ty_Char) -> new_esEs11(xuu40002, xuu3002) new_primEqInt(Pos(Succ(xuu400000)), Pos(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_esEs21(xuu40001, xuu3001, app(ty_Maybe, bbb)) -> new_esEs7(xuu40001, xuu3001, bbb) new_esEs22(xuu40002, xuu3002, ty_Int) -> new_esEs10(xuu40002, xuu3002) new_esEs32(xuu34, xuu36, app(app(ty_@2, cfa), cfb)) -> new_esEs4(xuu34, xuu36, cfa, cfb) new_ltEs13(xuu461, xuu481) -> new_fsEs(new_compare9(xuu461, xuu481)) new_esEs20(xuu40000, xuu3000, app(ty_[], bab)) -> new_esEs16(xuu40000, xuu3000, bab) new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs26(xuu4611, xuu4811, app(app(ty_@2, dca), dcb)) -> new_esEs4(xuu4611, xuu4811, dca, dcb) new_ltEs5(xuu4611, xuu4811, ty_Float) -> new_ltEs13(xuu4611, xuu4811) new_compare29(xuu4600, xuu4800, ty_Double) -> new_compare13(xuu4600, xuu4800) new_esEs25(xuu4610, xuu4810, app(app(ty_Either, dbb), dbc)) -> new_esEs5(xuu4610, xuu4810, dbb, dbc) new_ltEs16(Nothing, Just(xuu4810), cef) -> True new_lt20(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_esEs13(:%(xuu40000, xuu40001), :%(xuu3000, xuu3001), fc) -> new_asAs(new_esEs27(xuu40000, xuu3000, fc), new_esEs28(xuu40001, xuu3001, fc)) new_primEqInt(Pos(Succ(xuu400000)), Neg(xuu3000)) -> False new_primEqInt(Neg(Succ(xuu400000)), Pos(xuu3000)) -> False new_esEs26(xuu4611, xuu4811, ty_Ordering) -> new_esEs8(xuu4611, xuu4811) new_mkBalBranch(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be) -> new_mkBalBranch6MkBalBranch5(xuu16, xuu17, xuu18, xuu38, xuu21, new_esEs8(new_primCmpInt0(xuu38, xuu16, xuu17, xuu18, xuu21, bc, bd, be), LT), bc, bd, be) new_lt20(xuu4610, xuu4810, app(app(ty_@2, dag), dah)) -> new_lt6(xuu4610, xuu4810, dag, dah) new_esEs31(xuu4000, xuu300, app(ty_[], fd)) -> new_esEs16(xuu4000, xuu300, fd) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs32(xuu34, xuu36, app(ty_Maybe, cff)) -> new_esEs7(xuu34, xuu36, cff) new_esEs31(xuu4000, xuu300, app(app(ty_Either, ff), fg)) -> new_esEs5(xuu4000, xuu300, ff, fg) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_esEs25(xuu4610, xuu4810, app(ty_[], dbg)) -> new_esEs16(xuu4610, xuu4810, dbg) new_lt4(xuu460, xuu480) -> new_esEs8(new_compare6(xuu460, xuu480), LT) new_esEs19(xuu460, xuu480, app(ty_[], cdf)) -> new_esEs16(xuu460, xuu480, cdf) new_esEs26(xuu4611, xuu4811, app(ty_Maybe, ddb)) -> new_esEs7(xuu4611, xuu4811, ddb) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_ltEs15(GT, GT) -> True new_lt20(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, app(app(ty_Either, dcd), dce)) -> new_esEs5(xuu4611, xuu4811, dcd, dce) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Float, fg) -> new_esEs15(xuu40000, xuu3000) new_esEs26(xuu4611, xuu4811, ty_Bool) -> new_esEs18(xuu4611, xuu4811) new_lt5(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(app(ty_@3, cah), cba), cbb), fg) -> new_esEs6(xuu40000, xuu3000, cah, cba, cbb) new_esEs30(xuu33, xuu34, xuu35, xuu36, True, ceg, ceh) -> new_esEs8(new_compare23(@2(xuu33, xuu34), @2(xuu35, xuu36), new_esEs32(xuu34, xuu36, ceh), ceg, ceh), LT) new_primCmpInt(Pos(Zero), Pos(Succ(xuu4800))) -> new_primCmpNat2(Zero, xuu4800) new_esEs31(xuu4000, xuu300, ty_Char) -> new_esEs11(xuu4000, xuu300) new_lt19(xuu460, xuu480, app(ty_Maybe, bfh)) -> new_lt16(xuu460, xuu480, bfh) new_esEs9(xuu4610, xuu4810, app(ty_[], da)) -> new_esEs16(xuu4610, xuu4810, da) new_esEs26(xuu4611, xuu4811, app(app(app(ty_@3, dcf), dcg), dch)) -> new_esEs6(xuu4611, xuu4811, dcf, dcg, dch) new_esEs23(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, app(ty_Ratio, dba)) -> new_lt9(xuu4610, xuu4810, dba) new_compare30(xuu460, xuu480, ha, hb) -> new_compare24(xuu460, xuu480, new_esEs5(xuu460, xuu480, ha, hb), ha, hb) new_esEs24(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Maybe, cbc), fg) -> new_esEs7(xuu40000, xuu3000, cbc) new_lt5(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_esEs31(xuu4000, xuu300, app(app(ty_@2, ee), ef)) -> new_esEs4(xuu4000, xuu300, ee, ef) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Ratio, bgg)) -> new_esEs13(xuu40000, xuu3000, bgg) new_not(False) -> True new_esEs21(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs6(xuu461, xuu481) -> new_fsEs(new_compare17(xuu461, xuu481)) new_compare28(xuu460, xuu480, cdb, cdc, cdd) -> new_compare210(xuu460, xuu480, new_esEs6(xuu460, xuu480, cdb, cdc, cdd), cdb, cdc, cdd) new_esEs31(xuu4000, xuu300, ty_Ordering) -> new_esEs8(xuu4000, xuu300) new_lt20(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs20(xuu40000, xuu3000, app(ty_Maybe, hh)) -> new_esEs7(xuu40000, xuu3000, hh) new_lt20(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, app(ty_[], dha)) -> new_compare(xuu4600, xuu4800, dha) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_esEs18(False, True) -> False new_esEs18(True, False) -> False new_esEs5(Left(xuu40000), Right(xuu3000), ff, fg) -> False new_esEs5(Right(xuu40000), Left(xuu3000), ff, fg) -> False new_lt21(xuu4611, xuu4811, ty_Bool) -> new_lt18(xuu4611, xuu4811) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_[], bgh)) -> new_esEs16(xuu40000, xuu3000, bgh) new_esEs32(xuu34, xuu36, ty_@0) -> new_esEs12(xuu34, xuu36) new_esEs25(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Float, ceb) -> new_ltEs13(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, app(app(ty_@2, dca), dcb)) -> new_lt6(xuu4611, xuu4811, dca, dcb) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Int, fg) -> new_esEs10(xuu40000, xuu3000) new_primPlusNat0(Succ(xuu980), xuu300000) -> Succ(Succ(new_primPlusNat1(xuu980, xuu300000))) new_esEs4(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), ee, ef) -> new_asAs(new_esEs23(xuu40000, xuu3000, ee), new_esEs24(xuu40001, xuu3001, ef)) new_esEs19(xuu460, xuu480, app(ty_Maybe, bfh)) -> new_esEs7(xuu460, xuu480, bfh) new_primCmpNat1(Zero, Succ(xuu48000)) -> LT new_esEs24(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_esEs10(xuu4000, xuu300) -> new_primEqInt(xuu4000, xuu300) new_mkBalBranch6MkBalBranch5(xuu16, xuu17, xuu18, xuu38, xuu21, True, bc, bd, be) -> new_mkBranchResult(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt12(xuu460, xuu480, cdb, cdc, cdd) -> new_esEs8(new_compare28(xuu460, xuu480, cdb, cdc, cdd), LT) new_primPlusNat1(Zero, Zero) -> Zero new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, app(ty_[], bbd)) -> new_esEs16(xuu40001, xuu3001, bbd) new_compare6(@0, @0) -> EQ new_ltEs15(LT, LT) -> True new_esEs25(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_lt5(xuu4610, xuu4810, app(ty_Maybe, db)) -> new_lt16(xuu4610, xuu4810, db) new_lt19(xuu460, xuu480, ty_@0) -> new_lt4(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, ty_@0) -> new_esEs12(xuu40002, xuu3002) new_esEs25(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_primMulNat0(Succ(xuu4000100), Succ(xuu300000)) -> new_primPlusNat0(new_primMulNat0(xuu4000100, Succ(xuu300000)), xuu300000) new_esEs16(:(xuu40000, xuu40001), :(xuu3000, xuu3001), fd) -> new_asAs(new_esEs29(xuu40000, xuu3000, fd), new_esEs16(xuu40001, xuu3001, fd)) new_esEs12(@0, @0) -> True new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_[], chc), ceb) -> new_ltEs14(xuu4610, xuu4810, chc) new_esEs20(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_mkBranchUnbox(xuu146, xuu144, xuu220, xuu210, gf, gg, gh) -> xuu210 new_lt19(xuu460, xuu480, ty_Float) -> new_lt13(xuu460, xuu480) new_sizeFM(EmptyFM, bc, bd, be) -> Pos(Zero) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Double) -> new_esEs14(xuu40000, xuu3000) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_mkBranchResult0(xuu144, xuu145, xuu146, xuu147, xuu148, xuu149, xuu150, xuu151, xuu152, gf, gg, gh) -> Branch(xuu144, xuu145, new_mkBranchUnbox(xuu146, xuu144, new_mkBranch1(xuu147, xuu148, xuu149, xuu150, xuu151, xuu152, gf, gg, gh), new_ps(xuu146, xuu144, new_mkBranch3(xuu147, @2(xuu148, xuu149), xuu150, xuu151, xuu152, gf, gg, gh), xuu146, gf, gg, gh), gf, gg, gh), xuu146, new_mkBranch1(xuu147, xuu148, xuu149, xuu150, xuu151, xuu152, gf, gg, gh)) new_ltEs19(xuu461, xuu481, app(ty_Ratio, gb)) -> new_ltEs9(xuu461, xuu481, gb) new_esEs24(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_esEs26(xuu4611, xuu4811, ty_Int) -> new_esEs10(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_primMinusNat0(Zero, Succ(xuu9400)) -> Neg(Succ(xuu9400)) new_lt20(xuu4610, xuu4810, app(ty_Maybe, dbh)) -> new_lt16(xuu4610, xuu4810, dbh) new_mkBalBranch6MkBalBranch3(xuu16, xuu17, xuu18, xuu38, xuu21, False, bc, bd, be) -> new_mkBranchResult(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be) new_esEs29(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16(:(xuu40000, xuu40001), [], fd) -> False new_esEs16([], :(xuu3000, xuu3001), fd) -> False new_compare29(xuu4600, xuu4800, ty_Integer) -> new_compare7(xuu4600, xuu4800) new_esEs23(xuu40000, xuu3000, app(ty_[], bdh)) -> new_esEs16(xuu40000, xuu3000, bdh) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Integer, fg) -> new_esEs17(xuu40000, xuu3000) new_primCmpNat2(Succ(xuu4800), xuu4600) -> new_primCmpNat1(xuu4800, xuu4600) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_addToFM_C20(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, bc, bd, be) -> new_addToFM_C10(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, new_esEs8(new_compare23(@2(xuu22, xuu23), @2(xuu16, xuu17), new_esEs4(@2(xuu22, xuu23), @2(xuu16, xuu17), bc, bd), bc, bd), GT), bc, bd, be) new_esEs29(xuu40000, xuu3000, app(app(ty_@2, bhc), bhd)) -> new_esEs4(xuu40000, xuu3000, bhc, bhd) new_lt21(xuu4611, xuu4811, ty_Integer) -> new_lt17(xuu4611, xuu4811) new_ltEs18(True, True) -> True new_esEs24(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_Char) -> new_esEs11(xuu460, xuu480) new_primEqNat0(Zero, Zero) -> True new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Int, ceb) -> new_ltEs6(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt5(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, ty_Float) -> new_esEs15(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Bool) -> new_lt18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), cea, ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Bool, fg) -> new_esEs18(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, app(ty_Ratio, de)) -> new_ltEs9(xuu4611, xuu4811, de) new_lt20(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_addToFM_C20(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, bc, bd, be) -> new_mkBalBranch(xuu16, xuu17, xuu18, new_addToFM_C0(xuu20, @2(xuu22, xuu23), xuu24, bc, bd, be), xuu21, bc, bd, be) new_esEs22(xuu40002, xuu3002, app(ty_[], bcf)) -> new_esEs16(xuu40002, xuu3002, bcf) new_asAs(False, xuu63) -> False new_esEs26(xuu4611, xuu4811, app(ty_Ratio, dcc)) -> new_esEs13(xuu4611, xuu4811, dcc) new_lt20(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_gt(xuu89, xuu88) -> new_esEs8(new_compare17(xuu89, xuu88), GT) new_esEs29(xuu40000, xuu3000, app(ty_Maybe, bhh)) -> new_esEs7(xuu40000, xuu3000, bhh) new_esEs5(Right(xuu40000), Right(xuu3000), ff, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_compare18(Char(xuu4600), Char(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_compare29(xuu4600, xuu4800, ty_Char) -> new_compare18(xuu4600, xuu4800) new_mkBalBranch6MkBalBranch11(xuu16, xuu17, xuu18, xuu380, xuu381, xuu382, xuu383, Branch(xuu3840, xuu3841, xuu3842, xuu3843, xuu3844), xuu21, False, bc, bd, be) -> new_mkBranch2(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero))))))))), xuu3840, xuu3841, Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))))))), xuu380, xuu381, xuu383, xuu3843, Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero))))))))))), xuu16, xuu17, xuu18, xuu3844, xuu21, bc, bd, be) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_compare112(xuu460, xuu480, False, bfh) -> GT new_compare27(xuu460, xuu480, True) -> EQ new_ltEs12(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), cec, ced, cee) -> new_pePe(new_lt20(xuu4610, xuu4810, cec), new_asAs(new_esEs25(xuu4610, xuu4810, cec), new_pePe(new_lt21(xuu4611, xuu4811, ced), new_asAs(new_esEs26(xuu4611, xuu4811, ced), new_ltEs20(xuu4612, xuu4812, cee))))) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(app(ty_@3, cgh), cha), chb), ceb) -> new_ltEs12(xuu4610, xuu4810, cgh, cha, chb) new_mkBalBranch6MkBalBranch4(xuu16, xuu17, xuu18, xuu38, xuu21, False, bc, bd, be) -> new_mkBalBranch6MkBalBranch3(xuu16, xuu17, xuu18, xuu38, xuu21, new_gt(new_mkBalBranch6Size_l(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be), new_sr(new_sIZE_RATIO, new_mkBalBranch6Size_r(xuu16, xuu17, xuu18, xuu38, xuu21, bc, bd, be))), bc, bd, be) The set Q consists of the following terms: new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_esEs8(EQ, EQ) new_esEs16(:(x0, x1), :(x2, x3), x4) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs7(x0, x1) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_esEs20(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Ordering) new_esEs21(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Float) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs13(x0, x1) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_lt21(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_ltEs5(x0, x1, app(app(ty_@2, x2), x3)) new_mkBalBranch6Size_l(x0, x1, x2, x3, x4, x5, x6, x7) new_esEs7(Just(x0), Just(x1), ty_@0) new_primPlusNat1(Zero, Zero) new_ltEs16(Nothing, Just(x0), x1) new_compare112(x0, x1, True, x2) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_compare18(Char(x0), Char(x1)) new_ltEs11(Left(x0), Left(x1), ty_Integer, x2) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Just(x0), Just(x1), ty_Bool) new_primCmpNat1(Zero, Zero) new_esEs7(Just(x0), Just(x1), app(ty_[], x2)) new_esEs21(x0, x1, ty_Int) new_esEs9(x0, x1, app(ty_[], x2)) new_compare7(Integer(x0), Integer(x1)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs18(True, True) new_esEs32(x0, x1, app(ty_Ratio, x2)) new_esEs23(x0, x1, app(ty_[], x2)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), ty_Integer) new_esEs15(Float(x0, x1), Float(x2, x3)) new_mkBalBranch6MkBalBranch01(x0, x1, x2, x3, x4, x5, x6, Branch(x7, x8, x9, x10, x11), x12, False, x13, x14, x15) new_primEqInt(Pos(Zero), Pos(Zero)) new_gt(x0, x1) new_ltEs11(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_primMinusNat0(Zero, Zero) new_lt19(x0, x1, ty_Double) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, ty_Char) new_esEs25(x0, x1, ty_Float) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_compare29(x0, x1, ty_Int) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs31(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, ty_Bool) new_primCmpInt0(EmptyFM, x0, x1, x2, x3, x4, x5, x6) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_esEs29(x0, x1, app(ty_[], x2)) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs19(x0, x1, app(ty_[], x2)) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primEqInt(Neg(Zero), Neg(Zero)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_mkBalBranch6MkBalBranch3(x0, x1, x2, EmptyFM, x3, True, x4, x5, x6) new_compare29(x0, x1, app(app(ty_@2, x2), x3)) new_compare29(x0, x1, ty_Char) new_compare6(@0, @0) new_lt5(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_mkBalBranch6MkBalBranch4(x0, x1, x2, x3, x4, False, x5, x6, x7) new_sIZE_RATIO new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs5(x0, x1, app(ty_[], x2)) new_compare23(x0, x1, True, x2, x3) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_ltEs5(x0, x1, ty_Float) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs22(x0, x1, ty_Ordering) new_ltEs11(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_primCompAux00(x0, LT) new_esEs31(x0, x1, ty_Double) new_esEs21(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, ty_Integer) new_esEs21(x0, x1, ty_@0) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_compare29(x0, x1, ty_@0) new_mkBalBranch6MkBalBranch11(x0, x1, x2, x3, x4, x5, x6, x7, x8, True, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_compare27(x0, x1, False) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulNat0(Zero, Succ(x0)) new_compare110(x0, x1, True) new_compare([], [], x0) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_esEs32(x0, x1, app(app(ty_Either, x2), x3)) new_compare19(x0, x1, True, x2, x3) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_esEs9(x0, x1, ty_Float) new_lt19(x0, x1, ty_Ordering) new_lt12(x0, x1, x2, x3, x4) new_mkBalBranch6MkBalBranch4(x0, x1, x2, x3, Branch(x4, x5, x6, x7, x8), True, x9, x10, x11) new_esEs7(Just(x0), Just(x1), ty_Int) new_compare10(x0, x1) new_esEs24(x0, x1, ty_Float) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs28(x0, x1, ty_Integer) new_ltEs12(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), ty_Char) new_primMulInt(Neg(x0), Neg(x1)) new_lt20(x0, x1, ty_Float) new_pePe(True, x0) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_mkBalBranch6Size_r(x0, x1, x2, x3, x4, x5, x6, x7) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_lt19(x0, x1, app(ty_Ratio, x2)) new_mkBalBranch6MkBalBranch01(x0, x1, x2, x3, x4, x5, x6, x7, x8, True, x9, x10, x11) new_compare29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs22(x0, x1, ty_Integer) new_ltEs16(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_ltEs15(EQ, EQ) new_fsEs(x0) new_esEs32(x0, x1, app(ty_[], x2)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_compare25(x0, x1, True, x2) new_primPlusInt(Pos(x0), Neg(x1)) new_primPlusInt(Neg(x0), Pos(x1)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs16([], [], x0) new_esEs21(x0, x1, ty_Integer) new_mkBalBranch6MkBalBranch11(x0, x1, x2, x3, x4, x5, x6, Branch(x7, x8, x9, x10, x11), x12, False, x13, x14, x15) new_ltEs16(Just(x0), Just(x1), ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), ty_Ordering) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_lt13(x0, x1) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt21(x0, x1, ty_Integer) new_primCompAux0(x0, x1, x2, x3) new_esEs32(x0, x1, ty_Ordering) new_compare16(x0, x1, x2, x3, True, x4, x5, x6) new_ltEs5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, ty_Char) new_lt8(x0, x1) new_asAs(False, x0) new_ltEs11(Left(x0), Left(x1), app(ty_[], x2), x3) new_esEs32(x0, x1, ty_Double) new_mkBalBranch(x0, x1, x2, x3, x4, x5, x6, x7) new_ltEs5(x0, x1, app(app(ty_Either, x2), x3)) new_esEs31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Integer) new_esEs6(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_lt20(x0, x1, ty_@0) new_compare111(x0, x1, x2, x3, True, x4, x5) new_primCompAux00(x0, EQ) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs7(Nothing, Nothing, x0) new_lt15(x0, x1) new_ltEs20(x0, x1, ty_Int) new_primPlusNat1(Succ(x0), Succ(x1)) new_esEs9(x0, x1, ty_Bool) new_esEs18(False, True) new_esEs18(True, False) new_ltEs16(Just(x0), Just(x1), ty_Int) new_lt19(x0, x1, ty_Bool) new_ltEs15(GT, LT) new_ltEs15(LT, GT) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_primCmpNat1(Succ(x0), Zero) new_lt19(x0, x1, ty_Char) new_esEs19(x0, x1, ty_Bool) new_compare19(x0, x1, False, x2, x3) new_esEs26(x0, x1, ty_Integer) new_esEs23(x0, x1, ty_Bool) new_compare25(x0, x1, False, x2) new_esEs9(x0, x1, ty_Char) new_ltEs11(Right(x0), Right(x1), x2, ty_Integer) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs16(Just(x0), Just(x1), ty_Char) new_esEs31(x0, x1, app(ty_[], x2)) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_esEs21(x0, x1, ty_Bool) new_primEqNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Ordering) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_mkBranch1(x0, x1, x2, x3, x4, x5, x6, x7, x8) new_esEs8(GT, GT) new_mkBranch4(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_compare29(x0, x1, app(ty_[], x2)) new_lt7(x0, x1) new_ltEs11(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_primMinusNat0(Succ(x0), Succ(x1)) new_esEs25(x0, x1, ty_@0) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_lt19(x0, x1, ty_Int) new_primCmpInt(Neg(Zero), Neg(Zero)) new_primPlusInt(Pos(x0), Pos(x1)) new_ltEs11(Left(x0), Left(x1), ty_@0, x2) new_mkBranch3(x0, x1, x2, x3, x4, x5, x6, x7) new_esEs9(x0, x1, ty_Integer) new_compare29(x0, x1, ty_Bool) new_lt5(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_ltEs11(Left(x0), Left(x1), ty_Double, x2) new_mkBalBranch6MkBalBranch5(x0, x1, x2, x3, x4, False, x5, x6, x7) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs31(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Float) new_esEs22(x0, x1, ty_Int) new_ltEs11(Right(x0), Right(x1), x2, ty_Ordering) new_esEs7(Just(x0), Nothing, x1) new_addListToFM_CAdd(x0, @2(x1, x2), x3, x4, x5) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_mkBranchResult(x0, x1, x2, x3, x4, x5, x6, x7) new_esEs25(x0, x1, ty_Double) new_compare29(x0, x1, ty_Ordering) new_lt5(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs16(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs5(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, ty_Float) new_compare30(x0, x1, x2, x3) new_lt21(x0, x1, ty_@0) new_ltEs16(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_addToFM_C0(Branch(@2(x0, x1), x2, x3, x4, x5), @2(x6, x7), x8, x9, x10, x11) new_esEs23(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Bool) new_esEs9(x0, x1, app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs16(Nothing, Nothing, x0) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_compare113(x0, x1, False) new_esEs31(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primEqNat0(Succ(x0), Zero) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(x0, x1, ty_Ordering) new_lt19(x0, x1, ty_Float) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_esEs19(x0, x1, ty_Float) new_esEs32(x0, x1, ty_@0) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs19(x0, x1, ty_Char) new_lt5(x0, x1, ty_@0) new_compare29(x0, x1, ty_Integer) new_esEs21(x0, x1, ty_Ordering) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_lt16(x0, x1, x2) new_esEs20(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Int) new_esEs22(x0, x1, ty_Float) new_lt5(x0, x1, ty_Double) new_esEs30(x0, x1, x2, x3, False, x4, x5) new_addToFM_C20(x0, x1, x2, x3, x4, x5, x6, x7, x8, False, x9, x10, x11) new_esEs29(x0, x1, ty_Int) new_esEs13(:%(x0, x1), :%(x2, x3), x4) new_esEs29(x0, x1, ty_Char) new_ltEs6(x0, x1) new_ltEs20(x0, x1, ty_Integer) new_esEs32(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs8(x0, x1) new_lt5(x0, x1, app(ty_[], x2)) new_ltEs16(Just(x0), Just(x1), ty_Bool) new_esEs19(x0, x1, ty_Int) new_addToFM_C10(x0, x1, x2, x3, x4, x5, x6, x7, x8, True, x9, x10, x11) new_ltEs5(x0, x1, app(ty_Maybe, x2)) new_ltEs19(x0, x1, app(ty_[], x2)) new_compare16(x0, x1, x2, x3, False, x4, x5, x6) new_ltEs5(x0, x1, ty_Char) new_esEs20(x0, x1, ty_Float) new_primMinusNat0(Succ(x0), Zero) new_lt20(x0, x1, ty_Ordering) new_compare24(x0, x1, False, x2, x3) new_esEs24(x0, x1, ty_Int) new_compare(:(x0, x1), [], x2) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_primPlusNat0(Zero, x0) new_primPlusNat0(Succ(x0), x1) new_compare15(x0, x1, x2) new_primPlusNat1(Succ(x0), Zero) new_esEs32(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs7(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_ltEs16(Just(x0), Just(x1), ty_@0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs25(x0, x1, ty_Char) new_mkBranchUnbox(x0, x1, x2, x3, x4, x5, x6) new_lt21(x0, x1, ty_Int) new_lt5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Int) new_ltEs14(x0, x1, x2) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_esEs26(x0, x1, ty_Char) new_lt6(x0, x1, x2, x3) new_ltEs5(x0, x1, ty_Int) new_sr(x0, x1) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs23(x0, x1, ty_Double) new_esEs28(x0, x1, ty_Int) new_lt5(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Char) new_esEs25(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Char) new_esEs24(x0, x1, ty_Double) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_lt9(x0, x1, x2) new_ltEs11(Right(x0), Right(x1), x2, ty_@0) new_ltEs19(x0, x1, ty_@0) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs16([], :(x0, x1), x2) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_primCmpNat2(Zero, x0) new_esEs26(x0, x1, ty_Int) new_compare210(x0, x1, False, x2, x3, x4) new_lt20(x0, x1, ty_Char) new_primCmpNat1(Zero, Succ(x0)) new_lt21(x0, x1, ty_Double) new_lt20(x0, x1, ty_Double) new_esEs9(x0, x1, ty_Double) new_ltEs20(x0, x1, ty_Bool) new_esEs25(x0, x1, ty_Int) new_lt21(x0, x1, ty_Char) new_lt11(x0, x1, x2, x3) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs31(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_@0) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs32(x0, x1, ty_Bool) new_ltEs19(x0, x1, ty_Int) new_ltEs18(True, True) new_lt5(x0, x1, app(app(ty_Either, x2), x3)) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_compare29(x0, x1, app(ty_Ratio, x2)) new_compare29(x0, x1, ty_Float) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_not(True) new_esEs31(x0, x1, app(app(ty_Either, x2), x3)) new_primMulNat0(Succ(x0), Zero) new_sizeFM(EmptyFM, x0, x1, x2) new_ltEs5(x0, x1, ty_@0) new_mkBranch0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14) new_compare8(:%(x0, x1), :%(x2, x3), ty_Integer) new_esEs31(x0, x1, ty_Bool) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(x0, x1, ty_Double) new_lt21(x0, x1, app(ty_Ratio, x2)) new_esEs27(x0, x1, ty_Int) new_esEs31(x0, x1, ty_@0) new_ltEs5(x0, x1, ty_Bool) new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_primCmpNat2(Succ(x0), x1) new_ltEs20(x0, x1, ty_@0) new_esEs29(x0, x1, ty_Ordering) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare12(x0, x1, True, x2, x3, x4) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare26(x0, x1, True) new_primCmpNat0(x0, Succ(x1)) new_compare8(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs30(x0, x1, x2, x3, True, x4, x5) new_compare113(x0, x1, True) new_compare210(x0, x1, True, x2, x3, x4) new_ltEs19(x0, x1, ty_Bool) new_compare9(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare9(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_compare29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_lt20(x0, x1, app(ty_Ratio, x2)) new_ltEs15(GT, EQ) new_ltEs15(EQ, GT) new_esEs10(x0, x1) new_lt21(x0, x1, ty_Ordering) new_compare28(x0, x1, x2, x3, x4) new_lt19(x0, x1, app(ty_[], x2)) new_esEs9(x0, x1, ty_Int) new_esEs26(x0, x1, ty_Double) new_compare12(x0, x1, False, x2, x3, x4) new_ltEs11(Right(x0), Right(x1), x2, ty_Int) new_esEs18(False, False) new_ltEs11(Right(x0), Right(x1), x2, ty_Double) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs9(x0, x1, app(ty_Ratio, x2)) new_compare11(x0, x1, x2, x3) new_esEs20(x0, x1, ty_Integer) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs24(x0, x1, ty_@0) new_primCmpNat1(Succ(x0), Succ(x1)) new_primEqNat0(Succ(x0), Succ(x1)) new_ltEs16(Just(x0), Just(x1), ty_Integer) new_ltEs18(True, False) new_ltEs18(False, True) new_lt21(x0, x1, app(ty_[], x2)) new_ltEs11(Right(x0), Right(x1), x2, ty_Bool) new_ltEs11(Right(x0), Right(x1), x2, ty_Char) new_compare111(x0, x1, x2, x3, False, x4, x5) new_esEs7(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs10(x0, x1) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs26(x0, x1, ty_Bool) new_ltEs11(Left(x0), Left(x1), ty_Ordering, x2) new_lt14(x0, x1, x2) new_esEs7(Just(x0), Just(x1), ty_Double) new_compare9(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_esEs32(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_lt19(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Ordering) new_esEs11(Char(x0), Char(x1)) new_ltEs16(Just(x0), Nothing, x1) new_esEs32(x0, x1, ty_Integer) new_ltEs20(x0, x1, ty_Float) new_esEs21(x0, x1, ty_Float) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs23(x0, x1, ty_Ordering) new_esEs9(x0, x1, app(ty_Maybe, x2)) new_esEs25(x0, x1, ty_Integer) new_compare24(x0, x1, True, x2, x3) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_mkBranch2(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16) new_mkBranch5(x0, x1, x2, x3, x4, x5, x6) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_ltEs16(Just(x0), Just(x1), ty_Double) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_primPlusNat1(Zero, Succ(x0)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_esEs7(Just(x0), Just(x1), ty_Float) new_ltEs11(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt20(x0, x1, ty_Bool) new_ltEs11(Left(x0), Left(x1), ty_Char, x2) new_esEs31(x0, x1, ty_Char) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_addToFM_C10(x0, x1, x2, x3, x4, x5, x6, x7, x8, False, x9, x10, x11) new_lt17(x0, x1) new_ltEs16(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs9(x0, x1, ty_@0) new_mkBalBranch6MkBalBranch3(x0, x1, x2, Branch(x3, x4, x5, x6, x7), x8, True, x9, x10, x11) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_compare17(x0, x1) new_esEs12(@0, @0) new_lt18(x0, x1) new_esEs32(x0, x1, ty_Int) new_lt19(x0, x1, ty_@0) new_ltEs16(Just(x0), Just(x1), ty_Ordering) new_compare29(x0, x1, app(ty_Maybe, x2)) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs31(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_lt10(x0, x1) new_esEs16(:(x0, x1), [], x2) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_primCompAux00(x0, GT) new_ltEs19(x0, x1, ty_Double) new_compare([], :(x0, x1), x2) new_ltEs15(EQ, LT) new_ltEs15(LT, EQ) new_esEs32(x0, x1, ty_Char) new_ltEs11(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_esEs22(x0, x1, ty_Double) new_pePe(False, x0) new_lt21(x0, x1, ty_Bool) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs26(x0, x1, ty_Float) new_ltEs20(x0, x1, ty_Double) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs9(x0, x1, app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs5(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Ordering) new_mkBalBranch6MkBalBranch11(x0, x1, x2, x3, x4, x5, x6, EmptyFM, x7, False, x8, x9, x10) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_mkBranchResult0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_ltEs15(GT, GT) new_compare26(x0, x1, False) new_mkBalBranch6MkBalBranch5(x0, x1, x2, x3, x4, True, x5, x6, x7) new_esEs14(Double(x0, x1), Double(x2, x3)) new_lt4(x0, x1) new_esEs7(Just(x0), Just(x1), app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Bool) new_ltEs11(Right(x0), Right(x1), x2, ty_Float) new_esEs31(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Bool) new_addToFM_C20(x0, x1, x2, x3, x4, x5, x6, x7, x8, True, x9, x10, x11) new_ltEs11(Left(x0), Right(x1), x2, x3) new_ltEs11(Right(x0), Left(x1), x2, x3) new_primEqNat0(Zero, Zero) new_compare29(x0, x1, ty_Double) new_ltEs9(x0, x1, x2) new_mkBalBranch6MkBalBranch3(x0, x1, x2, x3, x4, False, x5, x6, x7) new_addToFM_C0(EmptyFM, x0, x1, x2, x3, x4) new_compare14(x0, x1) new_not(False) new_lt5(x0, x1, app(ty_Maybe, x2)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusInt(Neg(x0), Neg(x1)) new_ltEs16(Just(x0), Just(x1), app(ty_[], x2)) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs11(Left(x0), Left(x1), ty_Bool, x2) new_ltEs5(x0, x1, ty_Ordering) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_compare(:(x0, x1), :(x2, x3), x4) new_ltEs18(False, False) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_lt19(x0, x1, app(ty_Maybe, x2)) new_mkBalBranch6MkBalBranch01(x0, x1, x2, x3, x4, x5, x6, EmptyFM, x7, False, x8, x9, x10) new_esEs31(x0, x1, app(app(ty_@2, x2), x3)) new_esEs20(x0, x1, ty_Char) new_emptyFM(x0, x1, x2) new_compare9(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_esEs7(Just(x0), Just(x1), app(ty_Maybe, x2)) new_lt5(x0, x1, ty_Bool) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_lt5(x0, x1, ty_Float) new_primCmpInt0(Branch(x0, x1, x2, x3, x4), x5, x6, x7, x8, x9, x10, x11) new_ltEs11(Left(x0), Left(x1), ty_Float, x2) new_ltEs11(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_mkBalBranch6MkBalBranch4(x0, x1, x2, x3, EmptyFM, True, x4, x5, x6) new_ltEs15(LT, LT) new_lt20(x0, x1, ty_Integer) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_ltEs11(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs17(Integer(x0), Integer(x1)) new_mkBranch(x0, x1, x2, x3, x4, x5, x6, x7) new_sr0(Integer(x0), Integer(x1)) new_esEs19(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Int) new_compare110(x0, x1, False) new_esEs22(x0, x1, ty_@0) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_esEs25(x0, x1, ty_Bool) new_esEs29(x0, x1, ty_@0) new_ltEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(x0, x1) new_compare27(x0, x1, True) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_primMinusNat0(Zero, Succ(x0)) new_esEs24(x0, x1, ty_Ordering) new_ps(x0, x1, x2, x3, x4, x5, x6) new_lt21(x0, x1, ty_Float) new_sizeFM(Branch(x0, x1, x2, x3, x4), x5, x6, x7) new_compare112(x0, x1, False, x2) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_mkBranchResult1(x0, x1, x2, x3, x4, x5, x6) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs27(x0, x1, ty_Integer) new_esEs32(x0, x1, ty_Float) new_esEs7(Nothing, Just(x0), x1) new_esEs24(x0, x1, ty_Integer) new_lt5(x0, x1, ty_Char) new_esEs19(x0, x1, ty_@0) new_esEs29(x0, x1, ty_Double) new_asAs(True, x0) new_lt5(x0, x1, ty_Int) new_ltEs16(Just(x0), Just(x1), app(ty_Ratio, x2)) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_primCmpNat0(x0, Zero) new_compare23(@2(x0, x1), @2(x2, x3), False, x4, x5) new_ltEs11(Left(x0), Left(x1), ty_Int, x2) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, ty_@0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldl(xuu3, :(xuu40, xuu41), h, ba, bb) -> new_foldl(new_addListToFM_CAdd(xuu3, xuu40, h, ba, bb), xuu41, h, ba, bb) The graph contains the following edges 2 > 2, 3 >= 3, 4 >= 4, 5 >= 5 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, h, ba, bb) -> new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, new_esEs8(new_compare23(@2(xuu22, xuu23), @2(xuu16, xuu17), new_esEs4(@2(xuu22, xuu23), @2(xuu16, xuu17), h, ba), h, ba), GT), h, ba, bb) new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, h, ba, bb) -> new_addToFM_C(xuu20, @2(xuu22, xuu23), xuu24, h, ba, bb) new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, h, ba, bb) -> new_addToFM_C(xuu21, @2(xuu22, xuu23), xuu24, h, ba, bb) new_addToFM_C(Branch(@2(xuu300, xuu301), xuu31, xuu32, xuu33, xuu34), @2(xuu4000, xuu4001), xuu401, bc, bd, be) -> new_addToFM_C2(xuu300, xuu301, xuu31, xuu32, xuu33, xuu34, xuu4000, xuu4001, xuu401, new_esEs30(xuu4000, xuu4001, xuu300, xuu301, new_esEs31(xuu4000, xuu300, bc), bc, bd), bc, bd, be) The TRS R consists of the following rules: new_ltEs7(xuu461, xuu481) -> new_fsEs(new_compare18(xuu461, xuu481)) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xuu4600)), Pos(xuu480)) -> LT new_esEs24(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(ty_Ratio, dff)) -> new_esEs13(xuu40000, xuu3000, dff) new_esEs25(xuu4610, xuu4810, app(app(app(ty_@3, cdc), cdd), cde)) -> new_esEs6(xuu4610, xuu4810, cdc, cdd, cde) new_pePe(True, xuu132) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Ordering, bac) -> new_esEs8(xuu40000, xuu3000) new_primCmpNat0(xuu4600, Succ(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_esEs22(xuu40002, xuu3002, ty_Double) -> new_esEs14(xuu40002, xuu3002) new_ltEs20(xuu4612, xuu4812, ty_Ordering) -> new_ltEs15(xuu4612, xuu4812) new_lt21(xuu4611, xuu4811, ty_@0) -> new_lt4(xuu4611, xuu4811) new_esEs17(Integer(xuu40000), Integer(xuu3000)) -> new_primEqInt(xuu40000, xuu3000) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(ty_[], dfg)) -> new_esEs16(xuu40000, xuu3000, dfg) new_ltEs5(xuu4611, xuu4811, app(app(ty_Either, df), dg)) -> new_ltEs11(xuu4611, xuu4811, df, dg) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(ty_@2, bdb), bdc)) -> new_ltEs4(xuu4610, xuu4810, bdb, bdc) new_esEs18(True, True) -> True new_compare112(xuu460, xuu480, True, ff) -> LT new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Ratio, ded), bac) -> new_esEs13(xuu40000, xuu3000, ded) new_lt19(xuu460, xuu480, app(ty_[], fd)) -> new_lt14(xuu460, xuu480, fd) new_compare(:(xuu4600, xuu4601), [], fd) -> GT new_compare14(xuu460, xuu480) -> new_compare26(xuu460, xuu480, new_esEs18(xuu460, xuu480)) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_ltEs16(Nothing, Nothing, ha) -> True new_primCmpInt(Pos(Zero), Neg(Succ(xuu4800))) -> GT new_compare(:(xuu4600, xuu4601), :(xuu4800, xuu4801), fd) -> new_primCompAux0(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, fd), fd) new_compare23(@2(xuu460, xuu461), @2(xuu480, xuu481), False, fg, fh) -> new_compare16(xuu460, xuu461, xuu480, xuu481, new_lt19(xuu460, xuu480, fg), new_asAs(new_esEs19(xuu460, xuu480, fg), new_ltEs19(xuu461, xuu481, fh)), fg, fh) new_ltEs20(xuu4612, xuu4812, ty_Float) -> new_ltEs13(xuu4612, xuu4812) new_esEs24(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_@0) -> new_esEs12(xuu460, xuu480) new_ltEs18(True, False) -> False new_ltEs16(Just(xuu4610), Nothing, ha) -> False new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Maybe, dae)) -> new_esEs7(xuu40000, xuu3000, dae) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Char, bac) -> new_esEs11(xuu40000, xuu3000) new_compare29(xuu4600, xuu4800, app(app(ty_@2, dcd), dce)) -> new_compare11(xuu4600, xuu4800, dcd, dce) new_compare210(xuu460, xuu480, True, eh, fa, fb) -> EQ new_esEs29(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs28(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_ltEs8(xuu461, xuu481) -> new_fsEs(new_compare6(xuu461, xuu481)) new_compare111(xuu107, xuu108, xuu109, xuu110, False, cgd, cge) -> GT new_lt21(xuu4611, xuu4811, app(ty_Ratio, ceb)) -> new_lt9(xuu4611, xuu4811, ceb) new_ltEs19(xuu461, xuu481, app(ty_Maybe, ha)) -> new_ltEs16(xuu461, xuu481, ha) new_compare27(xuu460, xuu480, False) -> new_compare110(xuu460, xuu480, new_ltEs15(xuu460, xuu480)) new_compare113(xuu460, xuu480, False) -> GT new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_ltEs15(EQ, LT) -> False new_esEs20(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_primCmpNat1(Succ(xuu46000), Succ(xuu48000)) -> new_primCmpNat1(xuu46000, xuu48000) new_esEs25(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs23(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs23(xuu40000, xuu3000, app(app(ty_Either, cbb), cbc)) -> new_esEs5(xuu40000, xuu3000, cbb, cbc) new_ltEs19(xuu461, xuu481, ty_Ordering) -> new_ltEs15(xuu461, xuu481) new_compare26(xuu460, xuu480, True) -> EQ new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(xuu400000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xuu30000))) -> False new_ltEs15(GT, LT) -> False new_fsEs(xuu119) -> new_not(new_esEs8(xuu119, GT)) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, app(app(app(ty_@3, dbd), dbe), dbf)) -> new_esEs6(xuu40000, xuu3000, dbd, dbe, dbf) new_esEs24(xuu40001, xuu3001, app(app(ty_@2, cbd), cbe)) -> new_esEs4(xuu40001, xuu3001, cbd, cbe) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_esEs8(EQ, EQ) -> True new_esEs23(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_Either, cha), chb)) -> new_ltEs11(xuu4610, xuu4810, cha, chb) new_compare19(xuu460, xuu480, True, ga, gb) -> LT new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Integer, gd) -> new_ltEs17(xuu4610, xuu4810) new_primEqNat0(Succ(xuu400000), Succ(xuu30000)) -> new_primEqNat0(xuu400000, xuu30000) new_esEs19(xuu460, xuu480, ty_Float) -> new_esEs15(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, app(ty_Ratio, bhf)) -> new_esEs13(xuu40002, xuu3002, bhf) new_ltEs20(xuu4612, xuu4812, app(ty_Ratio, cfd)) -> new_ltEs9(xuu4612, xuu4812, cfd) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(app(ty_@2, deh), dfa)) -> new_esEs4(xuu40000, xuu3000, deh, dfa) new_esEs31(xuu4000, xuu300, ty_Float) -> new_esEs15(xuu4000, xuu300) new_esEs25(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Int) -> new_esEs10(xuu40000, xuu3000) new_not(True) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_[], dee), bac) -> new_esEs16(xuu40000, xuu3000, dee) new_primCompAux00(xuu138, LT) -> LT new_esEs21(xuu40001, xuu3001, app(app(app(ty_@3, bfh), bga), bgb)) -> new_esEs6(xuu40001, xuu3001, bfh, bga, bgb) new_ltEs9(xuu461, xuu481, fc) -> new_fsEs(new_compare8(xuu461, xuu481, fc)) new_esEs6(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), hd, he, hf) -> new_asAs(new_esEs20(xuu40000, xuu3000, hd), new_asAs(new_esEs21(xuu40001, xuu3001, he), new_esEs22(xuu40002, xuu3002, hf))) new_ltEs20(xuu4612, xuu4812, ty_Integer) -> new_ltEs17(xuu4612, xuu4812) new_esEs22(xuu40002, xuu3002, ty_Bool) -> new_esEs18(xuu40002, xuu3002) new_esEs5(Left(xuu40000), Left(xuu3000), ty_@0, bac) -> new_esEs12(xuu40000, xuu3000) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Bool, gd) -> new_ltEs18(xuu4610, xuu4810) new_esEs23(xuu40000, xuu3000, app(ty_Ratio, cah)) -> new_esEs13(xuu40000, xuu3000, cah) new_esEs20(xuu40000, xuu3000, app(app(app(ty_@3, bef), beg), beh)) -> new_esEs6(xuu40000, xuu3000, bef, beg, beh) new_esEs19(xuu460, xuu480, ty_Ordering) -> new_esEs8(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(app(app(ty_@3, dda), ddb), ddc)) -> new_compare28(xuu4600, xuu4800, dda, ddb, ddc) new_esEs19(xuu460, xuu480, app(app(ty_@2, ef), eg)) -> new_esEs4(xuu460, xuu480, ef, eg) new_lt13(xuu460, xuu480) -> new_esEs8(new_compare9(xuu460, xuu480), LT) new_primEqNat0(Succ(xuu400000), Zero) -> False new_primEqNat0(Zero, Succ(xuu30000)) -> False new_esEs31(xuu4000, xuu300, ty_@0) -> new_esEs12(xuu4000, xuu300) new_esEs32(xuu34, xuu36, app(ty_[], bbe)) -> new_esEs16(xuu34, xuu36, bbe) new_ltEs20(xuu4612, xuu4812, ty_Int) -> new_ltEs6(xuu4612, xuu4812) new_ltEs19(xuu461, xuu481, ty_Int) -> new_ltEs6(xuu461, xuu481) new_esEs27(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_ltEs15(GT, EQ) -> False new_ltEs5(xuu4611, xuu4811, ty_Bool) -> new_ltEs18(xuu4611, xuu4811) new_lt20(xuu4610, xuu4810, app(ty_[], cdf)) -> new_lt14(xuu4610, xuu4810, cdf) new_primCompAux00(xuu138, GT) -> GT new_lt19(xuu460, xuu480, app(ty_Ratio, ee)) -> new_lt9(xuu460, xuu480, ee) new_compare110(xuu460, xuu480, True) -> LT new_ltEs19(xuu461, xuu481, ty_Float) -> new_ltEs13(xuu461, xuu481) new_esEs32(xuu34, xuu36, ty_Double) -> new_esEs14(xuu34, xuu36) new_primCmpNat2(Zero, xuu4600) -> LT new_esEs23(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs27(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs20(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_ltEs20(xuu4612, xuu4812, app(app(ty_@2, cfb), cfc)) -> new_ltEs4(xuu4612, xuu4812, cfb, cfc) new_esEs28(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_primCmpInt(Pos(Succ(xuu4600)), Neg(xuu480)) -> GT new_ltEs11(Left(xuu4610), Right(xuu4810), gc, gd) -> True new_esEs20(xuu40000, xuu3000, app(app(ty_@2, bed), bee)) -> new_esEs4(xuu40000, xuu3000, bed, bee) new_compare24(xuu460, xuu480, False, ga, gb) -> new_compare19(xuu460, xuu480, new_ltEs11(xuu460, xuu480, ga, gb), ga, gb) new_ltEs20(xuu4612, xuu4812, app(app(app(ty_@3, cfg), cfh), cga)) -> new_ltEs12(xuu4612, xuu4812, cfg, cfh, cga) new_ltEs20(xuu4612, xuu4812, ty_Double) -> new_ltEs10(xuu4612, xuu4812) new_compare29(xuu4600, xuu4800, app(ty_Maybe, dde)) -> new_compare15(xuu4600, xuu4800, dde) new_esEs26(xuu4611, xuu4811, ty_Double) -> new_esEs14(xuu4611, xuu4811) new_esEs7(Just(xuu40000), Just(xuu3000), ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs29(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_primPlusNat1(Succ(xuu38200), Succ(xuu9400)) -> Succ(Succ(new_primPlusNat1(xuu38200, xuu9400))) new_lt5(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_esEs31(xuu4000, xuu300, app(app(app(ty_@3, hd), he), hf)) -> new_esEs6(xuu4000, xuu300, hd, he, hf) new_lt5(xuu4610, xuu4810, app(app(ty_@2, bh), ca)) -> new_lt6(xuu4610, xuu4810, bh, ca) new_esEs24(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_lt6(xuu460, xuu480, ef, eg) -> new_esEs8(new_compare11(xuu460, xuu480, ef, eg), LT) new_esEs19(xuu460, xuu480, app(app(app(ty_@3, eh), fa), fb)) -> new_esEs6(xuu460, xuu480, eh, fa, fb) new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_[], chf)) -> new_ltEs14(xuu4610, xuu4810, chf) new_lt5(xuu4610, xuu4810, app(ty_Ratio, cb)) -> new_lt9(xuu4610, xuu4810, cb) new_ltEs19(xuu461, xuu481, app(app(app(ty_@3, ge), gf), gg)) -> new_ltEs12(xuu461, xuu481, ge, gf, gg) new_ltEs19(xuu461, xuu481, ty_Double) -> new_ltEs10(xuu461, xuu481) new_ltEs10(xuu461, xuu481) -> new_fsEs(new_compare13(xuu461, xuu481)) new_ltEs19(xuu461, xuu481, app(app(ty_@2, bf), bg)) -> new_ltEs4(xuu461, xuu481, bf, bg) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(ty_Maybe, dfe)) -> new_esEs7(xuu40000, xuu3000, dfe) new_compare11(xuu460, xuu480, ef, eg) -> new_compare23(xuu460, xuu480, new_esEs4(xuu460, xuu480, ef, eg), ef, eg) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_lt20(xuu4610, xuu4810, app(app(ty_Either, cda), cdb)) -> new_lt11(xuu4610, xuu4810, cda, cdb) new_ltEs19(xuu461, xuu481, ty_Char) -> new_ltEs7(xuu461, xuu481) new_lt20(xuu4610, xuu4810, app(app(app(ty_@3, cdc), cdd), cde)) -> new_lt12(xuu4610, xuu4810, cdc, cdd, cde) new_pePe(False, xuu132) -> xuu132 new_esEs7(Nothing, Just(xuu3000), hg) -> False new_esEs7(Just(xuu40000), Nothing, hg) -> False new_esEs20(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt17(xuu460, xuu480) -> new_esEs8(new_compare7(xuu460, xuu480), LT) new_esEs29(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt11(xuu460, xuu480, ga, gb) -> new_esEs8(new_compare30(xuu460, xuu480, ga, gb), LT) new_esEs20(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_Either, dah), dba)) -> new_esEs5(xuu40000, xuu3000, dah, dba) new_esEs22(xuu40002, xuu3002, ty_Float) -> new_esEs15(xuu40002, xuu3002) new_esEs26(xuu4611, xuu4811, ty_@0) -> new_esEs12(xuu4611, xuu4811) new_ltEs18(False, False) -> True new_esEs32(xuu34, xuu36, ty_Bool) -> new_esEs18(xuu34, xuu36) new_esEs25(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs19(xuu461, xuu481, ty_Integer) -> new_ltEs17(xuu461, xuu481) new_lt5(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_compare17(xuu89, xuu88) -> new_primCmpInt(xuu89, xuu88) new_esEs11(Char(xuu40000), Char(xuu3000)) -> new_primEqNat0(xuu40000, xuu3000) new_compare7(Integer(xuu4600), Integer(xuu4800)) -> new_primCmpInt(xuu4600, xuu4800) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_ltEs14(xuu461, xuu481, gh) -> new_fsEs(new_compare(xuu461, xuu481, gh)) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_compare23(xuu46, xuu48, True, fg, fh) -> EQ new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_@2, ddf), ddg), bac) -> new_esEs4(xuu40000, xuu3000, ddf, ddg) new_esEs21(xuu40001, xuu3001, app(app(ty_@2, bff), bfg)) -> new_esEs4(xuu40001, xuu3001, bff, bfg) new_esEs32(xuu34, xuu36, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs6(xuu34, xuu36, bah, bba, bbb) new_primEqInt(Pos(Zero), Neg(Succ(xuu30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xuu30000))) -> False new_esEs7(Nothing, Nothing, hg) -> True new_compare16(xuu107, xuu108, xuu109, xuu110, True, xuu112, cgd, cge) -> new_compare111(xuu107, xuu108, xuu109, xuu110, True, cgd, cge) new_esEs21(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_lt18(xuu460, xuu480) -> new_esEs8(new_compare14(xuu460, xuu480), LT) new_lt5(xuu4610, xuu4810, app(app(ty_Either, cc), cd)) -> new_lt11(xuu4610, xuu4810, cc, cd) new_esEs25(xuu4610, xuu4810, app(app(ty_@2, ccf), ccg)) -> new_esEs4(xuu4610, xuu4810, ccf, ccg) new_ltEs5(xuu4611, xuu4811, ty_Char) -> new_ltEs7(xuu4611, xuu4811) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Double, gd) -> new_ltEs10(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, ty_Int) -> new_lt7(xuu4611, xuu4811) new_lt7(xuu460, xuu480) -> new_esEs8(new_compare17(xuu460, xuu480), LT) new_esEs26(xuu4611, xuu4811, app(ty_[], ceh)) -> new_esEs16(xuu4611, xuu4811, ceh) new_lt16(xuu460, xuu480, ff) -> new_esEs8(new_compare15(xuu460, xuu480, ff), LT) new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_esEs24(xuu40001, xuu3001, app(app(ty_Either, ccd), cce)) -> new_esEs5(xuu40001, xuu3001, ccd, cce) new_esEs25(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_primEqInt(Neg(Succ(xuu400000)), Neg(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_ltEs19(xuu461, xuu481, app(ty_[], gh)) -> new_ltEs14(xuu461, xuu481, gh) new_primCmpInt(Neg(Zero), Pos(Succ(xuu4800))) -> LT new_lt19(xuu460, xuu480, app(app(app(ty_@3, eh), fa), fb)) -> new_lt12(xuu460, xuu480, eh, fa, fb) new_primMulInt(Pos(xuu400010), Pos(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_lt5(xuu4610, xuu4810, app(app(app(ty_@3, ce), cf), cg)) -> new_lt12(xuu4610, xuu4810, ce, cf, cg) new_esEs25(xuu4610, xuu4810, app(ty_Maybe, cdg)) -> new_esEs7(xuu4610, xuu4810, cdg) new_esEs31(xuu4000, xuu300, ty_Double) -> new_esEs14(xuu4000, xuu300) new_esEs20(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(app(ty_@2, bh), ca)) -> new_esEs4(xuu4610, xuu4810, bh, ca) new_lt19(xuu460, xuu480, app(app(ty_Either, ga), gb)) -> new_lt11(xuu460, xuu480, ga, gb) new_ltEs4(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), bf, bg) -> new_pePe(new_lt5(xuu4610, xuu4810, bf), new_asAs(new_esEs9(xuu4610, xuu4810, bf), new_ltEs5(xuu4611, xuu4811, bg))) new_compare10(xuu460, xuu480) -> new_compare27(xuu460, xuu480, new_esEs8(xuu460, xuu480)) new_esEs32(xuu34, xuu36, app(app(ty_Either, bbf), bbg)) -> new_esEs5(xuu34, xuu36, bbf, bbg) new_esEs9(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, ty_Bool) -> new_compare14(xuu4600, xuu4800) new_esEs29(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(ty_Ratio, cb)) -> new_esEs13(xuu4610, xuu4810, cb) new_esEs24(xuu40001, xuu3001, app(app(app(ty_@3, cbf), cbg), cbh)) -> new_esEs6(xuu40001, xuu3001, cbf, cbg, cbh) new_lt19(xuu460, xuu480, ty_Double) -> new_lt10(xuu460, xuu480) new_primMulNat0(Succ(xuu4000100), Zero) -> Zero new_primMulNat0(Zero, Succ(xuu300000)) -> Zero new_primPlusNat0(Zero, xuu300000) -> Succ(xuu300000) new_ltEs11(Right(xuu4610), Left(xuu4810), gc, gd) -> False new_ltEs20(xuu4612, xuu4812, ty_Bool) -> new_ltEs18(xuu4612, xuu4812) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(app(ty_@3, dab), dac), dad)) -> new_esEs6(xuu40000, xuu3000, dab, dac, dad) new_esEs23(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs22(xuu40002, xuu3002, app(ty_Maybe, bhe)) -> new_esEs7(xuu40002, xuu3002, bhe) new_esEs14(Double(xuu40000, xuu40001), Double(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_ltEs17(xuu461, xuu481) -> new_fsEs(new_compare7(xuu461, xuu481)) new_ltEs5(xuu4611, xuu4811, app(ty_[], ec)) -> new_ltEs14(xuu4611, xuu4811, ec) new_esEs23(xuu40000, xuu3000, app(ty_Maybe, cag)) -> new_esEs7(xuu40000, xuu3000, cag) new_lt21(xuu4611, xuu4811, app(ty_[], ceh)) -> new_lt14(xuu4611, xuu4811, ceh) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_Either, def), deg), bac) -> new_esEs5(xuu40000, xuu3000, def, deg) new_esEs32(xuu34, xuu36, ty_Int) -> new_esEs10(xuu34, xuu36) new_esEs21(xuu40001, xuu3001, app(app(ty_Either, bgf), bgg)) -> new_esEs5(xuu40001, xuu3001, bgf, bgg) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs15(Float(xuu40000, xuu40001), Float(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_esEs8(LT, LT) -> True new_ltEs20(xuu4612, xuu4812, app(ty_Maybe, cgc)) -> new_ltEs16(xuu4612, xuu4812, cgc) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Integer) -> new_esEs17(xuu4000, xuu300) new_primPlusNat1(Succ(xuu38200), Zero) -> Succ(xuu38200) new_primPlusNat1(Zero, Succ(xuu9400)) -> Succ(xuu9400) new_esEs22(xuu40002, xuu3002, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs6(xuu40002, xuu3002, bhb, bhc, bhd) new_esEs9(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Int) -> new_compare17(new_sr(xuu4600, xuu4801), new_sr(xuu4800, xuu4601)) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_@2, chh), daa)) -> new_esEs4(xuu40000, xuu3000, chh, daa) new_esEs9(xuu4610, xuu4810, app(app(app(ty_@3, ce), cf), cg)) -> new_esEs6(xuu4610, xuu4810, ce, cf, cg) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_Either, bcc), bcd), gd) -> new_ltEs11(xuu4610, xuu4810, bcc, bcd) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Ordering, gd) -> new_ltEs15(xuu4610, xuu4810) new_primCompAux0(xuu4600, xuu4800, xuu127, fd) -> new_primCompAux00(xuu127, new_compare29(xuu4600, xuu4800, fd)) new_esEs19(xuu460, xuu480, ty_Integer) -> new_esEs17(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(ty_Ratio, dcf)) -> new_compare8(xuu4600, xuu4800, dcf) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Integer) -> new_compare7(new_sr0(xuu4600, xuu4801), new_sr0(xuu4800, xuu4601)) new_esEs29(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_[], beb)) -> new_ltEs14(xuu4610, xuu4810, beb) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_compare26(xuu460, xuu480, False) -> new_compare113(xuu460, xuu480, new_ltEs18(xuu460, xuu480)) new_esEs24(xuu40001, xuu3001, app(ty_Maybe, cca)) -> new_esEs7(xuu40001, xuu3001, cca) new_compare12(xuu460, xuu480, False, eh, fa, fb) -> GT new_compare29(xuu4600, xuu4800, ty_Int) -> new_compare17(xuu4600, xuu4800) new_esEs32(xuu34, xuu36, app(ty_Ratio, bbd)) -> new_esEs13(xuu34, xuu36, bbd) new_lt14(xuu460, xuu480, fd) -> new_esEs8(new_compare(xuu460, xuu480, fd), LT) new_compare19(xuu460, xuu480, False, ga, gb) -> GT new_esEs23(xuu40000, xuu3000, app(app(app(ty_@3, cad), cae), caf)) -> new_esEs6(xuu40000, xuu3000, cad, cae, caf) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16([], [], baa) -> True new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Maybe, chg)) -> new_ltEs16(xuu4610, xuu4810, chg) new_primMulInt(Neg(xuu400010), Neg(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_esEs32(xuu34, xuu36, ty_Float) -> new_esEs15(xuu34, xuu36) new_esEs29(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_compare25(xuu460, xuu480, True, ff) -> EQ new_esEs9(xuu4610, xuu4810, app(app(ty_Either, cc), cd)) -> new_esEs5(xuu4610, xuu4810, cc, cd) new_ltEs5(xuu4611, xuu4811, ty_@0) -> new_ltEs8(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, app(ty_Ratio, bgd)) -> new_esEs13(xuu40001, xuu3001, bgd) new_compare([], :(xuu4800, xuu4801), fd) -> LT new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Int) -> new_esEs10(xuu4000, xuu300) new_lt21(xuu4611, xuu4811, app(app(app(ty_@3, cee), cef), ceg)) -> new_lt12(xuu4611, xuu4811, cee, cef, ceg) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_@2, bbh), bca), gd) -> new_ltEs4(xuu4610, xuu4810, bbh, bca) new_ltEs19(xuu461, xuu481, ty_@0) -> new_ltEs8(xuu461, xuu481) new_ltEs15(EQ, GT) -> True new_esEs22(xuu40002, xuu3002, app(app(ty_Either, bhh), caa)) -> new_esEs5(xuu40002, xuu3002, bhh, caa) new_esEs23(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt21(xuu4611, xuu4811, app(app(ty_Either, cec), ced)) -> new_lt11(xuu4611, xuu4811, cec, ced) new_esEs19(xuu460, xuu480, ty_Int) -> new_esEs10(xuu460, xuu480) new_esEs23(xuu40000, xuu3000, app(app(ty_@2, cab), cac)) -> new_esEs4(xuu40000, xuu3000, cab, cac) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs21(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, app(app(app(ty_@3, dh), ea), eb)) -> new_ltEs12(xuu4611, xuu4811, dh, ea, eb) new_primMulInt(Pos(xuu400010), Neg(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_primMulInt(Neg(xuu400010), Pos(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_esEs19(xuu460, xuu480, ty_Bool) -> new_esEs18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(app(ty_@3, bdg), bdh), bea)) -> new_ltEs12(xuu4610, xuu4810, bdg, bdh, bea) new_esEs19(xuu460, xuu480, app(app(ty_Either, ga), gb)) -> new_esEs5(xuu460, xuu480, ga, gb) new_esEs22(xuu40002, xuu3002, ty_Ordering) -> new_esEs8(xuu40002, xuu3002) new_lt21(xuu4611, xuu4811, ty_Double) -> new_lt10(xuu4611, xuu4811) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(app(app(ty_@3, dfb), dfc), dfd)) -> new_esEs6(xuu40000, xuu3000, dfb, dfc, dfd) new_ltEs20(xuu4612, xuu4812, ty_@0) -> new_ltEs8(xuu4612, xuu4812) new_compare16(xuu107, xuu108, xuu109, xuu110, False, xuu112, cgd, cge) -> new_compare111(xuu107, xuu108, xuu109, xuu110, xuu112, cgd, cge) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_Ratio, bdd)) -> new_ltEs9(xuu4610, xuu4810, bdd) new_primCmpInt(Pos(Succ(xuu4600)), Pos(xuu480)) -> new_primCmpNat0(xuu4600, xuu480) new_esEs22(xuu40002, xuu3002, app(app(ty_@2, bgh), bha)) -> new_esEs4(xuu40002, xuu3002, bgh, bha) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_@2, cgf), cgg)) -> new_ltEs4(xuu4610, xuu4810, cgf, cgg) new_lt8(xuu460, xuu480) -> new_esEs8(new_compare18(xuu460, xuu480), LT) new_lt21(xuu4611, xuu4811, ty_Float) -> new_lt13(xuu4611, xuu4811) new_lt21(xuu4611, xuu4811, ty_Ordering) -> new_lt15(xuu4611, xuu4811) new_primCmpNat1(Succ(xuu46000), Zero) -> GT new_esEs9(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt10(xuu460, xuu480) -> new_esEs8(new_compare13(xuu460, xuu480), LT) new_esEs25(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs18(False, True) -> True new_ltEs20(xuu4612, xuu4812, app(app(ty_Either, cfe), cff)) -> new_ltEs11(xuu4612, xuu4812, cfe, cff) new_compare29(xuu4600, xuu4800, ty_@0) -> new_compare6(xuu4600, xuu4800) new_esEs21(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_sr0(Integer(xuu46000), Integer(xuu48010)) -> Integer(new_primMulInt(xuu46000, xuu48010)) new_esEs24(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, ty_Double) -> new_ltEs10(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Integer) -> new_lt17(xuu460, xuu480) new_ltEs15(LT, GT) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Double, bac) -> new_esEs14(xuu40000, xuu3000) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Char, gd) -> new_ltEs7(xuu4610, xuu4810) new_primCmpNat0(xuu4600, Zero) -> GT new_ltEs5(xuu4611, xuu4811, ty_Ordering) -> new_ltEs15(xuu4611, xuu4811) new_esEs20(xuu40000, xuu3000, app(ty_Ratio, bfb)) -> new_esEs13(xuu40000, xuu3000, bfb) new_esEs23(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Bool) -> new_esEs18(xuu4000, xuu300) new_esEs26(xuu4611, xuu4811, ty_Char) -> new_esEs11(xuu4611, xuu4811) new_esEs25(xuu4610, xuu4810, app(ty_Ratio, cch)) -> new_esEs13(xuu4610, xuu4810, cch) new_compare111(xuu107, xuu108, xuu109, xuu110, True, cgd, cge) -> LT new_asAs(True, xuu63) -> xuu63 new_ltEs5(xuu4611, xuu4811, app(ty_Maybe, ed)) -> new_ltEs16(xuu4611, xuu4811, ed) new_compare12(xuu460, xuu480, True, eh, fa, fb) -> LT new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Ratio, cgh)) -> new_ltEs9(xuu4610, xuu4810, cgh) new_compare113(xuu460, xuu480, True) -> LT new_lt9(xuu460, xuu480, ee) -> new_esEs8(new_compare8(xuu460, xuu480, ee), LT) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, ty_Float) -> new_compare9(xuu4600, xuu4800) new_esEs19(xuu460, xuu480, app(ty_Ratio, ee)) -> new_esEs13(xuu460, xuu480, ee) new_esEs26(xuu4611, xuu4811, ty_Integer) -> new_esEs17(xuu4611, xuu4811) new_esEs9(xuu4610, xuu4810, app(ty_Maybe, db)) -> new_esEs7(xuu4610, xuu4810, db) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, ty_Char) -> new_lt8(xuu4611, xuu4811) new_esEs29(xuu40000, xuu3000, app(ty_[], dca)) -> new_esEs16(xuu40000, xuu3000, dca) new_esEs31(xuu4000, xuu300, app(ty_Ratio, hh)) -> new_esEs13(xuu4000, xuu300, hh) new_esEs18(False, False) -> True new_esEs20(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs32(xuu34, xuu36, ty_Char) -> new_esEs11(xuu34, xuu36) new_compare24(xuu460, xuu480, True, ga, gb) -> EQ new_esEs21(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(ty_Either, bde), bdf)) -> new_ltEs11(xuu4610, xuu4810, bde, bdf) new_esEs29(xuu40000, xuu3000, app(app(ty_Either, dcb), dcc)) -> new_esEs5(xuu40000, xuu3000, dcb, dcc) new_compare110(xuu460, xuu480, False) -> GT new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Ratio, bcb), gd) -> new_ltEs9(xuu4610, xuu4810, bcb) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_compare29(xuu4600, xuu4800, app(app(ty_Either, dcg), dch)) -> new_compare30(xuu4600, xuu4800, dcg, dch) new_primCompAux00(xuu138, EQ) -> xuu138 new_ltEs5(xuu4611, xuu4811, ty_Int) -> new_ltEs6(xuu4611, xuu4811) new_sr(xuu40001, xuu3000) -> new_primMulInt(xuu40001, xuu3000) new_lt19(xuu460, xuu480, ty_Ordering) -> new_lt15(xuu460, xuu480) new_esEs32(xuu34, xuu36, ty_Integer) -> new_esEs17(xuu34, xuu36) new_primMulNat0(Zero, Zero) -> Zero new_primCmpInt(Neg(Succ(xuu4600)), Neg(xuu480)) -> new_primCmpNat2(xuu480, xuu4600) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(app(ty_@3, chc), chd), che)) -> new_ltEs12(xuu4610, xuu4810, chc, chd, che) new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Maybe, bda), gd) -> new_ltEs16(xuu4610, xuu4810, bda) new_lt21(xuu4611, xuu4811, app(ty_Maybe, cfa)) -> new_lt16(xuu4611, xuu4811, cfa) new_esEs9(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, app(app(ty_@2, dc), dd)) -> new_ltEs4(xuu4611, xuu4811, dc, dd) new_lt19(xuu460, xuu480, ty_Char) -> new_lt8(xuu460, xuu480) new_esEs21(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_esEs23(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs24(xuu40001, xuu3001, app(ty_[], ccc)) -> new_esEs16(xuu40001, xuu3001, ccc) new_ltEs20(xuu4612, xuu4812, app(ty_[], cgb)) -> new_ltEs14(xuu4612, xuu4812, cgb) new_primCmpInt(Neg(Zero), Neg(Succ(xuu4800))) -> new_primCmpNat0(xuu4800, Zero) new_primCmpNat1(Zero, Zero) -> EQ new_ltEs19(xuu461, xuu481, ty_Bool) -> new_ltEs18(xuu461, xuu481) new_lt5(xuu4610, xuu4810, app(ty_[], da)) -> new_lt14(xuu4610, xuu4810, da) new_esEs31(xuu4000, xuu300, app(ty_Maybe, hg)) -> new_esEs7(xuu4000, xuu300, hg) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_Maybe, bec)) -> new_ltEs16(xuu4610, xuu4810, bec) new_esEs20(xuu40000, xuu3000, app(app(ty_Either, bfd), bfe)) -> new_esEs5(xuu40000, xuu3000, bfd, bfe) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_compare210(xuu460, xuu480, False, eh, fa, fb) -> new_compare12(xuu460, xuu480, new_ltEs12(xuu460, xuu480, eh, fa, fb), eh, fa, fb) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(app(ty_Either, dfh), dga)) -> new_esEs5(xuu40000, xuu3000, dfh, dga) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_lt19(xuu460, xuu480, app(app(ty_@2, ef), eg)) -> new_lt6(xuu460, xuu480, ef, eg) new_ltEs15(EQ, EQ) -> True new_esEs19(xuu460, xuu480, ty_Double) -> new_esEs14(xuu460, xuu480) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_@0, gd) -> new_ltEs8(xuu4610, xuu4810) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs24(xuu40001, xuu3001, app(ty_Ratio, ccb)) -> new_esEs13(xuu40001, xuu3001, ccb) new_compare29(xuu4600, xuu4800, ty_Ordering) -> new_compare10(xuu4600, xuu4800) new_esEs32(xuu34, xuu36, ty_Ordering) -> new_esEs8(xuu34, xuu36) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, ty_Integer) -> new_ltEs17(xuu4611, xuu4811) new_lt15(xuu460, xuu480) -> new_esEs8(new_compare10(xuu460, xuu480), LT) new_compare25(xuu460, xuu480, False, ff) -> new_compare112(xuu460, xuu480, new_ltEs16(xuu460, xuu480, ff), ff) new_esEs20(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt19(xuu460, xuu480, ty_Int) -> new_lt7(xuu460, xuu480) new_lt20(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs22(xuu40002, xuu3002, ty_Integer) -> new_esEs17(xuu40002, xuu3002) new_compare15(xuu460, xuu480, ff) -> new_compare25(xuu460, xuu480, new_esEs7(xuu460, xuu480, ff), ff) new_ltEs20(xuu4612, xuu4812, ty_Char) -> new_ltEs7(xuu4612, xuu4812) new_ltEs19(xuu461, xuu481, app(app(ty_Either, gc), gd)) -> new_ltEs11(xuu461, xuu481, gc, gd) new_esEs29(xuu40000, xuu3000, app(ty_Ratio, dbh)) -> new_esEs13(xuu40000, xuu3000, dbh) new_primEqInt(Neg(Succ(xuu400000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xuu30000))) -> False new_compare([], [], fd) -> EQ new_esEs30(xuu33, xuu34, xuu35, xuu36, False, bad, bae) -> new_esEs8(new_compare23(@2(xuu33, xuu34), @2(xuu35, xuu36), False, bad, bae), LT) new_ltEs15(LT, EQ) -> True new_esEs22(xuu40002, xuu3002, ty_Char) -> new_esEs11(xuu40002, xuu3002) new_primEqInt(Pos(Succ(xuu400000)), Pos(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_esEs21(xuu40001, xuu3001, app(ty_Maybe, bgc)) -> new_esEs7(xuu40001, xuu3001, bgc) new_esEs22(xuu40002, xuu3002, ty_Int) -> new_esEs10(xuu40002, xuu3002) new_esEs32(xuu34, xuu36, app(app(ty_@2, baf), bag)) -> new_esEs4(xuu34, xuu36, baf, bag) new_ltEs13(xuu461, xuu481) -> new_fsEs(new_compare9(xuu461, xuu481)) new_esEs20(xuu40000, xuu3000, app(ty_[], bfc)) -> new_esEs16(xuu40000, xuu3000, bfc) new_esEs26(xuu4611, xuu4811, app(app(ty_@2, cdh), cea)) -> new_esEs4(xuu4611, xuu4811, cdh, cea) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, ty_Float) -> new_ltEs13(xuu4611, xuu4811) new_compare29(xuu4600, xuu4800, ty_Double) -> new_compare13(xuu4600, xuu4800) new_esEs25(xuu4610, xuu4810, app(app(ty_Either, cda), cdb)) -> new_esEs5(xuu4610, xuu4810, cda, cdb) new_ltEs16(Nothing, Just(xuu4810), ha) -> True new_lt20(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_esEs13(:%(xuu40000, xuu40001), :%(xuu3000, xuu3001), hh) -> new_asAs(new_esEs27(xuu40000, xuu3000, hh), new_esEs28(xuu40001, xuu3001, hh)) new_esEs26(xuu4611, xuu4811, ty_Ordering) -> new_esEs8(xuu4611, xuu4811) new_primEqInt(Pos(Succ(xuu400000)), Neg(xuu3000)) -> False new_primEqInt(Neg(Succ(xuu400000)), Pos(xuu3000)) -> False new_lt20(xuu4610, xuu4810, app(app(ty_@2, ccf), ccg)) -> new_lt6(xuu4610, xuu4810, ccf, ccg) new_esEs31(xuu4000, xuu300, app(ty_[], baa)) -> new_esEs16(xuu4000, xuu300, baa) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs32(xuu34, xuu36, app(ty_Maybe, bbc)) -> new_esEs7(xuu34, xuu36, bbc) new_esEs31(xuu4000, xuu300, app(app(ty_Either, bab), bac)) -> new_esEs5(xuu4000, xuu300, bab, bac) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_esEs25(xuu4610, xuu4810, app(ty_[], cdf)) -> new_esEs16(xuu4610, xuu4810, cdf) new_lt4(xuu460, xuu480) -> new_esEs8(new_compare6(xuu460, xuu480), LT) new_esEs19(xuu460, xuu480, app(ty_[], fd)) -> new_esEs16(xuu460, xuu480, fd) new_esEs26(xuu4611, xuu4811, app(ty_Maybe, cfa)) -> new_esEs7(xuu4611, xuu4811, cfa) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_ltEs15(GT, GT) -> True new_lt20(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, app(app(ty_Either, cec), ced)) -> new_esEs5(xuu4611, xuu4811, cec, ced) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Float, bac) -> new_esEs15(xuu40000, xuu3000) new_esEs26(xuu4611, xuu4811, ty_Bool) -> new_esEs18(xuu4611, xuu4811) new_lt5(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs30(xuu33, xuu34, xuu35, xuu36, True, bad, bae) -> new_esEs8(new_compare23(@2(xuu33, xuu34), @2(xuu35, xuu36), new_esEs32(xuu34, xuu36, bae), bad, bae), LT) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(app(ty_@3, ddh), dea), deb), bac) -> new_esEs6(xuu40000, xuu3000, ddh, dea, deb) new_primCmpInt(Pos(Zero), Pos(Succ(xuu4800))) -> new_primCmpNat2(Zero, xuu4800) new_esEs31(xuu4000, xuu300, ty_Char) -> new_esEs11(xuu4000, xuu300) new_lt19(xuu460, xuu480, app(ty_Maybe, ff)) -> new_lt16(xuu460, xuu480, ff) new_esEs9(xuu4610, xuu4810, app(ty_[], da)) -> new_esEs16(xuu4610, xuu4810, da) new_esEs26(xuu4611, xuu4811, app(app(app(ty_@3, cee), cef), ceg)) -> new_esEs6(xuu4611, xuu4811, cee, cef, ceg) new_esEs23(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, app(ty_Ratio, cch)) -> new_lt9(xuu4610, xuu4810, cch) new_compare30(xuu460, xuu480, ga, gb) -> new_compare24(xuu460, xuu480, new_esEs5(xuu460, xuu480, ga, gb), ga, gb) new_esEs24(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Maybe, dec), bac) -> new_esEs7(xuu40000, xuu3000, dec) new_lt5(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_esEs31(xuu4000, xuu300, app(app(ty_@2, hb), hc)) -> new_esEs4(xuu4000, xuu300, hb, hc) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Ratio, daf)) -> new_esEs13(xuu40000, xuu3000, daf) new_not(False) -> True new_esEs21(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs6(xuu461, xuu481) -> new_fsEs(new_compare17(xuu461, xuu481)) new_compare28(xuu460, xuu480, eh, fa, fb) -> new_compare210(xuu460, xuu480, new_esEs6(xuu460, xuu480, eh, fa, fb), eh, fa, fb) new_esEs31(xuu4000, xuu300, ty_Ordering) -> new_esEs8(xuu4000, xuu300) new_lt20(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs20(xuu40000, xuu3000, app(ty_Maybe, bfa)) -> new_esEs7(xuu40000, xuu3000, bfa) new_lt20(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, app(ty_[], ddd)) -> new_compare(xuu4600, xuu4800, ddd) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_esEs18(False, True) -> False new_esEs18(True, False) -> False new_esEs5(Left(xuu40000), Right(xuu3000), bab, bac) -> False new_esEs5(Right(xuu40000), Left(xuu3000), bab, bac) -> False new_lt21(xuu4611, xuu4811, ty_Bool) -> new_lt18(xuu4611, xuu4811) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs32(xuu34, xuu36, ty_@0) -> new_esEs12(xuu34, xuu36) new_esEs25(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_[], dag)) -> new_esEs16(xuu40000, xuu3000, dag) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Float, gd) -> new_ltEs13(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, app(app(ty_@2, cdh), cea)) -> new_lt6(xuu4611, xuu4811, cdh, cea) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Int, bac) -> new_esEs10(xuu40000, xuu3000) new_primPlusNat0(Succ(xuu980), xuu300000) -> Succ(Succ(new_primPlusNat1(xuu980, xuu300000))) new_esEs4(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), hb, hc) -> new_asAs(new_esEs23(xuu40000, xuu3000, hb), new_esEs24(xuu40001, xuu3001, hc)) new_esEs19(xuu460, xuu480, app(ty_Maybe, ff)) -> new_esEs7(xuu460, xuu480, ff) new_primCmpNat1(Zero, Succ(xuu48000)) -> LT new_esEs24(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_esEs10(xuu4000, xuu300) -> new_primEqInt(xuu4000, xuu300) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt12(xuu460, xuu480, eh, fa, fb) -> new_esEs8(new_compare28(xuu460, xuu480, eh, fa, fb), LT) new_primPlusNat1(Zero, Zero) -> Zero new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, app(ty_[], bge)) -> new_esEs16(xuu40001, xuu3001, bge) new_compare6(@0, @0) -> EQ new_ltEs15(LT, LT) -> True new_esEs25(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_lt5(xuu4610, xuu4810, app(ty_Maybe, db)) -> new_lt16(xuu4610, xuu4810, db) new_lt19(xuu460, xuu480, ty_@0) -> new_lt4(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, ty_@0) -> new_esEs12(xuu40002, xuu3002) new_esEs25(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_primMulNat0(Succ(xuu4000100), Succ(xuu300000)) -> new_primPlusNat0(new_primMulNat0(xuu4000100, Succ(xuu300000)), xuu300000) new_esEs16(:(xuu40000, xuu40001), :(xuu3000, xuu3001), baa) -> new_asAs(new_esEs29(xuu40000, xuu3000, baa), new_esEs16(xuu40001, xuu3001, baa)) new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_esEs12(@0, @0) -> True new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_[], bch), gd) -> new_ltEs14(xuu4610, xuu4810, bch) new_esEs20(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_lt19(xuu460, xuu480, ty_Float) -> new_lt13(xuu460, xuu480) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Double) -> new_esEs14(xuu40000, xuu3000) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_ltEs19(xuu461, xuu481, app(ty_Ratio, fc)) -> new_ltEs9(xuu461, xuu481, fc) new_esEs24(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_esEs26(xuu4611, xuu4811, ty_Int) -> new_esEs10(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_lt20(xuu4610, xuu4810, app(ty_Maybe, cdg)) -> new_lt16(xuu4610, xuu4810, cdg) new_esEs29(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16(:(xuu40000, xuu40001), [], baa) -> False new_esEs16([], :(xuu3000, xuu3001), baa) -> False new_compare29(xuu4600, xuu4800, ty_Integer) -> new_compare7(xuu4600, xuu4800) new_esEs23(xuu40000, xuu3000, app(ty_[], cba)) -> new_esEs16(xuu40000, xuu3000, cba) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Integer, bac) -> new_esEs17(xuu40000, xuu3000) new_primCmpNat2(Succ(xuu4800), xuu4600) -> new_primCmpNat1(xuu4800, xuu4600) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt21(xuu4611, xuu4811, ty_Integer) -> new_lt17(xuu4611, xuu4811) new_esEs29(xuu40000, xuu3000, app(app(ty_@2, dbb), dbc)) -> new_esEs4(xuu40000, xuu3000, dbb, dbc) new_ltEs18(True, True) -> True new_esEs24(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_Char) -> new_esEs11(xuu460, xuu480) new_primEqNat0(Zero, Zero) -> True new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Int, gd) -> new_ltEs6(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt5(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, ty_Float) -> new_esEs15(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Bool) -> new_lt18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Bool, bac) -> new_esEs18(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, app(ty_Ratio, de)) -> new_ltEs9(xuu4611, xuu4811, de) new_lt20(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_esEs22(xuu40002, xuu3002, app(ty_[], bhg)) -> new_esEs16(xuu40002, xuu3002, bhg) new_asAs(False, xuu63) -> False new_esEs26(xuu4611, xuu4811, app(ty_Ratio, ceb)) -> new_esEs13(xuu4611, xuu4811, ceb) new_lt20(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_esEs29(xuu40000, xuu3000, app(ty_Maybe, dbg)) -> new_esEs7(xuu40000, xuu3000, dbg) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_compare18(Char(xuu4600), Char(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_compare29(xuu4600, xuu4800, ty_Char) -> new_compare18(xuu4600, xuu4800) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_compare112(xuu460, xuu480, False, ff) -> GT new_compare27(xuu460, xuu480, True) -> EQ new_ltEs12(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), ge, gf, gg) -> new_pePe(new_lt20(xuu4610, xuu4810, ge), new_asAs(new_esEs25(xuu4610, xuu4810, ge), new_pePe(new_lt21(xuu4611, xuu4811, gf), new_asAs(new_esEs26(xuu4611, xuu4811, gf), new_ltEs20(xuu4612, xuu4812, gg))))) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(app(ty_@3, bce), bcf), bcg), gd) -> new_ltEs12(xuu4610, xuu4810, bce, bcf, bcg) The set Q consists of the following terms: new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_esEs8(EQ, EQ) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs32(x0, x1, app(ty_[], x2)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_[], x3)) new_ltEs7(x0, x1) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare23(@2(x0, x1), @2(x2, x3), False, x4, x5) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_lt21(x0, x1, app(ty_Maybe, x2)) new_esEs20(x0, x1, ty_Double) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Ordering) new_esEs21(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Float) new_ltEs13(x0, x1) new_ltEs11(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_ltEs5(x0, x1, app(app(ty_@2, x2), x3)) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Just(x0), Just(x1), ty_@0) new_primPlusNat1(Zero, Zero) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_esEs32(x0, x1, app(app(ty_@2, x2), x3)) new_compare18(Char(x0), Char(x1)) new_esEs7(Just(x0), Just(x1), ty_Bool) new_primCmpNat1(Zero, Zero) new_esEs21(x0, x1, ty_Int) new_esEs9(x0, x1, app(ty_[], x2)) new_compare7(Integer(x0), Integer(x1)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs18(True, True) new_esEs7(Just(x0), Just(x1), ty_Integer) new_ltEs11(Left(x0), Right(x1), x2, x3) new_ltEs11(Right(x0), Left(x1), x2, x3) new_esEs15(Float(x0, x1), Float(x2, x3)) new_primEqInt(Pos(Zero), Pos(Zero)) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt19(x0, x1, ty_Double) new_esEs29(x0, x1, ty_Integer) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare210(x0, x1, True, x2, x3, x4) new_compare12(x0, x1, True, x2, x3, x4) new_ltEs11(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_esEs22(x0, x1, ty_Char) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs25(x0, x1, ty_Float) new_compare29(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Bool) new_compare25(x0, x1, False, x2) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_lt21(x0, x1, app(ty_[], x2)) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primEqInt(Neg(Zero), Neg(Zero)) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_compare29(x0, x1, ty_Char) new_compare6(@0, @0) new_ltEs11(Right(x0), Right(x1), x2, ty_Ordering) new_lt5(x0, x1, ty_Ordering) new_ltEs5(x0, x1, app(ty_[], x2)) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_ltEs5(x0, x1, ty_Float) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs22(x0, x1, ty_Ordering) new_ltEs16(Just(x0), Nothing, x1) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primCompAux00(x0, LT) new_esEs31(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Integer) new_esEs21(x0, x1, ty_@0) new_compare(:(x0, x1), :(x2, x3), x4) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_compare112(x0, x1, False, x2) new_esEs31(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_compare29(x0, x1, ty_@0) new_compare([], [], x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_compare27(x0, x1, False) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulNat0(Zero, Succ(x0)) new_compare110(x0, x1, True) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs6(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs30(x0, x1, x2, x3, True, x4, x5) new_esEs9(x0, x1, ty_Float) new_lt19(x0, x1, ty_Ordering) new_ltEs11(Left(x0), Left(x1), ty_Float, x2) new_ltEs11(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Just(x0), Just(x1), ty_Int) new_lt19(x0, x1, app(ty_[], x2)) new_ltEs16(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_compare10(x0, x1) new_esEs24(x0, x1, ty_Float) new_esEs16(:(x0, x1), [], x2) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_esEs28(x0, x1, ty_Integer) new_esEs9(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), ty_Char) new_primMulInt(Neg(x0), Neg(x1)) new_lt20(x0, x1, ty_Float) new_pePe(True, x0) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_lt16(x0, x1, x2) new_compare19(x0, x1, True, x2, x3) new_esEs22(x0, x1, ty_Integer) new_ltEs15(EQ, EQ) new_ltEs16(Nothing, Just(x0), x1) new_fsEs(x0) new_esEs21(x0, x1, ty_Integer) new_compare29(x0, x1, app(ty_Maybe, x2)) new_compare29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs31(x0, x1, app(app(ty_@2, x2), x3)) new_compare28(x0, x1, x2, x3, x4) new_ltEs16(Just(x0), Just(x1), ty_Float) new_esEs7(Just(x0), Just(x1), ty_Ordering) new_lt13(x0, x1) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, ty_Integer) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs16(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs32(x0, x1, ty_Ordering) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_ltEs5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, ty_Char) new_lt8(x0, x1) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_asAs(False, x0) new_esEs32(x0, x1, ty_Double) new_ltEs5(x0, x1, app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_primCompAux00(x0, EQ) new_ltEs12(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_lt15(x0, x1) new_ltEs20(x0, x1, ty_Int) new_ltEs20(x0, x1, app(ty_[], x2)) new_primPlusNat1(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs9(x0, x1, ty_Bool) new_esEs18(False, True) new_esEs18(True, False) new_ltEs16(Just(x0), Just(x1), ty_Int) new_lt19(x0, x1, ty_Bool) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs15(GT, LT) new_ltEs15(LT, GT) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_primCmpNat1(Succ(x0), Zero) new_lt12(x0, x1, x2, x3, x4) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_lt19(x0, x1, ty_Char) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Bool) new_esEs31(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Integer) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, ty_Bool) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, app(ty_[], x2)) new_esEs9(x0, x1, ty_Char) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_ltEs16(Just(x0), Just(x1), ty_Char) new_lt19(x0, x1, app(ty_Maybe, x2)) new_compare24(x0, x1, False, x2, x3) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Bool) new_primEqNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_esEs8(GT, GT) new_lt7(x0, x1) new_esEs25(x0, x1, ty_@0) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt19(x0, x1, ty_Int) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs9(x0, x1, ty_Integer) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_ltEs19(x0, x1, app(ty_[], x2)) new_compare29(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt5(x0, x1, app(ty_Ratio, x2)) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_ltEs16(Nothing, Nothing, x0) new_esEs8(LT, LT) new_compare23(x0, x1, True, x2, x3) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs31(x0, x1, ty_Ordering) new_esEs24(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_esEs29(x0, x1, ty_Float) new_esEs22(x0, x1, ty_Int) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_esEs25(x0, x1, ty_Double) new_esEs7(Nothing, Nothing, x0) new_compare29(x0, x1, ty_Ordering) new_ltEs11(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(x0, x1, x2) new_lt5(x0, x1, app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs5(x0, x1, app(ty_Ratio, x2)) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_compare112(x0, x1, True, x2) new_ltEs19(x0, x1, ty_Float) new_lt21(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Bool) new_esEs9(x0, x1, app(app(ty_Either, x2), x3)) new_compare15(x0, x1, x2) new_compare113(x0, x1, False) new_ltEs20(x0, x1, ty_Ordering) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primEqNat0(Succ(x0), Zero) new_esEs9(x0, x1, ty_Ordering) new_compare111(x0, x1, x2, x3, True, x4, x5) new_lt19(x0, x1, ty_Float) new_esEs19(x0, x1, ty_Float) new_esEs32(x0, x1, ty_@0) new_lt19(x0, x1, app(ty_Ratio, x2)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs19(x0, x1, ty_Char) new_compare210(x0, x1, False, x2, x3, x4) new_lt5(x0, x1, ty_@0) new_compare29(x0, x1, ty_Integer) new_esEs21(x0, x1, ty_Ordering) new_esEs20(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Int) new_esEs22(x0, x1, ty_Float) new_lt5(x0, x1, ty_Double) new_esEs29(x0, x1, ty_Int) new_ltEs11(Right(x0), Right(x1), x2, ty_Double) new_esEs29(x0, x1, ty_Char) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_ltEs6(x0, x1) new_ltEs20(x0, x1, ty_Integer) new_compare12(x0, x1, False, x2, x3, x4) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_ltEs8(x0, x1) new_lt5(x0, x1, app(ty_[], x2)) new_ltEs16(Just(x0), Just(x1), ty_Bool) new_esEs19(x0, x1, ty_Int) new_ltEs11(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(x0, x1, app(ty_Maybe, x2)) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_ltEs5(x0, x1, ty_Char) new_esEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Int) new_primPlusNat0(Zero, x0) new_compare16(x0, x1, x2, x3, True, x4, x5, x6) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs16([], [], x0) new_primPlusNat0(Succ(x0), x1) new_primPlusNat1(Succ(x0), Zero) new_esEs13(:%(x0, x1), :%(x2, x3), x4) new_primMulNat0(Zero, Zero) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_ltEs16(Just(x0), Just(x1), ty_@0) new_esEs25(x0, x1, ty_Char) new_esEs7(Just(x0), Nothing, x1) new_ltEs11(Left(x0), Left(x1), ty_Char, x2) new_lt21(x0, x1, ty_Int) new_lt5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Int) new_esEs26(x0, x1, ty_Char) new_ltEs5(x0, x1, ty_Int) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_sr(x0, x1) new_esEs23(x0, x1, ty_Double) new_ltEs11(Right(x0), Right(x1), x2, ty_Integer) new_esEs28(x0, x1, ty_Int) new_lt5(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Char) new_esEs25(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Char) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Double) new_ltEs19(x0, x1, ty_@0) new_esEs32(x0, x1, app(app(ty_Either, x2), x3)) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_esEs22(x0, x1, app(ty_[], x2)) new_primCmpNat2(Zero, x0) new_esEs26(x0, x1, ty_Int) new_esEs7(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_lt20(x0, x1, ty_Char) new_primCmpNat1(Zero, Succ(x0)) new_lt21(x0, x1, ty_Double) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Just(x0), Just(x1), app(ty_Ratio, x2)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_lt20(x0, x1, ty_Double) new_ltEs11(Right(x0), Right(x1), x2, ty_Float) new_esEs9(x0, x1, ty_Double) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, ty_Bool) new_esEs25(x0, x1, ty_Int) new_esEs31(x0, x1, app(app(ty_Either, x2), x3)) new_lt21(x0, x1, ty_Char) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_compare30(x0, x1, x2, x3) new_esEs31(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_@0) new_esEs32(x0, x1, ty_Bool) new_ltEs19(x0, x1, ty_Int) new_ltEs18(True, True) new_ltEs16(Just(x0), Just(x1), app(ty_Ratio, x2)) new_lt5(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_compare29(x0, x1, ty_Float) new_compare29(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_not(True) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primMulNat0(Succ(x0), Zero) new_ltEs5(x0, x1, ty_@0) new_compare8(:%(x0, x1), :%(x2, x3), ty_Integer) new_lt6(x0, x1, x2, x3) new_esEs31(x0, x1, ty_Bool) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(x0, x1, ty_Double) new_esEs27(x0, x1, ty_Int) new_ltEs14(x0, x1, x2) new_esEs7(Just(x0), Just(x1), app(ty_[], x2)) new_esEs31(x0, x1, ty_@0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_ltEs5(x0, x1, ty_Bool) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs16(Just(x0), Just(x1), app(ty_[], x2)) new_lt14(x0, x1, x2) new_primCmpNat2(Succ(x0), x1) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_@0) new_esEs29(x0, x1, ty_Ordering) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_compare26(x0, x1, True) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_primCmpNat0(x0, Succ(x1)) new_compare8(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_compare113(x0, x1, True) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_ltEs19(x0, x1, ty_Bool) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_compare9(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare9(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs15(GT, EQ) new_ltEs15(EQ, GT) new_esEs10(x0, x1) new_compare29(x0, x1, app(ty_Ratio, x2)) new_lt21(x0, x1, ty_Ordering) new_esEs9(x0, x1, ty_Int) new_esEs26(x0, x1, ty_Double) new_compare29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs16([], :(x0, x1), x2) new_esEs18(False, False) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_esEs9(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs24(x0, x1, ty_@0) new_primCompAux0(x0, x1, x2, x3) new_primCmpNat1(Succ(x0), Succ(x1)) new_primEqNat0(Succ(x0), Succ(x1)) new_ltEs11(Left(x0), Left(x1), ty_Double, x2) new_ltEs16(Just(x0), Just(x1), ty_Integer) new_ltEs18(True, False) new_ltEs18(False, True) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs16(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs19(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs10(x0, x1) new_compare(:(x0, x1), [], x2) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_compare24(x0, x1, True, x2, x3) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs26(x0, x1, ty_Bool) new_ltEs11(Left(x0), Left(x1), ty_@0, x2) new_esEs7(Just(x0), Just(x1), ty_Double) new_compare9(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_lt19(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Ordering) new_esEs11(Char(x0), Char(x1)) new_lt21(x0, x1, app(ty_Ratio, x2)) new_esEs32(x0, x1, ty_Integer) new_ltEs20(x0, x1, ty_Float) new_esEs21(x0, x1, ty_Float) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, ty_Ordering) new_esEs9(x0, x1, app(ty_Maybe, x2)) new_esEs25(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_ltEs11(Left(x0), Left(x1), ty_Integer, x2) new_primMulInt(Pos(x0), Pos(x1)) new_ltEs16(Just(x0), Just(x1), ty_Double) new_primPlusNat1(Zero, Succ(x0)) new_esEs7(Just(x0), Just(x1), ty_Float) new_lt20(x0, x1, ty_Bool) new_esEs7(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs31(x0, x1, ty_Char) new_lt17(x0, x1) new_esEs9(x0, x1, ty_@0) new_compare([], :(x0, x1), x2) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_compare17(x0, x1) new_esEs12(@0, @0) new_lt18(x0, x1) new_esEs32(x0, x1, ty_Int) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_lt19(x0, x1, ty_@0) new_lt11(x0, x1, x2, x3) new_ltEs16(Just(x0), Just(x1), ty_Ordering) new_ltEs11(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs31(x0, x1, ty_Int) new_lt10(x0, x1) new_compare16(x0, x1, x2, x3, False, x4, x5, x6) new_ltEs11(Left(x0), Left(x1), ty_Bool, x2) new_primCompAux00(x0, GT) new_ltEs19(x0, x1, ty_Double) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_ltEs15(EQ, LT) new_ltEs15(LT, EQ) new_compare111(x0, x1, x2, x3, False, x4, x5) new_esEs32(x0, x1, ty_Char) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs22(x0, x1, ty_Double) new_pePe(False, x0) new_lt21(x0, x1, ty_Bool) new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs26(x0, x1, ty_Float) new_ltEs20(x0, x1, ty_Double) new_esEs9(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Ordering) new_ltEs15(GT, GT) new_compare26(x0, x1, False) new_ltEs11(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_ltEs11(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs14(Double(x0, x1), Double(x2, x3)) new_lt4(x0, x1) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs24(x0, x1, ty_Bool) new_esEs16(:(x0, x1), :(x2, x3), x4) new_esEs30(x0, x1, x2, x3, False, x4, x5) new_esEs31(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Bool) new_primEqNat0(Zero, Zero) new_lt9(x0, x1, x2) new_compare29(x0, x1, ty_Double) new_esEs32(x0, x1, app(ty_Maybe, x2)) new_compare14(x0, x1) new_not(False) new_ltEs11(Right(x0), Right(x1), x2, ty_Bool) new_lt5(x0, x1, app(ty_Maybe, x2)) new_compare19(x0, x1, False, x2, x3) new_ltEs16(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs7(Nothing, Just(x0), x1) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_ltEs5(x0, x1, ty_Ordering) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_ltEs18(False, False) new_esEs20(x0, x1, ty_Char) new_compare9(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_ltEs11(Right(x0), Right(x1), x2, ty_Int) new_lt5(x0, x1, ty_Bool) new_lt5(x0, x1, ty_Float) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs15(LT, LT) new_lt20(x0, x1, ty_Integer) new_esEs17(Integer(x0), Integer(x1)) new_lt20(x0, x1, app(ty_[], x2)) new_sr0(Integer(x0), Integer(x1)) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Int) new_compare110(x0, x1, False) new_esEs22(x0, x1, ty_@0) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_esEs25(x0, x1, ty_Bool) new_esEs29(x0, x1, ty_@0) new_ltEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(x0, x1) new_compare27(x0, x1, True) new_esEs32(x0, x1, app(ty_Ratio, x2)) new_esEs21(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Ordering) new_lt21(x0, x1, ty_Float) new_esEs27(x0, x1, ty_Integer) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs32(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Integer) new_ltEs11(Left(x0), Left(x1), app(ty_[], x2), x3) new_lt5(x0, x1, ty_Char) new_esEs19(x0, x1, ty_@0) new_ltEs11(Right(x0), Right(x1), x2, ty_Char) new_esEs29(x0, x1, ty_Double) new_asAs(True, x0) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_compare25(x0, x1, True, x2) new_lt5(x0, x1, ty_Int) new_esEs32(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs11(Left(x0), Left(x1), ty_Ordering, x2) new_compare11(x0, x1, x2, x3) new_primCmpNat0(x0, Zero) new_esEs23(x0, x1, ty_@0) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, h, ba, bb) -> new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, new_esEs8(new_compare23(@2(xuu22, xuu23), @2(xuu16, xuu17), new_esEs4(@2(xuu22, xuu23), @2(xuu16, xuu17), h, ba), h, ba), GT), h, ba, bb) at position [9,0,2] we obtained the following new rules [LPAR04]: (new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, h, ba, bb) -> new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, new_esEs8(new_compare23(@2(xuu22, xuu23), @2(xuu16, xuu17), new_asAs(new_esEs23(xuu22, xuu16, h), new_esEs24(xuu23, xuu17, ba)), h, ba), GT), h, ba, bb),new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, h, ba, bb) -> new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, new_esEs8(new_compare23(@2(xuu22, xuu23), @2(xuu16, xuu17), new_asAs(new_esEs23(xuu22, xuu16, h), new_esEs24(xuu23, xuu17, ba)), h, ba), GT), h, ba, bb)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, h, ba, bb) -> new_addToFM_C(xuu20, @2(xuu22, xuu23), xuu24, h, ba, bb) new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, h, ba, bb) -> new_addToFM_C(xuu21, @2(xuu22, xuu23), xuu24, h, ba, bb) new_addToFM_C(Branch(@2(xuu300, xuu301), xuu31, xuu32, xuu33, xuu34), @2(xuu4000, xuu4001), xuu401, bc, bd, be) -> new_addToFM_C2(xuu300, xuu301, xuu31, xuu32, xuu33, xuu34, xuu4000, xuu4001, xuu401, new_esEs30(xuu4000, xuu4001, xuu300, xuu301, new_esEs31(xuu4000, xuu300, bc), bc, bd), bc, bd, be) new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, h, ba, bb) -> new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, new_esEs8(new_compare23(@2(xuu22, xuu23), @2(xuu16, xuu17), new_asAs(new_esEs23(xuu22, xuu16, h), new_esEs24(xuu23, xuu17, ba)), h, ba), GT), h, ba, bb) The TRS R consists of the following rules: new_ltEs7(xuu461, xuu481) -> new_fsEs(new_compare18(xuu461, xuu481)) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xuu4600)), Pos(xuu480)) -> LT new_esEs24(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(ty_Ratio, dff)) -> new_esEs13(xuu40000, xuu3000, dff) new_esEs25(xuu4610, xuu4810, app(app(app(ty_@3, cdc), cdd), cde)) -> new_esEs6(xuu4610, xuu4810, cdc, cdd, cde) new_pePe(True, xuu132) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Ordering, bac) -> new_esEs8(xuu40000, xuu3000) new_primCmpNat0(xuu4600, Succ(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_esEs22(xuu40002, xuu3002, ty_Double) -> new_esEs14(xuu40002, xuu3002) new_ltEs20(xuu4612, xuu4812, ty_Ordering) -> new_ltEs15(xuu4612, xuu4812) new_lt21(xuu4611, xuu4811, ty_@0) -> new_lt4(xuu4611, xuu4811) new_esEs17(Integer(xuu40000), Integer(xuu3000)) -> new_primEqInt(xuu40000, xuu3000) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(ty_[], dfg)) -> new_esEs16(xuu40000, xuu3000, dfg) new_ltEs5(xuu4611, xuu4811, app(app(ty_Either, df), dg)) -> new_ltEs11(xuu4611, xuu4811, df, dg) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(ty_@2, bdb), bdc)) -> new_ltEs4(xuu4610, xuu4810, bdb, bdc) new_esEs18(True, True) -> True new_compare112(xuu460, xuu480, True, ff) -> LT new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Ratio, ded), bac) -> new_esEs13(xuu40000, xuu3000, ded) new_lt19(xuu460, xuu480, app(ty_[], fd)) -> new_lt14(xuu460, xuu480, fd) new_compare(:(xuu4600, xuu4601), [], fd) -> GT new_compare14(xuu460, xuu480) -> new_compare26(xuu460, xuu480, new_esEs18(xuu460, xuu480)) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_ltEs16(Nothing, Nothing, ha) -> True new_primCmpInt(Pos(Zero), Neg(Succ(xuu4800))) -> GT new_compare(:(xuu4600, xuu4601), :(xuu4800, xuu4801), fd) -> new_primCompAux0(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, fd), fd) new_compare23(@2(xuu460, xuu461), @2(xuu480, xuu481), False, fg, fh) -> new_compare16(xuu460, xuu461, xuu480, xuu481, new_lt19(xuu460, xuu480, fg), new_asAs(new_esEs19(xuu460, xuu480, fg), new_ltEs19(xuu461, xuu481, fh)), fg, fh) new_ltEs20(xuu4612, xuu4812, ty_Float) -> new_ltEs13(xuu4612, xuu4812) new_esEs24(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_@0) -> new_esEs12(xuu460, xuu480) new_ltEs18(True, False) -> False new_ltEs16(Just(xuu4610), Nothing, ha) -> False new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Maybe, dae)) -> new_esEs7(xuu40000, xuu3000, dae) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Char, bac) -> new_esEs11(xuu40000, xuu3000) new_compare29(xuu4600, xuu4800, app(app(ty_@2, dcd), dce)) -> new_compare11(xuu4600, xuu4800, dcd, dce) new_compare210(xuu460, xuu480, True, eh, fa, fb) -> EQ new_esEs29(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs28(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_ltEs8(xuu461, xuu481) -> new_fsEs(new_compare6(xuu461, xuu481)) new_compare111(xuu107, xuu108, xuu109, xuu110, False, cgd, cge) -> GT new_lt21(xuu4611, xuu4811, app(ty_Ratio, ceb)) -> new_lt9(xuu4611, xuu4811, ceb) new_ltEs19(xuu461, xuu481, app(ty_Maybe, ha)) -> new_ltEs16(xuu461, xuu481, ha) new_compare27(xuu460, xuu480, False) -> new_compare110(xuu460, xuu480, new_ltEs15(xuu460, xuu480)) new_compare113(xuu460, xuu480, False) -> GT new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_ltEs15(EQ, LT) -> False new_esEs20(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_primCmpNat1(Succ(xuu46000), Succ(xuu48000)) -> new_primCmpNat1(xuu46000, xuu48000) new_esEs25(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs23(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs23(xuu40000, xuu3000, app(app(ty_Either, cbb), cbc)) -> new_esEs5(xuu40000, xuu3000, cbb, cbc) new_ltEs19(xuu461, xuu481, ty_Ordering) -> new_ltEs15(xuu461, xuu481) new_compare26(xuu460, xuu480, True) -> EQ new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(xuu400000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xuu30000))) -> False new_ltEs15(GT, LT) -> False new_fsEs(xuu119) -> new_not(new_esEs8(xuu119, GT)) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, app(app(app(ty_@3, dbd), dbe), dbf)) -> new_esEs6(xuu40000, xuu3000, dbd, dbe, dbf) new_esEs24(xuu40001, xuu3001, app(app(ty_@2, cbd), cbe)) -> new_esEs4(xuu40001, xuu3001, cbd, cbe) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_esEs8(EQ, EQ) -> True new_esEs23(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_Either, cha), chb)) -> new_ltEs11(xuu4610, xuu4810, cha, chb) new_compare19(xuu460, xuu480, True, ga, gb) -> LT new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Integer, gd) -> new_ltEs17(xuu4610, xuu4810) new_primEqNat0(Succ(xuu400000), Succ(xuu30000)) -> new_primEqNat0(xuu400000, xuu30000) new_esEs19(xuu460, xuu480, ty_Float) -> new_esEs15(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, app(ty_Ratio, bhf)) -> new_esEs13(xuu40002, xuu3002, bhf) new_ltEs20(xuu4612, xuu4812, app(ty_Ratio, cfd)) -> new_ltEs9(xuu4612, xuu4812, cfd) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(app(ty_@2, deh), dfa)) -> new_esEs4(xuu40000, xuu3000, deh, dfa) new_esEs31(xuu4000, xuu300, ty_Float) -> new_esEs15(xuu4000, xuu300) new_esEs25(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Int) -> new_esEs10(xuu40000, xuu3000) new_not(True) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_[], dee), bac) -> new_esEs16(xuu40000, xuu3000, dee) new_primCompAux00(xuu138, LT) -> LT new_esEs21(xuu40001, xuu3001, app(app(app(ty_@3, bfh), bga), bgb)) -> new_esEs6(xuu40001, xuu3001, bfh, bga, bgb) new_ltEs9(xuu461, xuu481, fc) -> new_fsEs(new_compare8(xuu461, xuu481, fc)) new_esEs6(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), hd, he, hf) -> new_asAs(new_esEs20(xuu40000, xuu3000, hd), new_asAs(new_esEs21(xuu40001, xuu3001, he), new_esEs22(xuu40002, xuu3002, hf))) new_ltEs20(xuu4612, xuu4812, ty_Integer) -> new_ltEs17(xuu4612, xuu4812) new_esEs22(xuu40002, xuu3002, ty_Bool) -> new_esEs18(xuu40002, xuu3002) new_esEs5(Left(xuu40000), Left(xuu3000), ty_@0, bac) -> new_esEs12(xuu40000, xuu3000) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Bool, gd) -> new_ltEs18(xuu4610, xuu4810) new_esEs23(xuu40000, xuu3000, app(ty_Ratio, cah)) -> new_esEs13(xuu40000, xuu3000, cah) new_esEs20(xuu40000, xuu3000, app(app(app(ty_@3, bef), beg), beh)) -> new_esEs6(xuu40000, xuu3000, bef, beg, beh) new_esEs19(xuu460, xuu480, ty_Ordering) -> new_esEs8(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(app(app(ty_@3, dda), ddb), ddc)) -> new_compare28(xuu4600, xuu4800, dda, ddb, ddc) new_esEs19(xuu460, xuu480, app(app(ty_@2, ef), eg)) -> new_esEs4(xuu460, xuu480, ef, eg) new_lt13(xuu460, xuu480) -> new_esEs8(new_compare9(xuu460, xuu480), LT) new_primEqNat0(Succ(xuu400000), Zero) -> False new_primEqNat0(Zero, Succ(xuu30000)) -> False new_esEs31(xuu4000, xuu300, ty_@0) -> new_esEs12(xuu4000, xuu300) new_esEs32(xuu34, xuu36, app(ty_[], bbe)) -> new_esEs16(xuu34, xuu36, bbe) new_ltEs20(xuu4612, xuu4812, ty_Int) -> new_ltEs6(xuu4612, xuu4812) new_ltEs19(xuu461, xuu481, ty_Int) -> new_ltEs6(xuu461, xuu481) new_esEs27(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_ltEs15(GT, EQ) -> False new_ltEs5(xuu4611, xuu4811, ty_Bool) -> new_ltEs18(xuu4611, xuu4811) new_lt20(xuu4610, xuu4810, app(ty_[], cdf)) -> new_lt14(xuu4610, xuu4810, cdf) new_primCompAux00(xuu138, GT) -> GT new_lt19(xuu460, xuu480, app(ty_Ratio, ee)) -> new_lt9(xuu460, xuu480, ee) new_compare110(xuu460, xuu480, True) -> LT new_ltEs19(xuu461, xuu481, ty_Float) -> new_ltEs13(xuu461, xuu481) new_esEs32(xuu34, xuu36, ty_Double) -> new_esEs14(xuu34, xuu36) new_primCmpNat2(Zero, xuu4600) -> LT new_esEs23(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs27(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs20(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_ltEs20(xuu4612, xuu4812, app(app(ty_@2, cfb), cfc)) -> new_ltEs4(xuu4612, xuu4812, cfb, cfc) new_esEs28(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_primCmpInt(Pos(Succ(xuu4600)), Neg(xuu480)) -> GT new_ltEs11(Left(xuu4610), Right(xuu4810), gc, gd) -> True new_esEs20(xuu40000, xuu3000, app(app(ty_@2, bed), bee)) -> new_esEs4(xuu40000, xuu3000, bed, bee) new_compare24(xuu460, xuu480, False, ga, gb) -> new_compare19(xuu460, xuu480, new_ltEs11(xuu460, xuu480, ga, gb), ga, gb) new_ltEs20(xuu4612, xuu4812, app(app(app(ty_@3, cfg), cfh), cga)) -> new_ltEs12(xuu4612, xuu4812, cfg, cfh, cga) new_ltEs20(xuu4612, xuu4812, ty_Double) -> new_ltEs10(xuu4612, xuu4812) new_compare29(xuu4600, xuu4800, app(ty_Maybe, dde)) -> new_compare15(xuu4600, xuu4800, dde) new_esEs26(xuu4611, xuu4811, ty_Double) -> new_esEs14(xuu4611, xuu4811) new_esEs7(Just(xuu40000), Just(xuu3000), ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs29(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_primPlusNat1(Succ(xuu38200), Succ(xuu9400)) -> Succ(Succ(new_primPlusNat1(xuu38200, xuu9400))) new_lt5(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_esEs31(xuu4000, xuu300, app(app(app(ty_@3, hd), he), hf)) -> new_esEs6(xuu4000, xuu300, hd, he, hf) new_lt5(xuu4610, xuu4810, app(app(ty_@2, bh), ca)) -> new_lt6(xuu4610, xuu4810, bh, ca) new_esEs24(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_lt6(xuu460, xuu480, ef, eg) -> new_esEs8(new_compare11(xuu460, xuu480, ef, eg), LT) new_esEs19(xuu460, xuu480, app(app(app(ty_@3, eh), fa), fb)) -> new_esEs6(xuu460, xuu480, eh, fa, fb) new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_[], chf)) -> new_ltEs14(xuu4610, xuu4810, chf) new_lt5(xuu4610, xuu4810, app(ty_Ratio, cb)) -> new_lt9(xuu4610, xuu4810, cb) new_ltEs19(xuu461, xuu481, app(app(app(ty_@3, ge), gf), gg)) -> new_ltEs12(xuu461, xuu481, ge, gf, gg) new_ltEs19(xuu461, xuu481, ty_Double) -> new_ltEs10(xuu461, xuu481) new_ltEs10(xuu461, xuu481) -> new_fsEs(new_compare13(xuu461, xuu481)) new_ltEs19(xuu461, xuu481, app(app(ty_@2, bf), bg)) -> new_ltEs4(xuu461, xuu481, bf, bg) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(ty_Maybe, dfe)) -> new_esEs7(xuu40000, xuu3000, dfe) new_compare11(xuu460, xuu480, ef, eg) -> new_compare23(xuu460, xuu480, new_esEs4(xuu460, xuu480, ef, eg), ef, eg) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_lt20(xuu4610, xuu4810, app(app(ty_Either, cda), cdb)) -> new_lt11(xuu4610, xuu4810, cda, cdb) new_ltEs19(xuu461, xuu481, ty_Char) -> new_ltEs7(xuu461, xuu481) new_lt20(xuu4610, xuu4810, app(app(app(ty_@3, cdc), cdd), cde)) -> new_lt12(xuu4610, xuu4810, cdc, cdd, cde) new_pePe(False, xuu132) -> xuu132 new_esEs7(Nothing, Just(xuu3000), hg) -> False new_esEs7(Just(xuu40000), Nothing, hg) -> False new_esEs20(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt17(xuu460, xuu480) -> new_esEs8(new_compare7(xuu460, xuu480), LT) new_esEs29(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt11(xuu460, xuu480, ga, gb) -> new_esEs8(new_compare30(xuu460, xuu480, ga, gb), LT) new_esEs20(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_Either, dah), dba)) -> new_esEs5(xuu40000, xuu3000, dah, dba) new_esEs22(xuu40002, xuu3002, ty_Float) -> new_esEs15(xuu40002, xuu3002) new_esEs26(xuu4611, xuu4811, ty_@0) -> new_esEs12(xuu4611, xuu4811) new_ltEs18(False, False) -> True new_esEs32(xuu34, xuu36, ty_Bool) -> new_esEs18(xuu34, xuu36) new_esEs25(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs19(xuu461, xuu481, ty_Integer) -> new_ltEs17(xuu461, xuu481) new_lt5(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_compare17(xuu89, xuu88) -> new_primCmpInt(xuu89, xuu88) new_esEs11(Char(xuu40000), Char(xuu3000)) -> new_primEqNat0(xuu40000, xuu3000) new_compare7(Integer(xuu4600), Integer(xuu4800)) -> new_primCmpInt(xuu4600, xuu4800) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_ltEs14(xuu461, xuu481, gh) -> new_fsEs(new_compare(xuu461, xuu481, gh)) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_compare23(xuu46, xuu48, True, fg, fh) -> EQ new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_@2, ddf), ddg), bac) -> new_esEs4(xuu40000, xuu3000, ddf, ddg) new_esEs21(xuu40001, xuu3001, app(app(ty_@2, bff), bfg)) -> new_esEs4(xuu40001, xuu3001, bff, bfg) new_esEs32(xuu34, xuu36, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs6(xuu34, xuu36, bah, bba, bbb) new_primEqInt(Pos(Zero), Neg(Succ(xuu30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xuu30000))) -> False new_esEs7(Nothing, Nothing, hg) -> True new_compare16(xuu107, xuu108, xuu109, xuu110, True, xuu112, cgd, cge) -> new_compare111(xuu107, xuu108, xuu109, xuu110, True, cgd, cge) new_esEs21(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_lt18(xuu460, xuu480) -> new_esEs8(new_compare14(xuu460, xuu480), LT) new_lt5(xuu4610, xuu4810, app(app(ty_Either, cc), cd)) -> new_lt11(xuu4610, xuu4810, cc, cd) new_esEs25(xuu4610, xuu4810, app(app(ty_@2, ccf), ccg)) -> new_esEs4(xuu4610, xuu4810, ccf, ccg) new_ltEs5(xuu4611, xuu4811, ty_Char) -> new_ltEs7(xuu4611, xuu4811) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Double, gd) -> new_ltEs10(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, ty_Int) -> new_lt7(xuu4611, xuu4811) new_lt7(xuu460, xuu480) -> new_esEs8(new_compare17(xuu460, xuu480), LT) new_esEs26(xuu4611, xuu4811, app(ty_[], ceh)) -> new_esEs16(xuu4611, xuu4811, ceh) new_lt16(xuu460, xuu480, ff) -> new_esEs8(new_compare15(xuu460, xuu480, ff), LT) new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_esEs24(xuu40001, xuu3001, app(app(ty_Either, ccd), cce)) -> new_esEs5(xuu40001, xuu3001, ccd, cce) new_esEs25(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_primEqInt(Neg(Succ(xuu400000)), Neg(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_ltEs19(xuu461, xuu481, app(ty_[], gh)) -> new_ltEs14(xuu461, xuu481, gh) new_primCmpInt(Neg(Zero), Pos(Succ(xuu4800))) -> LT new_lt19(xuu460, xuu480, app(app(app(ty_@3, eh), fa), fb)) -> new_lt12(xuu460, xuu480, eh, fa, fb) new_primMulInt(Pos(xuu400010), Pos(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_lt5(xuu4610, xuu4810, app(app(app(ty_@3, ce), cf), cg)) -> new_lt12(xuu4610, xuu4810, ce, cf, cg) new_esEs25(xuu4610, xuu4810, app(ty_Maybe, cdg)) -> new_esEs7(xuu4610, xuu4810, cdg) new_esEs31(xuu4000, xuu300, ty_Double) -> new_esEs14(xuu4000, xuu300) new_esEs20(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(app(ty_@2, bh), ca)) -> new_esEs4(xuu4610, xuu4810, bh, ca) new_lt19(xuu460, xuu480, app(app(ty_Either, ga), gb)) -> new_lt11(xuu460, xuu480, ga, gb) new_ltEs4(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), bf, bg) -> new_pePe(new_lt5(xuu4610, xuu4810, bf), new_asAs(new_esEs9(xuu4610, xuu4810, bf), new_ltEs5(xuu4611, xuu4811, bg))) new_compare10(xuu460, xuu480) -> new_compare27(xuu460, xuu480, new_esEs8(xuu460, xuu480)) new_esEs32(xuu34, xuu36, app(app(ty_Either, bbf), bbg)) -> new_esEs5(xuu34, xuu36, bbf, bbg) new_esEs9(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, ty_Bool) -> new_compare14(xuu4600, xuu4800) new_esEs29(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(ty_Ratio, cb)) -> new_esEs13(xuu4610, xuu4810, cb) new_esEs24(xuu40001, xuu3001, app(app(app(ty_@3, cbf), cbg), cbh)) -> new_esEs6(xuu40001, xuu3001, cbf, cbg, cbh) new_lt19(xuu460, xuu480, ty_Double) -> new_lt10(xuu460, xuu480) new_primMulNat0(Succ(xuu4000100), Zero) -> Zero new_primMulNat0(Zero, Succ(xuu300000)) -> Zero new_primPlusNat0(Zero, xuu300000) -> Succ(xuu300000) new_ltEs11(Right(xuu4610), Left(xuu4810), gc, gd) -> False new_ltEs20(xuu4612, xuu4812, ty_Bool) -> new_ltEs18(xuu4612, xuu4812) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(app(ty_@3, dab), dac), dad)) -> new_esEs6(xuu40000, xuu3000, dab, dac, dad) new_esEs23(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs22(xuu40002, xuu3002, app(ty_Maybe, bhe)) -> new_esEs7(xuu40002, xuu3002, bhe) new_esEs14(Double(xuu40000, xuu40001), Double(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_ltEs17(xuu461, xuu481) -> new_fsEs(new_compare7(xuu461, xuu481)) new_ltEs5(xuu4611, xuu4811, app(ty_[], ec)) -> new_ltEs14(xuu4611, xuu4811, ec) new_esEs23(xuu40000, xuu3000, app(ty_Maybe, cag)) -> new_esEs7(xuu40000, xuu3000, cag) new_lt21(xuu4611, xuu4811, app(ty_[], ceh)) -> new_lt14(xuu4611, xuu4811, ceh) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_Either, def), deg), bac) -> new_esEs5(xuu40000, xuu3000, def, deg) new_esEs32(xuu34, xuu36, ty_Int) -> new_esEs10(xuu34, xuu36) new_esEs21(xuu40001, xuu3001, app(app(ty_Either, bgf), bgg)) -> new_esEs5(xuu40001, xuu3001, bgf, bgg) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs15(Float(xuu40000, xuu40001), Float(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_esEs8(LT, LT) -> True new_ltEs20(xuu4612, xuu4812, app(ty_Maybe, cgc)) -> new_ltEs16(xuu4612, xuu4812, cgc) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Integer) -> new_esEs17(xuu4000, xuu300) new_primPlusNat1(Succ(xuu38200), Zero) -> Succ(xuu38200) new_primPlusNat1(Zero, Succ(xuu9400)) -> Succ(xuu9400) new_esEs22(xuu40002, xuu3002, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs6(xuu40002, xuu3002, bhb, bhc, bhd) new_esEs9(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Int) -> new_compare17(new_sr(xuu4600, xuu4801), new_sr(xuu4800, xuu4601)) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_@2, chh), daa)) -> new_esEs4(xuu40000, xuu3000, chh, daa) new_esEs9(xuu4610, xuu4810, app(app(app(ty_@3, ce), cf), cg)) -> new_esEs6(xuu4610, xuu4810, ce, cf, cg) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_Either, bcc), bcd), gd) -> new_ltEs11(xuu4610, xuu4810, bcc, bcd) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Ordering, gd) -> new_ltEs15(xuu4610, xuu4810) new_primCompAux0(xuu4600, xuu4800, xuu127, fd) -> new_primCompAux00(xuu127, new_compare29(xuu4600, xuu4800, fd)) new_esEs19(xuu460, xuu480, ty_Integer) -> new_esEs17(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(ty_Ratio, dcf)) -> new_compare8(xuu4600, xuu4800, dcf) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Integer) -> new_compare7(new_sr0(xuu4600, xuu4801), new_sr0(xuu4800, xuu4601)) new_esEs29(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_[], beb)) -> new_ltEs14(xuu4610, xuu4810, beb) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_compare26(xuu460, xuu480, False) -> new_compare113(xuu460, xuu480, new_ltEs18(xuu460, xuu480)) new_esEs24(xuu40001, xuu3001, app(ty_Maybe, cca)) -> new_esEs7(xuu40001, xuu3001, cca) new_compare12(xuu460, xuu480, False, eh, fa, fb) -> GT new_compare29(xuu4600, xuu4800, ty_Int) -> new_compare17(xuu4600, xuu4800) new_esEs32(xuu34, xuu36, app(ty_Ratio, bbd)) -> new_esEs13(xuu34, xuu36, bbd) new_lt14(xuu460, xuu480, fd) -> new_esEs8(new_compare(xuu460, xuu480, fd), LT) new_compare19(xuu460, xuu480, False, ga, gb) -> GT new_esEs23(xuu40000, xuu3000, app(app(app(ty_@3, cad), cae), caf)) -> new_esEs6(xuu40000, xuu3000, cad, cae, caf) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16([], [], baa) -> True new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Maybe, chg)) -> new_ltEs16(xuu4610, xuu4810, chg) new_primMulInt(Neg(xuu400010), Neg(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_esEs32(xuu34, xuu36, ty_Float) -> new_esEs15(xuu34, xuu36) new_esEs29(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_compare25(xuu460, xuu480, True, ff) -> EQ new_esEs9(xuu4610, xuu4810, app(app(ty_Either, cc), cd)) -> new_esEs5(xuu4610, xuu4810, cc, cd) new_ltEs5(xuu4611, xuu4811, ty_@0) -> new_ltEs8(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, app(ty_Ratio, bgd)) -> new_esEs13(xuu40001, xuu3001, bgd) new_compare([], :(xuu4800, xuu4801), fd) -> LT new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Int) -> new_esEs10(xuu4000, xuu300) new_lt21(xuu4611, xuu4811, app(app(app(ty_@3, cee), cef), ceg)) -> new_lt12(xuu4611, xuu4811, cee, cef, ceg) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_@2, bbh), bca), gd) -> new_ltEs4(xuu4610, xuu4810, bbh, bca) new_ltEs19(xuu461, xuu481, ty_@0) -> new_ltEs8(xuu461, xuu481) new_ltEs15(EQ, GT) -> True new_esEs22(xuu40002, xuu3002, app(app(ty_Either, bhh), caa)) -> new_esEs5(xuu40002, xuu3002, bhh, caa) new_esEs23(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt21(xuu4611, xuu4811, app(app(ty_Either, cec), ced)) -> new_lt11(xuu4611, xuu4811, cec, ced) new_esEs19(xuu460, xuu480, ty_Int) -> new_esEs10(xuu460, xuu480) new_esEs23(xuu40000, xuu3000, app(app(ty_@2, cab), cac)) -> new_esEs4(xuu40000, xuu3000, cab, cac) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs21(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, app(app(app(ty_@3, dh), ea), eb)) -> new_ltEs12(xuu4611, xuu4811, dh, ea, eb) new_primMulInt(Pos(xuu400010), Neg(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_primMulInt(Neg(xuu400010), Pos(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_esEs19(xuu460, xuu480, ty_Bool) -> new_esEs18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(app(ty_@3, bdg), bdh), bea)) -> new_ltEs12(xuu4610, xuu4810, bdg, bdh, bea) new_esEs19(xuu460, xuu480, app(app(ty_Either, ga), gb)) -> new_esEs5(xuu460, xuu480, ga, gb) new_esEs22(xuu40002, xuu3002, ty_Ordering) -> new_esEs8(xuu40002, xuu3002) new_lt21(xuu4611, xuu4811, ty_Double) -> new_lt10(xuu4611, xuu4811) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(app(app(ty_@3, dfb), dfc), dfd)) -> new_esEs6(xuu40000, xuu3000, dfb, dfc, dfd) new_ltEs20(xuu4612, xuu4812, ty_@0) -> new_ltEs8(xuu4612, xuu4812) new_compare16(xuu107, xuu108, xuu109, xuu110, False, xuu112, cgd, cge) -> new_compare111(xuu107, xuu108, xuu109, xuu110, xuu112, cgd, cge) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_Ratio, bdd)) -> new_ltEs9(xuu4610, xuu4810, bdd) new_primCmpInt(Pos(Succ(xuu4600)), Pos(xuu480)) -> new_primCmpNat0(xuu4600, xuu480) new_esEs22(xuu40002, xuu3002, app(app(ty_@2, bgh), bha)) -> new_esEs4(xuu40002, xuu3002, bgh, bha) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_@2, cgf), cgg)) -> new_ltEs4(xuu4610, xuu4810, cgf, cgg) new_lt8(xuu460, xuu480) -> new_esEs8(new_compare18(xuu460, xuu480), LT) new_lt21(xuu4611, xuu4811, ty_Float) -> new_lt13(xuu4611, xuu4811) new_lt21(xuu4611, xuu4811, ty_Ordering) -> new_lt15(xuu4611, xuu4811) new_primCmpNat1(Succ(xuu46000), Zero) -> GT new_esEs9(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt10(xuu460, xuu480) -> new_esEs8(new_compare13(xuu460, xuu480), LT) new_esEs25(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs18(False, True) -> True new_ltEs20(xuu4612, xuu4812, app(app(ty_Either, cfe), cff)) -> new_ltEs11(xuu4612, xuu4812, cfe, cff) new_compare29(xuu4600, xuu4800, ty_@0) -> new_compare6(xuu4600, xuu4800) new_esEs21(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_sr0(Integer(xuu46000), Integer(xuu48010)) -> Integer(new_primMulInt(xuu46000, xuu48010)) new_esEs24(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, ty_Double) -> new_ltEs10(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Integer) -> new_lt17(xuu460, xuu480) new_ltEs15(LT, GT) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Double, bac) -> new_esEs14(xuu40000, xuu3000) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Char, gd) -> new_ltEs7(xuu4610, xuu4810) new_primCmpNat0(xuu4600, Zero) -> GT new_ltEs5(xuu4611, xuu4811, ty_Ordering) -> new_ltEs15(xuu4611, xuu4811) new_esEs20(xuu40000, xuu3000, app(ty_Ratio, bfb)) -> new_esEs13(xuu40000, xuu3000, bfb) new_esEs23(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs31(xuu4000, xuu300, ty_Bool) -> new_esEs18(xuu4000, xuu300) new_esEs26(xuu4611, xuu4811, ty_Char) -> new_esEs11(xuu4611, xuu4811) new_esEs25(xuu4610, xuu4810, app(ty_Ratio, cch)) -> new_esEs13(xuu4610, xuu4810, cch) new_compare111(xuu107, xuu108, xuu109, xuu110, True, cgd, cge) -> LT new_asAs(True, xuu63) -> xuu63 new_ltEs5(xuu4611, xuu4811, app(ty_Maybe, ed)) -> new_ltEs16(xuu4611, xuu4811, ed) new_compare12(xuu460, xuu480, True, eh, fa, fb) -> LT new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Ratio, cgh)) -> new_ltEs9(xuu4610, xuu4810, cgh) new_compare113(xuu460, xuu480, True) -> LT new_lt9(xuu460, xuu480, ee) -> new_esEs8(new_compare8(xuu460, xuu480, ee), LT) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, ty_Float) -> new_compare9(xuu4600, xuu4800) new_esEs19(xuu460, xuu480, app(ty_Ratio, ee)) -> new_esEs13(xuu460, xuu480, ee) new_esEs26(xuu4611, xuu4811, ty_Integer) -> new_esEs17(xuu4611, xuu4811) new_esEs9(xuu4610, xuu4810, app(ty_Maybe, db)) -> new_esEs7(xuu4610, xuu4810, db) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, ty_Char) -> new_lt8(xuu4611, xuu4811) new_esEs29(xuu40000, xuu3000, app(ty_[], dca)) -> new_esEs16(xuu40000, xuu3000, dca) new_esEs31(xuu4000, xuu300, app(ty_Ratio, hh)) -> new_esEs13(xuu4000, xuu300, hh) new_esEs18(False, False) -> True new_esEs20(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs32(xuu34, xuu36, ty_Char) -> new_esEs11(xuu34, xuu36) new_compare24(xuu460, xuu480, True, ga, gb) -> EQ new_esEs21(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(ty_Either, bde), bdf)) -> new_ltEs11(xuu4610, xuu4810, bde, bdf) new_esEs29(xuu40000, xuu3000, app(app(ty_Either, dcb), dcc)) -> new_esEs5(xuu40000, xuu3000, dcb, dcc) new_compare110(xuu460, xuu480, False) -> GT new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Ratio, bcb), gd) -> new_ltEs9(xuu4610, xuu4810, bcb) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_compare29(xuu4600, xuu4800, app(app(ty_Either, dcg), dch)) -> new_compare30(xuu4600, xuu4800, dcg, dch) new_primCompAux00(xuu138, EQ) -> xuu138 new_ltEs5(xuu4611, xuu4811, ty_Int) -> new_ltEs6(xuu4611, xuu4811) new_sr(xuu40001, xuu3000) -> new_primMulInt(xuu40001, xuu3000) new_lt19(xuu460, xuu480, ty_Ordering) -> new_lt15(xuu460, xuu480) new_esEs32(xuu34, xuu36, ty_Integer) -> new_esEs17(xuu34, xuu36) new_primMulNat0(Zero, Zero) -> Zero new_primCmpInt(Neg(Succ(xuu4600)), Neg(xuu480)) -> new_primCmpNat2(xuu480, xuu4600) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(app(ty_@3, chc), chd), che)) -> new_ltEs12(xuu4610, xuu4810, chc, chd, che) new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Maybe, bda), gd) -> new_ltEs16(xuu4610, xuu4810, bda) new_lt21(xuu4611, xuu4811, app(ty_Maybe, cfa)) -> new_lt16(xuu4611, xuu4811, cfa) new_esEs9(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, app(app(ty_@2, dc), dd)) -> new_ltEs4(xuu4611, xuu4811, dc, dd) new_lt19(xuu460, xuu480, ty_Char) -> new_lt8(xuu460, xuu480) new_esEs21(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_esEs23(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs24(xuu40001, xuu3001, app(ty_[], ccc)) -> new_esEs16(xuu40001, xuu3001, ccc) new_ltEs20(xuu4612, xuu4812, app(ty_[], cgb)) -> new_ltEs14(xuu4612, xuu4812, cgb) new_primCmpInt(Neg(Zero), Neg(Succ(xuu4800))) -> new_primCmpNat0(xuu4800, Zero) new_primCmpNat1(Zero, Zero) -> EQ new_ltEs19(xuu461, xuu481, ty_Bool) -> new_ltEs18(xuu461, xuu481) new_lt5(xuu4610, xuu4810, app(ty_[], da)) -> new_lt14(xuu4610, xuu4810, da) new_esEs31(xuu4000, xuu300, app(ty_Maybe, hg)) -> new_esEs7(xuu4000, xuu300, hg) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_Maybe, bec)) -> new_ltEs16(xuu4610, xuu4810, bec) new_esEs20(xuu40000, xuu3000, app(app(ty_Either, bfd), bfe)) -> new_esEs5(xuu40000, xuu3000, bfd, bfe) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_compare210(xuu460, xuu480, False, eh, fa, fb) -> new_compare12(xuu460, xuu480, new_ltEs12(xuu460, xuu480, eh, fa, fb), eh, fa, fb) new_esEs5(Right(xuu40000), Right(xuu3000), bab, app(app(ty_Either, dfh), dga)) -> new_esEs5(xuu40000, xuu3000, dfh, dga) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_lt19(xuu460, xuu480, app(app(ty_@2, ef), eg)) -> new_lt6(xuu460, xuu480, ef, eg) new_ltEs15(EQ, EQ) -> True new_esEs19(xuu460, xuu480, ty_Double) -> new_esEs14(xuu460, xuu480) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_@0, gd) -> new_ltEs8(xuu4610, xuu4810) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs24(xuu40001, xuu3001, app(ty_Ratio, ccb)) -> new_esEs13(xuu40001, xuu3001, ccb) new_compare29(xuu4600, xuu4800, ty_Ordering) -> new_compare10(xuu4600, xuu4800) new_esEs32(xuu34, xuu36, ty_Ordering) -> new_esEs8(xuu34, xuu36) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, ty_Integer) -> new_ltEs17(xuu4611, xuu4811) new_lt15(xuu460, xuu480) -> new_esEs8(new_compare10(xuu460, xuu480), LT) new_compare25(xuu460, xuu480, False, ff) -> new_compare112(xuu460, xuu480, new_ltEs16(xuu460, xuu480, ff), ff) new_esEs20(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt19(xuu460, xuu480, ty_Int) -> new_lt7(xuu460, xuu480) new_lt20(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs22(xuu40002, xuu3002, ty_Integer) -> new_esEs17(xuu40002, xuu3002) new_compare15(xuu460, xuu480, ff) -> new_compare25(xuu460, xuu480, new_esEs7(xuu460, xuu480, ff), ff) new_ltEs20(xuu4612, xuu4812, ty_Char) -> new_ltEs7(xuu4612, xuu4812) new_ltEs19(xuu461, xuu481, app(app(ty_Either, gc), gd)) -> new_ltEs11(xuu461, xuu481, gc, gd) new_esEs29(xuu40000, xuu3000, app(ty_Ratio, dbh)) -> new_esEs13(xuu40000, xuu3000, dbh) new_primEqInt(Neg(Succ(xuu400000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xuu30000))) -> False new_compare([], [], fd) -> EQ new_esEs30(xuu33, xuu34, xuu35, xuu36, False, bad, bae) -> new_esEs8(new_compare23(@2(xuu33, xuu34), @2(xuu35, xuu36), False, bad, bae), LT) new_ltEs15(LT, EQ) -> True new_esEs22(xuu40002, xuu3002, ty_Char) -> new_esEs11(xuu40002, xuu3002) new_primEqInt(Pos(Succ(xuu400000)), Pos(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_esEs21(xuu40001, xuu3001, app(ty_Maybe, bgc)) -> new_esEs7(xuu40001, xuu3001, bgc) new_esEs22(xuu40002, xuu3002, ty_Int) -> new_esEs10(xuu40002, xuu3002) new_esEs32(xuu34, xuu36, app(app(ty_@2, baf), bag)) -> new_esEs4(xuu34, xuu36, baf, bag) new_ltEs13(xuu461, xuu481) -> new_fsEs(new_compare9(xuu461, xuu481)) new_esEs20(xuu40000, xuu3000, app(ty_[], bfc)) -> new_esEs16(xuu40000, xuu3000, bfc) new_esEs26(xuu4611, xuu4811, app(app(ty_@2, cdh), cea)) -> new_esEs4(xuu4611, xuu4811, cdh, cea) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, ty_Float) -> new_ltEs13(xuu4611, xuu4811) new_compare29(xuu4600, xuu4800, ty_Double) -> new_compare13(xuu4600, xuu4800) new_esEs25(xuu4610, xuu4810, app(app(ty_Either, cda), cdb)) -> new_esEs5(xuu4610, xuu4810, cda, cdb) new_ltEs16(Nothing, Just(xuu4810), ha) -> True new_lt20(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_esEs13(:%(xuu40000, xuu40001), :%(xuu3000, xuu3001), hh) -> new_asAs(new_esEs27(xuu40000, xuu3000, hh), new_esEs28(xuu40001, xuu3001, hh)) new_esEs26(xuu4611, xuu4811, ty_Ordering) -> new_esEs8(xuu4611, xuu4811) new_primEqInt(Pos(Succ(xuu400000)), Neg(xuu3000)) -> False new_primEqInt(Neg(Succ(xuu400000)), Pos(xuu3000)) -> False new_lt20(xuu4610, xuu4810, app(app(ty_@2, ccf), ccg)) -> new_lt6(xuu4610, xuu4810, ccf, ccg) new_esEs31(xuu4000, xuu300, app(ty_[], baa)) -> new_esEs16(xuu4000, xuu300, baa) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs32(xuu34, xuu36, app(ty_Maybe, bbc)) -> new_esEs7(xuu34, xuu36, bbc) new_esEs31(xuu4000, xuu300, app(app(ty_Either, bab), bac)) -> new_esEs5(xuu4000, xuu300, bab, bac) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_esEs25(xuu4610, xuu4810, app(ty_[], cdf)) -> new_esEs16(xuu4610, xuu4810, cdf) new_lt4(xuu460, xuu480) -> new_esEs8(new_compare6(xuu460, xuu480), LT) new_esEs19(xuu460, xuu480, app(ty_[], fd)) -> new_esEs16(xuu460, xuu480, fd) new_esEs26(xuu4611, xuu4811, app(ty_Maybe, cfa)) -> new_esEs7(xuu4611, xuu4811, cfa) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_ltEs15(GT, GT) -> True new_lt20(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, app(app(ty_Either, cec), ced)) -> new_esEs5(xuu4611, xuu4811, cec, ced) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Float, bac) -> new_esEs15(xuu40000, xuu3000) new_esEs26(xuu4611, xuu4811, ty_Bool) -> new_esEs18(xuu4611, xuu4811) new_lt5(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs30(xuu33, xuu34, xuu35, xuu36, True, bad, bae) -> new_esEs8(new_compare23(@2(xuu33, xuu34), @2(xuu35, xuu36), new_esEs32(xuu34, xuu36, bae), bad, bae), LT) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(app(ty_@3, ddh), dea), deb), bac) -> new_esEs6(xuu40000, xuu3000, ddh, dea, deb) new_primCmpInt(Pos(Zero), Pos(Succ(xuu4800))) -> new_primCmpNat2(Zero, xuu4800) new_esEs31(xuu4000, xuu300, ty_Char) -> new_esEs11(xuu4000, xuu300) new_lt19(xuu460, xuu480, app(ty_Maybe, ff)) -> new_lt16(xuu460, xuu480, ff) new_esEs9(xuu4610, xuu4810, app(ty_[], da)) -> new_esEs16(xuu4610, xuu4810, da) new_esEs26(xuu4611, xuu4811, app(app(app(ty_@3, cee), cef), ceg)) -> new_esEs6(xuu4611, xuu4811, cee, cef, ceg) new_esEs23(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, app(ty_Ratio, cch)) -> new_lt9(xuu4610, xuu4810, cch) new_compare30(xuu460, xuu480, ga, gb) -> new_compare24(xuu460, xuu480, new_esEs5(xuu460, xuu480, ga, gb), ga, gb) new_esEs24(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Maybe, dec), bac) -> new_esEs7(xuu40000, xuu3000, dec) new_lt5(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_esEs31(xuu4000, xuu300, app(app(ty_@2, hb), hc)) -> new_esEs4(xuu4000, xuu300, hb, hc) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Ratio, daf)) -> new_esEs13(xuu40000, xuu3000, daf) new_not(False) -> True new_esEs21(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs6(xuu461, xuu481) -> new_fsEs(new_compare17(xuu461, xuu481)) new_compare28(xuu460, xuu480, eh, fa, fb) -> new_compare210(xuu460, xuu480, new_esEs6(xuu460, xuu480, eh, fa, fb), eh, fa, fb) new_esEs31(xuu4000, xuu300, ty_Ordering) -> new_esEs8(xuu4000, xuu300) new_lt20(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs20(xuu40000, xuu3000, app(ty_Maybe, bfa)) -> new_esEs7(xuu40000, xuu3000, bfa) new_lt20(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, app(ty_[], ddd)) -> new_compare(xuu4600, xuu4800, ddd) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_esEs18(False, True) -> False new_esEs18(True, False) -> False new_esEs5(Left(xuu40000), Right(xuu3000), bab, bac) -> False new_esEs5(Right(xuu40000), Left(xuu3000), bab, bac) -> False new_lt21(xuu4611, xuu4811, ty_Bool) -> new_lt18(xuu4611, xuu4811) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs32(xuu34, xuu36, ty_@0) -> new_esEs12(xuu34, xuu36) new_esEs25(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_[], dag)) -> new_esEs16(xuu40000, xuu3000, dag) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Float, gd) -> new_ltEs13(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, app(app(ty_@2, cdh), cea)) -> new_lt6(xuu4611, xuu4811, cdh, cea) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Int, bac) -> new_esEs10(xuu40000, xuu3000) new_primPlusNat0(Succ(xuu980), xuu300000) -> Succ(Succ(new_primPlusNat1(xuu980, xuu300000))) new_esEs4(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), hb, hc) -> new_asAs(new_esEs23(xuu40000, xuu3000, hb), new_esEs24(xuu40001, xuu3001, hc)) new_esEs19(xuu460, xuu480, app(ty_Maybe, ff)) -> new_esEs7(xuu460, xuu480, ff) new_primCmpNat1(Zero, Succ(xuu48000)) -> LT new_esEs24(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_esEs10(xuu4000, xuu300) -> new_primEqInt(xuu4000, xuu300) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt12(xuu460, xuu480, eh, fa, fb) -> new_esEs8(new_compare28(xuu460, xuu480, eh, fa, fb), LT) new_primPlusNat1(Zero, Zero) -> Zero new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, app(ty_[], bge)) -> new_esEs16(xuu40001, xuu3001, bge) new_compare6(@0, @0) -> EQ new_ltEs15(LT, LT) -> True new_esEs25(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_lt5(xuu4610, xuu4810, app(ty_Maybe, db)) -> new_lt16(xuu4610, xuu4810, db) new_lt19(xuu460, xuu480, ty_@0) -> new_lt4(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, ty_@0) -> new_esEs12(xuu40002, xuu3002) new_esEs25(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_primMulNat0(Succ(xuu4000100), Succ(xuu300000)) -> new_primPlusNat0(new_primMulNat0(xuu4000100, Succ(xuu300000)), xuu300000) new_esEs16(:(xuu40000, xuu40001), :(xuu3000, xuu3001), baa) -> new_asAs(new_esEs29(xuu40000, xuu3000, baa), new_esEs16(xuu40001, xuu3001, baa)) new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_esEs12(@0, @0) -> True new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_[], bch), gd) -> new_ltEs14(xuu4610, xuu4810, bch) new_esEs20(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_lt19(xuu460, xuu480, ty_Float) -> new_lt13(xuu460, xuu480) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Double) -> new_esEs14(xuu40000, xuu3000) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_ltEs19(xuu461, xuu481, app(ty_Ratio, fc)) -> new_ltEs9(xuu461, xuu481, fc) new_esEs24(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_esEs26(xuu4611, xuu4811, ty_Int) -> new_esEs10(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_lt20(xuu4610, xuu4810, app(ty_Maybe, cdg)) -> new_lt16(xuu4610, xuu4810, cdg) new_esEs29(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16(:(xuu40000, xuu40001), [], baa) -> False new_esEs16([], :(xuu3000, xuu3001), baa) -> False new_compare29(xuu4600, xuu4800, ty_Integer) -> new_compare7(xuu4600, xuu4800) new_esEs23(xuu40000, xuu3000, app(ty_[], cba)) -> new_esEs16(xuu40000, xuu3000, cba) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Integer, bac) -> new_esEs17(xuu40000, xuu3000) new_primCmpNat2(Succ(xuu4800), xuu4600) -> new_primCmpNat1(xuu4800, xuu4600) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt21(xuu4611, xuu4811, ty_Integer) -> new_lt17(xuu4611, xuu4811) new_esEs29(xuu40000, xuu3000, app(app(ty_@2, dbb), dbc)) -> new_esEs4(xuu40000, xuu3000, dbb, dbc) new_ltEs18(True, True) -> True new_esEs24(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_Char) -> new_esEs11(xuu460, xuu480) new_primEqNat0(Zero, Zero) -> True new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Int, gd) -> new_ltEs6(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt5(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, ty_Float) -> new_esEs15(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Bool) -> new_lt18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Bool, bac) -> new_esEs18(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, app(ty_Ratio, de)) -> new_ltEs9(xuu4611, xuu4811, de) new_lt20(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_esEs22(xuu40002, xuu3002, app(ty_[], bhg)) -> new_esEs16(xuu40002, xuu3002, bhg) new_asAs(False, xuu63) -> False new_esEs26(xuu4611, xuu4811, app(ty_Ratio, ceb)) -> new_esEs13(xuu4611, xuu4811, ceb) new_lt20(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_esEs29(xuu40000, xuu3000, app(ty_Maybe, dbg)) -> new_esEs7(xuu40000, xuu3000, dbg) new_esEs5(Right(xuu40000), Right(xuu3000), bab, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_compare18(Char(xuu4600), Char(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_compare29(xuu4600, xuu4800, ty_Char) -> new_compare18(xuu4600, xuu4800) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_compare112(xuu460, xuu480, False, ff) -> GT new_compare27(xuu460, xuu480, True) -> EQ new_ltEs12(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), ge, gf, gg) -> new_pePe(new_lt20(xuu4610, xuu4810, ge), new_asAs(new_esEs25(xuu4610, xuu4810, ge), new_pePe(new_lt21(xuu4611, xuu4811, gf), new_asAs(new_esEs26(xuu4611, xuu4811, gf), new_ltEs20(xuu4612, xuu4812, gg))))) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(app(ty_@3, bce), bcf), bcg), gd) -> new_ltEs12(xuu4610, xuu4810, bce, bcf, bcg) The set Q consists of the following terms: new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_esEs8(EQ, EQ) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs32(x0, x1, app(ty_[], x2)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_[], x3)) new_ltEs7(x0, x1) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare23(@2(x0, x1), @2(x2, x3), False, x4, x5) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_lt21(x0, x1, app(ty_Maybe, x2)) new_esEs20(x0, x1, ty_Double) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Ordering) new_esEs21(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Float) new_ltEs13(x0, x1) new_ltEs11(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_ltEs5(x0, x1, app(app(ty_@2, x2), x3)) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Just(x0), Just(x1), ty_@0) new_primPlusNat1(Zero, Zero) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_esEs32(x0, x1, app(app(ty_@2, x2), x3)) new_compare18(Char(x0), Char(x1)) new_esEs7(Just(x0), Just(x1), ty_Bool) new_primCmpNat1(Zero, Zero) new_esEs21(x0, x1, ty_Int) new_esEs9(x0, x1, app(ty_[], x2)) new_compare7(Integer(x0), Integer(x1)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs18(True, True) new_esEs7(Just(x0), Just(x1), ty_Integer) new_ltEs11(Left(x0), Right(x1), x2, x3) new_ltEs11(Right(x0), Left(x1), x2, x3) new_esEs15(Float(x0, x1), Float(x2, x3)) new_primEqInt(Pos(Zero), Pos(Zero)) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt19(x0, x1, ty_Double) new_esEs29(x0, x1, ty_Integer) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare210(x0, x1, True, x2, x3, x4) new_compare12(x0, x1, True, x2, x3, x4) new_ltEs11(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_esEs22(x0, x1, ty_Char) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs25(x0, x1, ty_Float) new_compare29(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Bool) new_compare25(x0, x1, False, x2) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_lt21(x0, x1, app(ty_[], x2)) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primEqInt(Neg(Zero), Neg(Zero)) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_compare29(x0, x1, ty_Char) new_compare6(@0, @0) new_ltEs11(Right(x0), Right(x1), x2, ty_Ordering) new_lt5(x0, x1, ty_Ordering) new_ltEs5(x0, x1, app(ty_[], x2)) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_ltEs5(x0, x1, ty_Float) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs22(x0, x1, ty_Ordering) new_ltEs16(Just(x0), Nothing, x1) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primCompAux00(x0, LT) new_esEs31(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Integer) new_esEs21(x0, x1, ty_@0) new_compare(:(x0, x1), :(x2, x3), x4) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_compare112(x0, x1, False, x2) new_esEs31(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_compare29(x0, x1, ty_@0) new_compare([], [], x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_compare27(x0, x1, False) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulNat0(Zero, Succ(x0)) new_compare110(x0, x1, True) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs6(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs30(x0, x1, x2, x3, True, x4, x5) new_esEs9(x0, x1, ty_Float) new_lt19(x0, x1, ty_Ordering) new_ltEs11(Left(x0), Left(x1), ty_Float, x2) new_ltEs11(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Just(x0), Just(x1), ty_Int) new_lt19(x0, x1, app(ty_[], x2)) new_ltEs16(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_compare10(x0, x1) new_esEs24(x0, x1, ty_Float) new_esEs16(:(x0, x1), [], x2) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_esEs28(x0, x1, ty_Integer) new_esEs9(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), ty_Char) new_primMulInt(Neg(x0), Neg(x1)) new_lt20(x0, x1, ty_Float) new_pePe(True, x0) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_lt16(x0, x1, x2) new_compare19(x0, x1, True, x2, x3) new_esEs22(x0, x1, ty_Integer) new_ltEs15(EQ, EQ) new_ltEs16(Nothing, Just(x0), x1) new_fsEs(x0) new_esEs21(x0, x1, ty_Integer) new_compare29(x0, x1, app(ty_Maybe, x2)) new_compare29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs31(x0, x1, app(app(ty_@2, x2), x3)) new_compare28(x0, x1, x2, x3, x4) new_ltEs16(Just(x0), Just(x1), ty_Float) new_esEs7(Just(x0), Just(x1), ty_Ordering) new_lt13(x0, x1) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, ty_Integer) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs16(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs32(x0, x1, ty_Ordering) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_ltEs5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, ty_Char) new_lt8(x0, x1) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_asAs(False, x0) new_esEs32(x0, x1, ty_Double) new_ltEs5(x0, x1, app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_primCompAux00(x0, EQ) new_ltEs12(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_lt15(x0, x1) new_ltEs20(x0, x1, ty_Int) new_ltEs20(x0, x1, app(ty_[], x2)) new_primPlusNat1(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs9(x0, x1, ty_Bool) new_esEs18(False, True) new_esEs18(True, False) new_ltEs16(Just(x0), Just(x1), ty_Int) new_lt19(x0, x1, ty_Bool) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs15(GT, LT) new_ltEs15(LT, GT) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_primCmpNat1(Succ(x0), Zero) new_lt12(x0, x1, x2, x3, x4) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_lt19(x0, x1, ty_Char) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Bool) new_esEs31(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Integer) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, ty_Bool) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, app(ty_[], x2)) new_esEs9(x0, x1, ty_Char) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_ltEs16(Just(x0), Just(x1), ty_Char) new_lt19(x0, x1, app(ty_Maybe, x2)) new_compare24(x0, x1, False, x2, x3) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Bool) new_primEqNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_esEs8(GT, GT) new_lt7(x0, x1) new_esEs25(x0, x1, ty_@0) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt19(x0, x1, ty_Int) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs9(x0, x1, ty_Integer) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_ltEs19(x0, x1, app(ty_[], x2)) new_compare29(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt5(x0, x1, app(ty_Ratio, x2)) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_ltEs16(Nothing, Nothing, x0) new_esEs8(LT, LT) new_compare23(x0, x1, True, x2, x3) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs31(x0, x1, ty_Ordering) new_esEs24(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_esEs29(x0, x1, ty_Float) new_esEs22(x0, x1, ty_Int) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_esEs25(x0, x1, ty_Double) new_esEs7(Nothing, Nothing, x0) new_compare29(x0, x1, ty_Ordering) new_ltEs11(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(x0, x1, x2) new_lt5(x0, x1, app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs5(x0, x1, app(ty_Ratio, x2)) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_compare112(x0, x1, True, x2) new_ltEs19(x0, x1, ty_Float) new_lt21(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Bool) new_esEs9(x0, x1, app(app(ty_Either, x2), x3)) new_compare15(x0, x1, x2) new_compare113(x0, x1, False) new_ltEs20(x0, x1, ty_Ordering) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primEqNat0(Succ(x0), Zero) new_esEs9(x0, x1, ty_Ordering) new_compare111(x0, x1, x2, x3, True, x4, x5) new_lt19(x0, x1, ty_Float) new_esEs19(x0, x1, ty_Float) new_esEs32(x0, x1, ty_@0) new_lt19(x0, x1, app(ty_Ratio, x2)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs19(x0, x1, ty_Char) new_compare210(x0, x1, False, x2, x3, x4) new_lt5(x0, x1, ty_@0) new_compare29(x0, x1, ty_Integer) new_esEs21(x0, x1, ty_Ordering) new_esEs20(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Int) new_esEs22(x0, x1, ty_Float) new_lt5(x0, x1, ty_Double) new_esEs29(x0, x1, ty_Int) new_ltEs11(Right(x0), Right(x1), x2, ty_Double) new_esEs29(x0, x1, ty_Char) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_ltEs6(x0, x1) new_ltEs20(x0, x1, ty_Integer) new_compare12(x0, x1, False, x2, x3, x4) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_ltEs8(x0, x1) new_lt5(x0, x1, app(ty_[], x2)) new_ltEs16(Just(x0), Just(x1), ty_Bool) new_esEs19(x0, x1, ty_Int) new_ltEs11(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(x0, x1, app(ty_Maybe, x2)) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_ltEs5(x0, x1, ty_Char) new_esEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Int) new_primPlusNat0(Zero, x0) new_compare16(x0, x1, x2, x3, True, x4, x5, x6) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs16([], [], x0) new_primPlusNat0(Succ(x0), x1) new_primPlusNat1(Succ(x0), Zero) new_esEs13(:%(x0, x1), :%(x2, x3), x4) new_primMulNat0(Zero, Zero) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_ltEs16(Just(x0), Just(x1), ty_@0) new_esEs25(x0, x1, ty_Char) new_esEs7(Just(x0), Nothing, x1) new_ltEs11(Left(x0), Left(x1), ty_Char, x2) new_lt21(x0, x1, ty_Int) new_lt5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Int) new_esEs26(x0, x1, ty_Char) new_ltEs5(x0, x1, ty_Int) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_sr(x0, x1) new_esEs23(x0, x1, ty_Double) new_ltEs11(Right(x0), Right(x1), x2, ty_Integer) new_esEs28(x0, x1, ty_Int) new_lt5(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Char) new_esEs25(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Char) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Double) new_ltEs19(x0, x1, ty_@0) new_esEs32(x0, x1, app(app(ty_Either, x2), x3)) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_esEs22(x0, x1, app(ty_[], x2)) new_primCmpNat2(Zero, x0) new_esEs26(x0, x1, ty_Int) new_esEs7(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_lt20(x0, x1, ty_Char) new_primCmpNat1(Zero, Succ(x0)) new_lt21(x0, x1, ty_Double) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Just(x0), Just(x1), app(ty_Ratio, x2)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_lt20(x0, x1, ty_Double) new_ltEs11(Right(x0), Right(x1), x2, ty_Float) new_esEs9(x0, x1, ty_Double) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, ty_Bool) new_esEs25(x0, x1, ty_Int) new_esEs31(x0, x1, app(app(ty_Either, x2), x3)) new_lt21(x0, x1, ty_Char) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_compare30(x0, x1, x2, x3) new_esEs31(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_@0) new_esEs32(x0, x1, ty_Bool) new_ltEs19(x0, x1, ty_Int) new_ltEs18(True, True) new_ltEs16(Just(x0), Just(x1), app(ty_Ratio, x2)) new_lt5(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_compare29(x0, x1, ty_Float) new_compare29(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_not(True) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primMulNat0(Succ(x0), Zero) new_ltEs5(x0, x1, ty_@0) new_compare8(:%(x0, x1), :%(x2, x3), ty_Integer) new_lt6(x0, x1, x2, x3) new_esEs31(x0, x1, ty_Bool) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(x0, x1, ty_Double) new_esEs27(x0, x1, ty_Int) new_ltEs14(x0, x1, x2) new_esEs7(Just(x0), Just(x1), app(ty_[], x2)) new_esEs31(x0, x1, ty_@0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_ltEs5(x0, x1, ty_Bool) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs16(Just(x0), Just(x1), app(ty_[], x2)) new_lt14(x0, x1, x2) new_primCmpNat2(Succ(x0), x1) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_@0) new_esEs29(x0, x1, ty_Ordering) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_compare26(x0, x1, True) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_primCmpNat0(x0, Succ(x1)) new_compare8(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_compare113(x0, x1, True) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_ltEs19(x0, x1, ty_Bool) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_compare9(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare9(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs15(GT, EQ) new_ltEs15(EQ, GT) new_esEs10(x0, x1) new_compare29(x0, x1, app(ty_Ratio, x2)) new_lt21(x0, x1, ty_Ordering) new_esEs9(x0, x1, ty_Int) new_esEs26(x0, x1, ty_Double) new_compare29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs16([], :(x0, x1), x2) new_esEs18(False, False) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_esEs9(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs24(x0, x1, ty_@0) new_primCompAux0(x0, x1, x2, x3) new_primCmpNat1(Succ(x0), Succ(x1)) new_primEqNat0(Succ(x0), Succ(x1)) new_ltEs11(Left(x0), Left(x1), ty_Double, x2) new_ltEs16(Just(x0), Just(x1), ty_Integer) new_ltEs18(True, False) new_ltEs18(False, True) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs16(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs19(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs10(x0, x1) new_compare(:(x0, x1), [], x2) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_compare24(x0, x1, True, x2, x3) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs26(x0, x1, ty_Bool) new_ltEs11(Left(x0), Left(x1), ty_@0, x2) new_esEs7(Just(x0), Just(x1), ty_Double) new_compare9(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_lt19(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Ordering) new_esEs11(Char(x0), Char(x1)) new_lt21(x0, x1, app(ty_Ratio, x2)) new_esEs32(x0, x1, ty_Integer) new_ltEs20(x0, x1, ty_Float) new_esEs21(x0, x1, ty_Float) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, ty_Ordering) new_esEs9(x0, x1, app(ty_Maybe, x2)) new_esEs25(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_ltEs11(Left(x0), Left(x1), ty_Integer, x2) new_primMulInt(Pos(x0), Pos(x1)) new_ltEs16(Just(x0), Just(x1), ty_Double) new_primPlusNat1(Zero, Succ(x0)) new_esEs7(Just(x0), Just(x1), ty_Float) new_lt20(x0, x1, ty_Bool) new_esEs7(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs31(x0, x1, ty_Char) new_lt17(x0, x1) new_esEs9(x0, x1, ty_@0) new_compare([], :(x0, x1), x2) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_compare17(x0, x1) new_esEs12(@0, @0) new_lt18(x0, x1) new_esEs32(x0, x1, ty_Int) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_lt19(x0, x1, ty_@0) new_lt11(x0, x1, x2, x3) new_ltEs16(Just(x0), Just(x1), ty_Ordering) new_ltEs11(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs31(x0, x1, ty_Int) new_lt10(x0, x1) new_compare16(x0, x1, x2, x3, False, x4, x5, x6) new_ltEs11(Left(x0), Left(x1), ty_Bool, x2) new_primCompAux00(x0, GT) new_ltEs19(x0, x1, ty_Double) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_ltEs15(EQ, LT) new_ltEs15(LT, EQ) new_compare111(x0, x1, x2, x3, False, x4, x5) new_esEs32(x0, x1, ty_Char) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs22(x0, x1, ty_Double) new_pePe(False, x0) new_lt21(x0, x1, ty_Bool) new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs26(x0, x1, ty_Float) new_ltEs20(x0, x1, ty_Double) new_esEs9(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Ordering) new_ltEs15(GT, GT) new_compare26(x0, x1, False) new_ltEs11(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_ltEs11(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs14(Double(x0, x1), Double(x2, x3)) new_lt4(x0, x1) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs24(x0, x1, ty_Bool) new_esEs16(:(x0, x1), :(x2, x3), x4) new_esEs30(x0, x1, x2, x3, False, x4, x5) new_esEs31(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Bool) new_primEqNat0(Zero, Zero) new_lt9(x0, x1, x2) new_compare29(x0, x1, ty_Double) new_esEs32(x0, x1, app(ty_Maybe, x2)) new_compare14(x0, x1) new_not(False) new_ltEs11(Right(x0), Right(x1), x2, ty_Bool) new_lt5(x0, x1, app(ty_Maybe, x2)) new_compare19(x0, x1, False, x2, x3) new_ltEs16(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs7(Nothing, Just(x0), x1) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_ltEs5(x0, x1, ty_Ordering) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_ltEs18(False, False) new_esEs20(x0, x1, ty_Char) new_compare9(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_ltEs11(Right(x0), Right(x1), x2, ty_Int) new_lt5(x0, x1, ty_Bool) new_lt5(x0, x1, ty_Float) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs15(LT, LT) new_lt20(x0, x1, ty_Integer) new_esEs17(Integer(x0), Integer(x1)) new_lt20(x0, x1, app(ty_[], x2)) new_sr0(Integer(x0), Integer(x1)) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Int) new_compare110(x0, x1, False) new_esEs22(x0, x1, ty_@0) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_esEs25(x0, x1, ty_Bool) new_esEs29(x0, x1, ty_@0) new_ltEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(x0, x1) new_compare27(x0, x1, True) new_esEs32(x0, x1, app(ty_Ratio, x2)) new_esEs21(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Ordering) new_lt21(x0, x1, ty_Float) new_esEs27(x0, x1, ty_Integer) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs32(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Integer) new_ltEs11(Left(x0), Left(x1), app(ty_[], x2), x3) new_lt5(x0, x1, ty_Char) new_esEs19(x0, x1, ty_@0) new_ltEs11(Right(x0), Right(x1), x2, ty_Char) new_esEs29(x0, x1, ty_Double) new_asAs(True, x0) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_compare25(x0, x1, True, x2) new_lt5(x0, x1, ty_Int) new_esEs32(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs11(Left(x0), Left(x1), ty_Ordering, x2) new_compare11(x0, x1, x2, x3) new_primCmpNat0(x0, Zero) new_esEs23(x0, x1, ty_@0) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_addToFM_C(Branch(@2(xuu300, xuu301), xuu31, xuu32, xuu33, xuu34), @2(xuu4000, xuu4001), xuu401, bc, bd, be) -> new_addToFM_C2(xuu300, xuu301, xuu31, xuu32, xuu33, xuu34, xuu4000, xuu4001, xuu401, new_esEs30(xuu4000, xuu4001, xuu300, xuu301, new_esEs31(xuu4000, xuu300, bc), bc, bd), bc, bd, be) The graph contains the following edges 1 > 1, 1 > 2, 1 > 3, 1 > 4, 1 > 5, 1 > 6, 2 > 7, 2 > 8, 3 >= 9, 4 >= 11, 5 >= 12, 6 >= 13 *new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, False, h, ba, bb) -> new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, new_esEs8(new_compare23(@2(xuu22, xuu23), @2(xuu16, xuu17), new_asAs(new_esEs23(xuu22, xuu16, h), new_esEs24(xuu23, xuu17, ba)), h, ba), GT), h, ba, bb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 11 >= 11, 12 >= 12, 13 >= 13 *new_addToFM_C2(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, h, ba, bb) -> new_addToFM_C(xuu20, @2(xuu22, xuu23), xuu24, h, ba, bb) The graph contains the following edges 5 >= 1, 9 >= 3, 11 >= 4, 12 >= 5, 13 >= 6 *new_addToFM_C1(xuu16, xuu17, xuu18, xuu19, xuu20, xuu21, xuu22, xuu23, xuu24, True, h, ba, bb) -> new_addToFM_C(xuu21, @2(xuu22, xuu23), xuu24, h, ba, bb) The graph contains the following edges 6 >= 1, 9 >= 3, 11 >= 4, 12 >= 5, 13 >= 6 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: new_esEs3(Left(xuu40000), Left(xuu3000), app(app(ty_Either, bcg), bch), bca) -> new_esEs3(xuu40000, xuu3000, bcg, bch) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(ty_Maybe, ed), dg, dh) -> new_esEs1(xuu40000, xuu3000, ed) new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), bbf) -> new_esEs2(xuu40001, xuu3001, bbf) new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(ty_[], bdh)) -> new_esEs2(xuu40000, xuu3000, bdh) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(app(ty_Either, ga), gb), dh) -> new_esEs3(xuu40001, xuu3001, ga, gb) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(app(app(ty_@3, fc), fd), ff), dh) -> new_esEs0(xuu40001, xuu3001, fc, fd, ff) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(app(ty_@2, h), ba), bb) -> new_esEs(xuu40000, xuu3000, h, ba) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(ty_Maybe, gh)) -> new_esEs1(xuu40002, xuu3002, gh) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(app(app(ty_@3, ce), cf), cg)) -> new_esEs0(xuu40001, xuu3001, ce, cf, cg) new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(app(ty_@2, bae), baf)) -> new_esEs(xuu40000, xuu3000, bae, baf) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(ty_Maybe, fg), dh) -> new_esEs1(xuu40001, xuu3001, fg) new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(app(app(ty_@3, bag), bah), bba)) -> new_esEs0(xuu40000, xuu3000, bag, bah, bba) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(app(ty_Either, bh), ca), bb) -> new_esEs3(xuu40000, xuu3000, bh, ca) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(app(ty_@2, de), df), dg, dh) -> new_esEs(xuu40000, xuu3000, de, df) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(app(ty_Either, hb), hc)) -> new_esEs3(xuu40002, xuu3002, hb, hc) new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(app(ty_Either, bea), beb)) -> new_esEs3(xuu40000, xuu3000, bea, beb) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(app(app(ty_@3, ge), gf), gg)) -> new_esEs0(xuu40002, xuu3002, ge, gf, gg) new_esEs1(Just(xuu40000), Just(xuu3000), app(app(app(ty_@3, hf), hg), hh)) -> new_esEs0(xuu40000, xuu3000, hf, hg, hh) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(app(ty_@2, cc), cd)) -> new_esEs(xuu40001, xuu3001, cc, cd) new_esEs3(Left(xuu40000), Left(xuu3000), app(app(app(ty_@3, bcb), bcc), bcd), bca) -> new_esEs0(xuu40000, xuu3000, bcb, bcc, bcd) new_esEs3(Left(xuu40000), Left(xuu3000), app(app(ty_@2, bbg), bbh), bca) -> new_esEs(xuu40000, xuu3000, bbg, bbh) new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(ty_Maybe, bdg)) -> new_esEs1(xuu40000, xuu3000, bdg) new_esEs1(Just(xuu40000), Just(xuu3000), app(app(ty_@2, hd), he)) -> new_esEs(xuu40000, xuu3000, hd, he) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(app(ty_Either, dc), dd)) -> new_esEs3(xuu40001, xuu3001, dc, dd) new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs0(xuu40000, xuu3000, bdd, bde, bdf) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(ty_Maybe, da)) -> new_esEs1(xuu40001, xuu3001, da) new_esEs1(Just(xuu40000), Just(xuu3000), app(ty_[], bab)) -> new_esEs2(xuu40000, xuu3000, bab) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(app(ty_@2, fa), fb), dh) -> new_esEs(xuu40001, xuu3001, fa, fb) new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(ty_[], bbc)) -> new_esEs2(xuu40000, xuu3000, bbc) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(ty_Maybe, bf), bb) -> new_esEs1(xuu40000, xuu3000, bf) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(ty_[], ha)) -> new_esEs2(xuu40002, xuu3002, ha) new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(app(ty_Either, bbd), bbe)) -> new_esEs3(xuu40000, xuu3000, bbd, bbe) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(app(ty_@2, gc), gd)) -> new_esEs(xuu40002, xuu3002, gc, gd) new_esEs3(Left(xuu40000), Left(xuu3000), app(ty_Maybe, bce), bca) -> new_esEs1(xuu40000, xuu3000, bce) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(app(app(ty_@3, bc), bd), be), bb) -> new_esEs0(xuu40000, xuu3000, bc, bd, be) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(ty_[], fh), dh) -> new_esEs2(xuu40001, xuu3001, fh) new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(app(ty_@2, bdb), bdc)) -> new_esEs(xuu40000, xuu3000, bdb, bdc) new_esEs1(Just(xuu40000), Just(xuu3000), app(ty_Maybe, baa)) -> new_esEs1(xuu40000, xuu3000, baa) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(ty_[], ee), dg, dh) -> new_esEs2(xuu40000, xuu3000, ee) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(ty_[], db)) -> new_esEs2(xuu40001, xuu3001, db) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(app(app(ty_@3, ea), eb), ec), dg, dh) -> new_esEs0(xuu40000, xuu3000, ea, eb, ec) new_esEs1(Just(xuu40000), Just(xuu3000), app(app(ty_Either, bac), bad)) -> new_esEs3(xuu40000, xuu3000, bac, bad) new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(app(ty_Either, ef), eg), dg, dh) -> new_esEs3(xuu40000, xuu3000, ef, eg) new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(ty_Maybe, bbb)) -> new_esEs1(xuu40000, xuu3000, bbb) new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(ty_[], bg), bb) -> new_esEs2(xuu40000, xuu3000, bg) new_esEs3(Left(xuu40000), Left(xuu3000), app(ty_[], bcf), bca) -> new_esEs2(xuu40000, xuu3000, bcf) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_esEs1(Just(xuu40000), Just(xuu3000), app(app(ty_Either, bac), bad)) -> new_esEs3(xuu40000, xuu3000, bac, bad) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Just(xuu40000), Just(xuu3000), app(app(app(ty_@3, hf), hg), hh)) -> new_esEs0(xuu40000, xuu3000, hf, hg, hh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(app(ty_Either, bbd), bbe)) -> new_esEs3(xuu40000, xuu3000, bbd, bbe) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Just(xuu40000), Just(xuu3000), app(ty_[], bab)) -> new_esEs2(xuu40000, xuu3000, bab) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(app(app(ty_@3, bag), bah), bba)) -> new_esEs0(xuu40000, xuu3000, bag, bah, bba) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs1(Just(xuu40000), Just(xuu3000), app(app(ty_@2, hd), he)) -> new_esEs(xuu40000, xuu3000, hd, he) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Just(xuu40000), Just(xuu3000), app(ty_Maybe, baa)) -> new_esEs1(xuu40000, xuu3000, baa) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(app(ty_@2, bae), baf)) -> new_esEs(xuu40000, xuu3000, bae, baf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(ty_Maybe, bbb)) -> new_esEs1(xuu40000, xuu3000, bbb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(Left(xuu40000), Left(xuu3000), app(app(ty_Either, bcg), bch), bca) -> new_esEs3(xuu40000, xuu3000, bcg, bch) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(app(ty_Either, bea), beb)) -> new_esEs3(xuu40000, xuu3000, bea, beb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs3(Left(xuu40000), Left(xuu3000), app(app(app(ty_@3, bcb), bcc), bcd), bca) -> new_esEs0(xuu40000, xuu3000, bcb, bcc, bcd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs0(xuu40000, xuu3000, bdd, bde, bdf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(ty_[], bdh)) -> new_esEs2(xuu40000, xuu3000, bdh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs3(Left(xuu40000), Left(xuu3000), app(ty_[], bcf), bca) -> new_esEs2(xuu40000, xuu3000, bcf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(Left(xuu40000), Left(xuu3000), app(app(ty_@2, bbg), bbh), bca) -> new_esEs(xuu40000, xuu3000, bbg, bbh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(app(ty_@2, bdb), bdc)) -> new_esEs(xuu40000, xuu3000, bdb, bdc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs3(Right(xuu40000), Right(xuu3000), bda, app(ty_Maybe, bdg)) -> new_esEs1(xuu40000, xuu3000, bdg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs3(Left(xuu40000), Left(xuu3000), app(ty_Maybe, bce), bca) -> new_esEs1(xuu40000, xuu3000, bce) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(app(ty_Either, ga), gb), dh) -> new_esEs3(xuu40001, xuu3001, ga, gb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(app(ty_Either, hb), hc)) -> new_esEs3(xuu40002, xuu3002, hb, hc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(app(ty_Either, ef), eg), dg, dh) -> new_esEs3(xuu40000, xuu3000, ef, eg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(app(ty_Either, bh), ca), bb) -> new_esEs3(xuu40000, xuu3000, bh, ca) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(app(ty_Either, dc), dd)) -> new_esEs3(xuu40001, xuu3001, dc, dd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(app(app(ty_@3, fc), fd), ff), dh) -> new_esEs0(xuu40001, xuu3001, fc, fd, ff) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(app(app(ty_@3, ge), gf), gg)) -> new_esEs0(xuu40002, xuu3002, ge, gf, gg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(app(app(ty_@3, ea), eb), ec), dg, dh) -> new_esEs0(xuu40000, xuu3000, ea, eb, ec) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(app(app(ty_@3, ce), cf), cg)) -> new_esEs0(xuu40001, xuu3001, ce, cf, cg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(app(app(ty_@3, bc), bd), be), bb) -> new_esEs0(xuu40000, xuu3000, bc, bd, be) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), bbf) -> new_esEs2(xuu40001, xuu3001, bbf) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_esEs2(:(xuu40000, xuu40001), :(xuu3000, xuu3001), app(ty_[], bbc)) -> new_esEs2(xuu40000, xuu3000, bbc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(ty_[], ha)) -> new_esEs2(xuu40002, xuu3002, ha) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(ty_[], fh), dh) -> new_esEs2(xuu40001, xuu3001, fh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(ty_[], ee), dg, dh) -> new_esEs2(xuu40000, xuu3000, ee) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(ty_[], db)) -> new_esEs2(xuu40001, xuu3001, db) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(ty_[], bg), bb) -> new_esEs2(xuu40000, xuu3000, bg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(app(ty_@2, de), df), dg, dh) -> new_esEs(xuu40000, xuu3000, de, df) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(app(ty_@2, fa), fb), dh) -> new_esEs(xuu40001, xuu3001, fa, fb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(app(ty_@2, gc), gd)) -> new_esEs(xuu40002, xuu3002, gc, gd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), app(ty_Maybe, ed), dg, dh) -> new_esEs1(xuu40000, xuu3000, ed) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, dg, app(ty_Maybe, gh)) -> new_esEs1(xuu40002, xuu3002, gh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_esEs0(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), eh, app(ty_Maybe, fg), dh) -> new_esEs1(xuu40001, xuu3001, fg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(app(ty_@2, h), ba), bb) -> new_esEs(xuu40000, xuu3000, h, ba) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(app(ty_@2, cc), cd)) -> new_esEs(xuu40001, xuu3001, cc, cd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), cb, app(ty_Maybe, da)) -> new_esEs1(xuu40001, xuu3001, da) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), app(ty_Maybe, bf), bb) -> new_esEs1(xuu40000, xuu3000, bf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 ---------------------------------------- (30) YES ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: new_primMulNat(Succ(xuu4000100), Succ(xuu300000)) -> new_primMulNat(xuu4000100, Succ(xuu300000)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primMulNat(Succ(xuu4000100), Succ(xuu300000)) -> new_primMulNat(xuu4000100, Succ(xuu300000)) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (33) YES ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: new_primCompAux(xuu4600, xuu4800, xuu127, app(ty_[], bfd)) -> new_compare0(xuu4600, xuu4800, bfd) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(app(ty_Either, bcd), bce)) -> new_ltEs0(xuu4612, xuu4812, bcd, bce) new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(app(app(ty_@3, gh), ha), hb)) -> new_ltEs1(xuu4610, xuu4810, gh, ha, hb) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(ty_[], baf)), hg), hh)) -> new_lt2(xuu4610, xuu4810, baf) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(app(app(ty_@3, bcf), bcg), bch))) -> new_ltEs1(xuu4612, xuu4812, bcf, bcg, bch) new_ltEs0(Left(xuu4610), Left(xuu4810), app(app(app(ty_@3, ff), fg), fh), fb) -> new_ltEs1(xuu4610, xuu4810, ff, fg, fh) new_lt3(xuu460, xuu480, ca) -> new_compare22(xuu460, xuu480, new_esEs7(xuu460, xuu480, ca), ca) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(app(ty_Either, baa), bab), hg, hh) -> new_lt0(xuu4610, xuu4810, baa, bab) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(app(app(ty_@3, bbe), bbf), bbg), hh) -> new_lt1(xuu4611, xuu4811, bbe, bbf, bbg) new_lt2(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_primCompAux(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, bh), bh) new_ltEs3(Just(xuu4610), Just(xuu4810), app(ty_[], bec)) -> new_ltEs2(xuu4610, xuu4810, bec) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(app(ty_@2, bcb), bcc))) -> new_ltEs(xuu4612, xuu4812, bcb, bcc) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(ty_Maybe, eg))) -> new_ltEs3(xuu4611, xuu4811, eg) new_lt(xuu460, xuu480, h, ba) -> new_compare2(xuu460, xuu480, new_esEs4(xuu460, xuu480, h, ba), h, ba) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(ty_[], bbh), hh) -> new_lt2(xuu4611, xuu4811, bbh) new_ltEs0(Left(xuu4610), Left(xuu4810), app(ty_[], ga), fb) -> new_ltEs2(xuu4610, xuu4810, ga) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(app(ty_@2, he), hf), hg, hh) -> new_lt(xuu4610, xuu4810, he, hf) new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(ty_Maybe, ca), bb) -> new_compare22(xuu460, xuu480, new_esEs7(xuu460, xuu480, ca), ca) new_ltEs0(Left(xuu4610), Left(xuu4810), app(app(ty_@2, eh), fa), fb) -> new_ltEs(xuu4610, xuu4810, eh, fa) new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(app(ty_Either, gf), gg))) -> new_ltEs0(xuu4610, xuu4810, gf, gg) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(ty_[], ef))) -> new_ltEs2(xuu4611, xuu4811, ef) new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(app(ty_@2, bdd), bde))) -> new_ltEs(xuu4610, xuu4810, bdd, bde) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(ty_[], bda)) -> new_ltEs2(xuu4612, xuu4812, bda) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(app(app(ty_@3, da), db), dc)), ce)) -> new_lt1(xuu4610, xuu4810, da, db, dc) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(app(app(ty_@3, ec), ed), ee)) -> new_ltEs1(xuu4611, xuu4811, ec, ed, ee) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(app(ty_Either, baa), bab)), hg), hh)) -> new_lt0(xuu4610, xuu4810, baa, bab) new_lt1(xuu460, xuu480, be, bf, bg) -> new_compare21(xuu460, xuu480, new_esEs6(xuu460, xuu480, be, bf, bg), be, bf, bg) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(ty_Maybe, bag), hg, hh) -> new_lt3(xuu4610, xuu4810, bag) new_ltEs3(Just(xuu4610), Just(xuu4810), app(app(ty_Either, bdf), bdg)) -> new_ltEs0(xuu4610, xuu4810, bdf, bdg) new_ltEs3(Just(xuu4610), Just(xuu4810), app(app(ty_@2, bdd), bde)) -> new_ltEs(xuu4610, xuu4810, bdd, bde) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(app(ty_Either, bbc), bbd)), hh)) -> new_lt0(xuu4611, xuu4811, bbc, bbd) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(ty_Maybe, de), ce) -> new_lt3(xuu4610, xuu4810, de) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(app(ty_@2, dg), dh))) -> new_ltEs(xuu4611, xuu4811, dg, dh) new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(app(app(ty_@3, bdh), bea), beb))) -> new_ltEs1(xuu4610, xuu4810, bdh, bea, beb) new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(ty_[], hc)) -> new_ltEs2(xuu4610, xuu4810, hc) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(ty_Maybe, bdb))) -> new_ltEs3(xuu4612, xuu4812, bdb) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(app(ty_Either, ea), eb))) -> new_ltEs0(xuu4611, xuu4811, ea, eb) new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(app(ty_Either, fc), fd)), fb)) -> new_ltEs0(xuu4610, xuu4810, fc, fd) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(app(ty_@2, dg), dh)) -> new_ltEs(xuu4611, xuu4811, dg, dh) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(app(app(ty_@3, bac), bad), bae), hg, hh) -> new_lt1(xuu4610, xuu4810, bac, bad, bae) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(app(ty_Either, bbc), bbd), hh) -> new_lt0(xuu4611, xuu4811, bbc, bbd) new_compare0(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_compare0(xuu4601, xuu4801, bh) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(app(ty_Either, cf), cg)), ce)) -> new_lt0(xuu4610, xuu4810, cf, cg) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(app(ty_@2, bcb), bcc)) -> new_ltEs(xuu4612, xuu4812, bcb, bcc) new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(ty_[], hc))) -> new_ltEs2(xuu4610, xuu4810, hc) new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(app(ty_@2, eh), fa)), fb)) -> new_ltEs(xuu4610, xuu4810, eh, fa) new_compare20(xuu460, xuu480, False, bc, bd) -> new_ltEs0(xuu460, xuu480, bc, bd) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(ty_[], dd)), ce)) -> new_lt2(xuu4610, xuu4810, dd) new_compare2(@2(:(xuu4600, xuu4601), xuu461), @2(:(xuu4800, xuu4801), xuu481), False, app(ty_[], bh), bb) -> new_compare0(xuu4601, xuu4801, bh) new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(app(ty_@2, gd), ge)) -> new_ltEs(xuu4610, xuu4810, gd, ge) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(app(ty_@2, bba), bbb), hh) -> new_lt(xuu4611, xuu4811, bba, bbb) new_primCompAux(xuu4600, xuu4800, xuu127, app(ty_Maybe, bfe)) -> new_compare5(xuu4600, xuu4800, bfe) new_ltEs0(Left(xuu4610), Left(xuu4810), app(ty_Maybe, gb), fb) -> new_ltEs3(xuu4610, xuu4810, gb) new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(app(ty_Either, bc), bd), bb) -> new_compare20(xuu460, xuu480, new_esEs5(xuu460, xuu480, bc, bd), bc, bd) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(app(ty_Either, bcd), bce))) -> new_ltEs0(xuu4612, xuu4812, bcd, bce) new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(ty_Maybe, gb)), fb)) -> new_ltEs3(xuu4610, xuu4810, gb) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(app(app(ty_@3, ec), ed), ee))) -> new_ltEs1(xuu4611, xuu4811, ec, ed, ee) new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(app(app(ty_@3, be), bf), bg), bb) -> new_compare21(xuu460, xuu480, new_esEs6(xuu460, xuu480, be, bf, bg), be, bf, bg) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(ty_[], bbh)), hh)) -> new_lt2(xuu4611, xuu4811, bbh) new_ltEs3(Just(xuu4610), Just(xuu4810), app(ty_Maybe, bed)) -> new_ltEs3(xuu4610, xuu4810, bed) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(app(ty_@2, cc), cd), ce) -> new_lt(xuu4610, xuu4810, cc, cd) new_primCompAux(xuu4600, xuu4800, xuu127, app(app(app(ty_@3, bfa), bfb), bfc)) -> new_compare4(xuu4600, xuu4800, bfa, bfb, bfc) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(app(app(ty_@3, bbe), bbf), bbg)), hh)) -> new_lt1(xuu4611, xuu4811, bbe, bbf, bbg) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(ty_Maybe, eg)) -> new_ltEs3(xuu4611, xuu4811, eg) new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(app(ty_Either, gf), gg)) -> new_ltEs0(xuu4610, xuu4810, gf, gg) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(ty_Maybe, bca)), hh)) -> new_lt3(xuu4611, xuu4811, bca) new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(ty_Maybe, bed))) -> new_ltEs3(xuu4610, xuu4810, bed) new_compare21(xuu460, xuu480, False, be, bf, bg) -> new_ltEs1(xuu460, xuu480, be, bf, bg) new_ltEs0(Left(xuu4610), Left(xuu4810), app(app(ty_Either, fc), fd), fb) -> new_ltEs0(xuu4610, xuu4810, fc, fd) new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(ty_[], ga)), fb)) -> new_ltEs2(xuu4610, xuu4810, ga) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(app(ty_Either, cf), cg), ce) -> new_lt0(xuu4610, xuu4810, cf, cg) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(app(app(ty_@3, bac), bad), bae)), hg), hh)) -> new_lt1(xuu4610, xuu4810, bac, bad, bae) new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, cb, app(ty_[], bdc)) -> new_compare0(xuu461, xuu481, bdc) new_ltEs2(xuu461, xuu481, bdc) -> new_compare0(xuu461, xuu481, bdc) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(app(ty_Either, ea), eb)) -> new_ltEs0(xuu4611, xuu4811, ea, eb) new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(app(ty_Either, bdf), bdg))) -> new_ltEs0(xuu4610, xuu4810, bdf, bdg) new_compare3(xuu460, xuu480, bc, bd) -> new_compare20(xuu460, xuu480, new_esEs5(xuu460, xuu480, bc, bd), bc, bd) new_compare0(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_primCompAux(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, bh), bh) new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(app(app(ty_@3, ff), fg), fh)), fb)) -> new_ltEs1(xuu4610, xuu4810, ff, fg, fh) new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(ty_[], bec))) -> new_ltEs2(xuu4610, xuu4810, bec) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(app(app(ty_@3, da), db), dc), ce) -> new_lt1(xuu4610, xuu4810, da, db, dc) new_compare2(@2(:(xuu4600, xuu4601), xuu461), @2(:(xuu4800, xuu4801), xuu481), False, app(ty_[], bh), bb) -> new_primCompAux(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, bh), bh) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(ty_Maybe, de)), ce)) -> new_lt3(xuu4610, xuu4810, de) new_ltEs3(Just(xuu4610), Just(xuu4810), app(app(app(ty_@3, bdh), bea), beb)) -> new_ltEs1(xuu4610, xuu4810, bdh, bea, beb) new_lt2(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_compare0(xuu4601, xuu4801, bh) new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(app(ty_@2, gd), ge))) -> new_ltEs(xuu4610, xuu4810, gd, ge) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(ty_Maybe, bca), hh) -> new_lt3(xuu4611, xuu4811, bca) new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(app(ty_@2, h), ba), bb) -> new_compare2(xuu460, xuu480, new_esEs4(xuu460, xuu480, h, ba), h, ba) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(ty_Maybe, bag)), hg), hh)) -> new_lt3(xuu4610, xuu4810, bag) new_compare4(xuu460, xuu480, be, bf, bg) -> new_compare21(xuu460, xuu480, new_esEs6(xuu460, xuu480, be, bf, bg), be, bf, bg) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(app(app(ty_@3, bcf), bcg), bch)) -> new_ltEs1(xuu4612, xuu4812, bcf, bcg, bch) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(ty_Maybe, bdb)) -> new_ltEs3(xuu4612, xuu4812, bdb) new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(ty_Maybe, hd)) -> new_ltEs3(xuu4610, xuu4810, hd) new_primCompAux(xuu4600, xuu4800, xuu127, app(app(ty_Either, beg), beh)) -> new_compare3(xuu4600, xuu4800, beg, beh) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(ty_[], bda))) -> new_ltEs2(xuu4612, xuu4812, bda) new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(ty_[], baf), hg, hh) -> new_lt2(xuu4610, xuu4810, baf) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(ty_[], dd), ce) -> new_lt2(xuu4610, xuu4810, dd) new_compare22(xuu460, xuu480, False, ca) -> new_ltEs3(xuu460, xuu480, ca) new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(app(app(ty_@3, gh), ha), hb))) -> new_ltEs1(xuu4610, xuu4810, gh, ha, hb) new_compare5(xuu460, xuu480, ca) -> new_compare22(xuu460, xuu480, new_esEs7(xuu460, xuu480, ca), ca) new_primCompAux(xuu4600, xuu4800, xuu127, app(app(ty_@2, bee), bef)) -> new_compare1(xuu4600, xuu4800, bee, bef) new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(app(ty_@2, cc), cd)), ce)) -> new_lt(xuu4610, xuu4810, cc, cd) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(app(ty_@2, he), hf)), hg), hh)) -> new_lt(xuu4610, xuu4810, he, hf) new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(app(ty_@2, bba), bbb)), hh)) -> new_lt(xuu4611, xuu4811, bba, bbb) new_lt0(xuu460, xuu480, bc, bd) -> new_compare20(xuu460, xuu480, new_esEs5(xuu460, xuu480, bc, bd), bc, bd) new_compare1(xuu460, xuu480, h, ba) -> new_compare2(xuu460, xuu480, new_esEs4(xuu460, xuu480, h, ba), h, ba) new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(ty_[], ef)) -> new_ltEs2(xuu4611, xuu4811, ef) new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(ty_Maybe, hd))) -> new_ltEs3(xuu4610, xuu4810, hd) The TRS R consists of the following rules: new_ltEs7(xuu461, xuu481) -> new_fsEs(new_compare18(xuu461, xuu481)) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xuu4600)), Pos(xuu480)) -> LT new_esEs24(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs5(Right(xuu40000), Right(xuu3000), dce, app(ty_Ratio, ddd)) -> new_esEs13(xuu40000, xuu3000, ddd) new_esEs25(xuu4610, xuu4810, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs6(xuu4610, xuu4810, bac, bad, bae) new_pePe(True, xuu132) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Ordering, dbd) -> new_esEs8(xuu40000, xuu3000) new_primCmpNat0(xuu4600, Succ(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_esEs22(xuu40002, xuu3002, ty_Double) -> new_esEs14(xuu40002, xuu3002) new_ltEs20(xuu4612, xuu4812, ty_Ordering) -> new_ltEs15(xuu4612, xuu4812) new_lt21(xuu4611, xuu4811, ty_@0) -> new_lt4(xuu4611, xuu4811) new_esEs17(Integer(xuu40000), Integer(xuu3000)) -> new_primEqInt(xuu40000, xuu3000) new_esEs5(Right(xuu40000), Right(xuu3000), dce, app(ty_[], dde)) -> new_esEs16(xuu40000, xuu3000, dde) new_ltEs5(xuu4611, xuu4811, app(app(ty_Either, ea), eb)) -> new_ltEs11(xuu4611, xuu4811, ea, eb) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(ty_@2, gd), ge)) -> new_ltEs4(xuu4610, xuu4810, gd, ge) new_esEs18(True, True) -> True new_compare112(xuu460, xuu480, True, ca) -> LT new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Ratio, dca), dbd) -> new_esEs13(xuu40000, xuu3000, dca) new_lt19(xuu460, xuu480, app(ty_[], bh)) -> new_lt14(xuu460, xuu480, bh) new_compare(:(xuu4600, xuu4601), [], bh) -> GT new_compare14(xuu460, xuu480) -> new_compare26(xuu460, xuu480, new_esEs18(xuu460, xuu480)) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_ltEs16(Nothing, Nothing, bgb) -> True new_primCmpInt(Pos(Zero), Neg(Succ(xuu4800))) -> GT new_compare(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_primCompAux0(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, bh), bh) new_compare23(@2(xuu460, xuu461), @2(xuu480, xuu481), False, cb, bb) -> new_compare16(xuu460, xuu461, xuu480, xuu481, new_lt19(xuu460, xuu480, cb), new_asAs(new_esEs19(xuu460, xuu480, cb), new_ltEs19(xuu461, xuu481, bb)), cb, bb) new_ltEs20(xuu4612, xuu4812, ty_Float) -> new_ltEs13(xuu4612, xuu4812) new_esEs24(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_@0) -> new_esEs12(xuu460, xuu480) new_ltEs18(True, False) -> False new_ltEs16(Just(xuu4610), Nothing, bgb) -> False new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Maybe, cha)) -> new_esEs7(xuu40000, xuu3000, cha) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Char, dbd) -> new_esEs11(xuu40000, xuu3000) new_compare29(xuu4600, xuu4800, app(app(ty_@2, bee), bef)) -> new_compare11(xuu4600, xuu4800, bee, bef) new_compare210(xuu460, xuu480, True, be, bf, bg) -> EQ new_esEs29(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs28(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_ltEs8(xuu461, xuu481) -> new_fsEs(new_compare6(xuu461, xuu481)) new_compare111(xuu107, xuu108, xuu109, xuu110, False, cfg, cfh) -> GT new_lt21(xuu4611, xuu4811, app(ty_Ratio, cfe)) -> new_lt9(xuu4611, xuu4811, cfe) new_ltEs19(xuu461, xuu481, app(ty_Maybe, bgb)) -> new_ltEs16(xuu461, xuu481, bgb) new_compare27(xuu460, xuu480, False) -> new_compare110(xuu460, xuu480, new_ltEs15(xuu460, xuu480)) new_compare113(xuu460, xuu480, False) -> GT new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_ltEs15(EQ, LT) -> False new_esEs20(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_primCmpNat1(Succ(xuu46000), Succ(xuu48000)) -> new_primCmpNat1(xuu46000, xuu48000) new_esEs25(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs23(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs23(xuu40000, xuu3000, app(app(ty_Either, cdh), cea)) -> new_esEs5(xuu40000, xuu3000, cdh, cea) new_ltEs19(xuu461, xuu481, ty_Ordering) -> new_ltEs15(xuu461, xuu481) new_compare26(xuu460, xuu480, True) -> EQ new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(xuu400000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xuu30000))) -> False new_ltEs15(GT, LT) -> False new_fsEs(xuu119) -> new_not(new_esEs8(xuu119, GT)) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, app(app(app(ty_@3, daa), dab), dac)) -> new_esEs6(xuu40000, xuu3000, daa, dab, dac) new_esEs24(xuu40001, xuu3001, app(app(ty_@2, ceb), cec)) -> new_esEs4(xuu40001, xuu3001, ceb, cec) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_esEs8(EQ, EQ) -> True new_esEs23(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_Either, bdf), bdg)) -> new_ltEs11(xuu4610, xuu4810, bdf, bdg) new_compare19(xuu460, xuu480, True, bc, bd) -> LT new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Integer, fb) -> new_ltEs17(xuu4610, xuu4810) new_primEqNat0(Succ(xuu400000), Succ(xuu30000)) -> new_primEqNat0(xuu400000, xuu30000) new_esEs19(xuu460, xuu480, ty_Float) -> new_esEs15(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, app(ty_Ratio, ccb)) -> new_esEs13(xuu40002, xuu3002, ccb) new_ltEs20(xuu4612, xuu4812, app(ty_Ratio, cff)) -> new_ltEs9(xuu4612, xuu4812, cff) new_esEs5(Right(xuu40000), Right(xuu3000), dce, app(app(ty_@2, dcf), dcg)) -> new_esEs4(xuu40000, xuu3000, dcf, dcg) new_esEs25(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Int) -> new_esEs10(xuu40000, xuu3000) new_not(True) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_[], dcb), dbd) -> new_esEs16(xuu40000, xuu3000, dcb) new_primCompAux00(xuu138, LT) -> LT new_esEs21(xuu40001, xuu3001, app(app(app(ty_@3, cad), cae), caf)) -> new_esEs6(xuu40001, xuu3001, cad, cae, caf) new_ltEs9(xuu461, xuu481, bga) -> new_fsEs(new_compare8(xuu461, xuu481, bga)) new_esEs6(@3(xuu40000, xuu40001, xuu40002), @3(xuu3000, xuu3001, xuu3002), bge, bgf, bgg) -> new_asAs(new_esEs20(xuu40000, xuu3000, bge), new_asAs(new_esEs21(xuu40001, xuu3001, bgf), new_esEs22(xuu40002, xuu3002, bgg))) new_ltEs20(xuu4612, xuu4812, ty_Integer) -> new_ltEs17(xuu4612, xuu4812) new_esEs22(xuu40002, xuu3002, ty_Bool) -> new_esEs18(xuu40002, xuu3002) new_esEs5(Left(xuu40000), Left(xuu3000), ty_@0, dbd) -> new_esEs12(xuu40000, xuu3000) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Bool, fb) -> new_ltEs18(xuu4610, xuu4810) new_esEs23(xuu40000, xuu3000, app(ty_Ratio, cdf)) -> new_esEs13(xuu40000, xuu3000, cdf) new_esEs20(xuu40000, xuu3000, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs6(xuu40000, xuu3000, bhb, bhc, bhd) new_esEs19(xuu460, xuu480, ty_Ordering) -> new_esEs8(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(app(app(ty_@3, bfa), bfb), bfc)) -> new_compare28(xuu4600, xuu4800, bfa, bfb, bfc) new_esEs19(xuu460, xuu480, app(app(ty_@2, h), ba)) -> new_esEs4(xuu460, xuu480, h, ba) new_lt13(xuu460, xuu480) -> new_esEs8(new_compare9(xuu460, xuu480), LT) new_primEqNat0(Succ(xuu400000), Zero) -> False new_primEqNat0(Zero, Succ(xuu30000)) -> False new_ltEs20(xuu4612, xuu4812, ty_Int) -> new_ltEs6(xuu4612, xuu4812) new_ltEs19(xuu461, xuu481, ty_Int) -> new_ltEs6(xuu461, xuu481) new_esEs27(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Char) -> new_ltEs7(xuu4610, xuu4810) new_ltEs15(GT, EQ) -> False new_ltEs5(xuu4611, xuu4811, ty_Bool) -> new_ltEs18(xuu4611, xuu4811) new_lt20(xuu4610, xuu4810, app(ty_[], baf)) -> new_lt14(xuu4610, xuu4810, baf) new_primCompAux00(xuu138, GT) -> GT new_lt19(xuu460, xuu480, app(ty_Ratio, bfh)) -> new_lt9(xuu460, xuu480, bfh) new_compare110(xuu460, xuu480, True) -> LT new_ltEs19(xuu461, xuu481, ty_Float) -> new_ltEs13(xuu461, xuu481) new_primCmpNat2(Zero, xuu4600) -> LT new_esEs23(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs27(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs20(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_ltEs20(xuu4612, xuu4812, app(app(ty_@2, bcb), bcc)) -> new_ltEs4(xuu4612, xuu4812, bcb, bcc) new_esEs28(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_primCmpInt(Pos(Succ(xuu4600)), Neg(xuu480)) -> GT new_ltEs11(Left(xuu4610), Right(xuu4810), gc, fb) -> True new_esEs20(xuu40000, xuu3000, app(app(ty_@2, bgh), bha)) -> new_esEs4(xuu40000, xuu3000, bgh, bha) new_compare24(xuu460, xuu480, False, bc, bd) -> new_compare19(xuu460, xuu480, new_ltEs11(xuu460, xuu480, bc, bd), bc, bd) new_ltEs20(xuu4612, xuu4812, app(app(app(ty_@3, bcf), bcg), bch)) -> new_ltEs12(xuu4612, xuu4812, bcf, bcg, bch) new_ltEs20(xuu4612, xuu4812, ty_Double) -> new_ltEs10(xuu4612, xuu4812) new_compare29(xuu4600, xuu4800, app(ty_Maybe, bfe)) -> new_compare15(xuu4600, xuu4800, bfe) new_esEs26(xuu4611, xuu4811, ty_Double) -> new_esEs14(xuu4611, xuu4811) new_esEs7(Just(xuu40000), Just(xuu3000), ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs29(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_primPlusNat1(Succ(xuu38200), Succ(xuu9400)) -> Succ(Succ(new_primPlusNat1(xuu38200, xuu9400))) new_lt5(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, app(app(ty_@2, cc), cd)) -> new_lt6(xuu4610, xuu4810, cc, cd) new_esEs24(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_lt6(xuu460, xuu480, h, ba) -> new_esEs8(new_compare11(xuu460, xuu480, h, ba), LT) new_esEs19(xuu460, xuu480, app(app(app(ty_@3, be), bf), bg)) -> new_esEs6(xuu460, xuu480, be, bf, bg) new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_[], bec)) -> new_ltEs14(xuu4610, xuu4810, bec) new_lt5(xuu4610, xuu4810, app(ty_Ratio, bff)) -> new_lt9(xuu4610, xuu4810, bff) new_ltEs19(xuu461, xuu481, app(app(app(ty_@3, bah), hg), hh)) -> new_ltEs12(xuu461, xuu481, bah, hg, hh) new_ltEs19(xuu461, xuu481, ty_Double) -> new_ltEs10(xuu461, xuu481) new_ltEs10(xuu461, xuu481) -> new_fsEs(new_compare13(xuu461, xuu481)) new_ltEs19(xuu461, xuu481, app(app(ty_@2, df), ce)) -> new_ltEs4(xuu461, xuu481, df, ce) new_esEs5(Right(xuu40000), Right(xuu3000), dce, app(ty_Maybe, ddc)) -> new_esEs7(xuu40000, xuu3000, ddc) new_compare11(xuu460, xuu480, h, ba) -> new_compare23(xuu460, xuu480, new_esEs4(xuu460, xuu480, h, ba), h, ba) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_lt20(xuu4610, xuu4810, app(app(ty_Either, baa), bab)) -> new_lt11(xuu4610, xuu4810, baa, bab) new_ltEs19(xuu461, xuu481, ty_Char) -> new_ltEs7(xuu461, xuu481) new_lt20(xuu4610, xuu4810, app(app(app(ty_@3, bac), bad), bae)) -> new_lt12(xuu4610, xuu4810, bac, bad, bae) new_pePe(False, xuu132) -> xuu132 new_esEs7(Nothing, Just(xuu3000), cgc) -> False new_esEs7(Just(xuu40000), Nothing, cgc) -> False new_esEs20(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt17(xuu460, xuu480) -> new_esEs8(new_compare7(xuu460, xuu480), LT) new_esEs29(xuu40000, xuu3000, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_lt11(xuu460, xuu480, bc, bd) -> new_esEs8(new_compare30(xuu460, xuu480, bc, bd), LT) new_esEs20(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_Either, chd), che)) -> new_esEs5(xuu40000, xuu3000, chd, che) new_esEs22(xuu40002, xuu3002, ty_Float) -> new_esEs15(xuu40002, xuu3002) new_esEs26(xuu4611, xuu4811, ty_@0) -> new_esEs12(xuu4611, xuu4811) new_ltEs18(False, False) -> True new_esEs25(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs19(xuu461, xuu481, ty_Integer) -> new_ltEs17(xuu461, xuu481) new_lt5(xuu4610, xuu4810, ty_Double) -> new_lt10(xuu4610, xuu4810) new_compare17(xuu89, xuu88) -> new_primCmpInt(xuu89, xuu88) new_esEs11(Char(xuu40000), Char(xuu3000)) -> new_primEqNat0(xuu40000, xuu3000) new_compare7(Integer(xuu4600), Integer(xuu4800)) -> new_primCmpInt(xuu4600, xuu4800) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_ltEs14(xuu461, xuu481, bdc) -> new_fsEs(new_compare(xuu461, xuu481, bdc)) new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_compare23(xuu46, xuu48, True, cb, bb) -> EQ new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_@2, dbb), dbc), dbd) -> new_esEs4(xuu40000, xuu3000, dbb, dbc) new_esEs21(xuu40001, xuu3001, app(app(ty_@2, cab), cac)) -> new_esEs4(xuu40001, xuu3001, cab, cac) new_primEqInt(Pos(Zero), Neg(Succ(xuu30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xuu30000))) -> False new_esEs7(Nothing, Nothing, cgc) -> True new_compare16(xuu107, xuu108, xuu109, xuu110, True, xuu112, cfg, cfh) -> new_compare111(xuu107, xuu108, xuu109, xuu110, True, cfg, cfh) new_esEs21(xuu40001, xuu3001, ty_Ordering) -> new_esEs8(xuu40001, xuu3001) new_lt18(xuu460, xuu480) -> new_esEs8(new_compare14(xuu460, xuu480), LT) new_lt5(xuu4610, xuu4810, app(app(ty_Either, cf), cg)) -> new_lt11(xuu4610, xuu4810, cf, cg) new_esEs25(xuu4610, xuu4810, app(app(ty_@2, he), hf)) -> new_esEs4(xuu4610, xuu4810, he, hf) new_ltEs5(xuu4611, xuu4811, ty_Char) -> new_ltEs7(xuu4611, xuu4811) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Double, fb) -> new_ltEs10(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, ty_Int) -> new_lt7(xuu4611, xuu4811) new_lt7(xuu460, xuu480) -> new_esEs8(new_compare17(xuu460, xuu480), LT) new_esEs26(xuu4611, xuu4811, app(ty_[], bbh)) -> new_esEs16(xuu4611, xuu4811, bbh) new_lt16(xuu460, xuu480, ca) -> new_esEs8(new_compare15(xuu460, xuu480, ca), LT) new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_esEs24(xuu40001, xuu3001, app(app(ty_Either, cfb), cfc)) -> new_esEs5(xuu40001, xuu3001, cfb, cfc) new_esEs25(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_primEqInt(Neg(Succ(xuu400000)), Neg(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_ltEs19(xuu461, xuu481, app(ty_[], bdc)) -> new_ltEs14(xuu461, xuu481, bdc) new_primCmpInt(Neg(Zero), Pos(Succ(xuu4800))) -> LT new_lt19(xuu460, xuu480, app(app(app(ty_@3, be), bf), bg)) -> new_lt12(xuu460, xuu480, be, bf, bg) new_primMulInt(Pos(xuu400010), Pos(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_lt5(xuu4610, xuu4810, app(app(app(ty_@3, da), db), dc)) -> new_lt12(xuu4610, xuu4810, da, db, dc) new_esEs25(xuu4610, xuu4810, app(ty_Maybe, bag)) -> new_esEs7(xuu4610, xuu4810, bag) new_esEs20(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(app(ty_@2, cc), cd)) -> new_esEs4(xuu4610, xuu4810, cc, cd) new_lt19(xuu460, xuu480, app(app(ty_Either, bc), bd)) -> new_lt11(xuu460, xuu480, bc, bd) new_ltEs4(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, ce) -> new_pePe(new_lt5(xuu4610, xuu4810, df), new_asAs(new_esEs9(xuu4610, xuu4810, df), new_ltEs5(xuu4611, xuu4811, ce))) new_compare10(xuu460, xuu480) -> new_compare27(xuu460, xuu480, new_esEs8(xuu460, xuu480)) new_esEs9(xuu4610, xuu4810, ty_Ordering) -> new_esEs8(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, ty_Bool) -> new_compare14(xuu4600, xuu4800) new_esEs29(xuu40000, xuu3000, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_esEs9(xuu4610, xuu4810, app(ty_Ratio, bff)) -> new_esEs13(xuu4610, xuu4810, bff) new_esEs24(xuu40001, xuu3001, app(app(app(ty_@3, ced), cee), cef)) -> new_esEs6(xuu40001, xuu3001, ced, cee, cef) new_lt19(xuu460, xuu480, ty_Double) -> new_lt10(xuu460, xuu480) new_primMulNat0(Succ(xuu4000100), Zero) -> Zero new_primMulNat0(Zero, Succ(xuu300000)) -> Zero new_primPlusNat0(Zero, xuu300000) -> Succ(xuu300000) new_ltEs11(Right(xuu4610), Left(xuu4810), gc, fb) -> False new_ltEs20(xuu4612, xuu4812, ty_Bool) -> new_ltEs18(xuu4612, xuu4812) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(app(ty_@3, cgf), cgg), cgh)) -> new_esEs6(xuu40000, xuu3000, cgf, cgg, cgh) new_esEs23(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs22(xuu40002, xuu3002, app(ty_Maybe, cca)) -> new_esEs7(xuu40002, xuu3002, cca) new_esEs14(Double(xuu40000, xuu40001), Double(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_ltEs17(xuu461, xuu481) -> new_fsEs(new_compare7(xuu461, xuu481)) new_ltEs5(xuu4611, xuu4811, app(ty_[], ef)) -> new_ltEs14(xuu4611, xuu4811, ef) new_esEs23(xuu40000, xuu3000, app(ty_Maybe, cde)) -> new_esEs7(xuu40000, xuu3000, cde) new_lt21(xuu4611, xuu4811, app(ty_[], bbh)) -> new_lt14(xuu4611, xuu4811, bbh) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(ty_Either, dcc), dcd), dbd) -> new_esEs5(xuu40000, xuu3000, dcc, dcd) new_esEs21(xuu40001, xuu3001, app(app(ty_Either, cbb), cbc)) -> new_esEs5(xuu40001, xuu3001, cbb, cbc) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs15(Float(xuu40000, xuu40001), Float(xuu3000, xuu3001)) -> new_esEs10(new_sr(xuu40000, xuu3001), new_sr(xuu40001, xuu3000)) new_esEs8(LT, LT) -> True new_ltEs20(xuu4612, xuu4812, app(ty_Maybe, bdb)) -> new_ltEs16(xuu4612, xuu4812, bdb) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_primPlusNat1(Succ(xuu38200), Zero) -> Succ(xuu38200) new_primPlusNat1(Zero, Succ(xuu9400)) -> Succ(xuu9400) new_esEs22(xuu40002, xuu3002, app(app(app(ty_@3, cbf), cbg), cbh)) -> new_esEs6(xuu40002, xuu3002, cbf, cbg, cbh) new_esEs9(xuu4610, xuu4810, ty_Float) -> new_esEs15(xuu4610, xuu4810) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Int) -> new_compare17(new_sr(xuu4600, xuu4801), new_sr(xuu4800, xuu4601)) new_esEs7(Just(xuu40000), Just(xuu3000), app(app(ty_@2, cgd), cge)) -> new_esEs4(xuu40000, xuu3000, cgd, cge) new_esEs9(xuu4610, xuu4810, app(app(app(ty_@3, da), db), dc)) -> new_esEs6(xuu4610, xuu4810, da, db, dc) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_Either, fc), fd), fb) -> new_ltEs11(xuu4610, xuu4810, fc, fd) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Ordering, fb) -> new_ltEs15(xuu4610, xuu4810) new_primCompAux0(xuu4600, xuu4800, xuu127, bh) -> new_primCompAux00(xuu127, new_compare29(xuu4600, xuu4800, bh)) new_esEs19(xuu460, xuu480, ty_Integer) -> new_esEs17(xuu460, xuu480) new_compare29(xuu4600, xuu4800, app(ty_Ratio, dba)) -> new_compare8(xuu4600, xuu4800, dba) new_compare8(:%(xuu4600, xuu4601), :%(xuu4800, xuu4801), ty_Integer) -> new_compare7(new_sr0(xuu4600, xuu4801), new_sr0(xuu4800, xuu4601)) new_esEs29(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_[], hc)) -> new_ltEs14(xuu4610, xuu4810, hc) new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_Int) -> new_esEs10(xuu40000, xuu3000) new_compare26(xuu460, xuu480, False) -> new_compare113(xuu460, xuu480, new_ltEs18(xuu460, xuu480)) new_esEs24(xuu40001, xuu3001, app(ty_Maybe, ceg)) -> new_esEs7(xuu40001, xuu3001, ceg) new_compare12(xuu460, xuu480, False, be, bf, bg) -> GT new_compare29(xuu4600, xuu4800, ty_Int) -> new_compare17(xuu4600, xuu4800) new_lt14(xuu460, xuu480, bh) -> new_esEs8(new_compare(xuu460, xuu480, bh), LT) new_compare19(xuu460, xuu480, False, bc, bd) -> GT new_esEs23(xuu40000, xuu3000, app(app(app(ty_@3, cdb), cdc), cdd)) -> new_esEs6(xuu40000, xuu3000, cdb, cdc, cdd) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16([], [], chf) -> True new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Maybe, bed)) -> new_ltEs16(xuu4610, xuu4810, bed) new_primMulInt(Neg(xuu400010), Neg(xuu30000)) -> Pos(new_primMulNat0(xuu400010, xuu30000)) new_esEs29(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_compare25(xuu460, xuu480, True, ca) -> EQ new_esEs9(xuu4610, xuu4810, app(app(ty_Either, cf), cg)) -> new_esEs5(xuu4610, xuu4810, cf, cg) new_ltEs5(xuu4611, xuu4811, ty_@0) -> new_ltEs8(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, app(ty_Ratio, cah)) -> new_esEs13(xuu40001, xuu3001, cah) new_compare([], :(xuu4800, xuu4801), bh) -> LT new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_lt21(xuu4611, xuu4811, app(app(app(ty_@3, bbe), bbf), bbg)) -> new_lt12(xuu4611, xuu4811, bbe, bbf, bbg) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(ty_@2, eh), fa), fb) -> new_ltEs4(xuu4610, xuu4810, eh, fa) new_ltEs19(xuu461, xuu481, ty_@0) -> new_ltEs8(xuu461, xuu481) new_ltEs15(EQ, GT) -> True new_esEs22(xuu40002, xuu3002, app(app(ty_Either, ccd), cce)) -> new_esEs5(xuu40002, xuu3002, ccd, cce) new_esEs23(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt21(xuu4611, xuu4811, app(app(ty_Either, bbc), bbd)) -> new_lt11(xuu4611, xuu4811, bbc, bbd) new_esEs19(xuu460, xuu480, ty_Int) -> new_esEs10(xuu460, xuu480) new_esEs23(xuu40000, xuu3000, app(app(ty_@2, cch), cda)) -> new_esEs4(xuu40000, xuu3000, cch, cda) new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_esEs21(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, app(app(app(ty_@3, ec), ed), ee)) -> new_ltEs12(xuu4611, xuu4811, ec, ed, ee) new_primMulInt(Pos(xuu400010), Neg(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_primMulInt(Neg(xuu400010), Pos(xuu30000)) -> Neg(new_primMulNat0(xuu400010, xuu30000)) new_esEs19(xuu460, xuu480, ty_Bool) -> new_esEs18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(app(ty_@3, gh), ha), hb)) -> new_ltEs12(xuu4610, xuu4810, gh, ha, hb) new_esEs19(xuu460, xuu480, app(app(ty_Either, bc), bd)) -> new_esEs5(xuu460, xuu480, bc, bd) new_esEs22(xuu40002, xuu3002, ty_Ordering) -> new_esEs8(xuu40002, xuu3002) new_lt21(xuu4611, xuu4811, ty_Double) -> new_lt10(xuu4611, xuu4811) new_esEs5(Right(xuu40000), Right(xuu3000), dce, app(app(app(ty_@3, dch), dda), ddb)) -> new_esEs6(xuu40000, xuu3000, dch, dda, ddb) new_ltEs20(xuu4612, xuu4812, ty_@0) -> new_ltEs8(xuu4612, xuu4812) new_compare16(xuu107, xuu108, xuu109, xuu110, False, xuu112, cfg, cfh) -> new_compare111(xuu107, xuu108, xuu109, xuu110, xuu112, cfg, cfh) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_Ratio, bgd)) -> new_ltEs9(xuu4610, xuu4810, bgd) new_primCmpInt(Pos(Succ(xuu4600)), Pos(xuu480)) -> new_primCmpNat0(xuu4600, xuu480) new_esEs22(xuu40002, xuu3002, app(app(ty_@2, cbd), cbe)) -> new_esEs4(xuu40002, xuu3002, cbd, cbe) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(ty_@2, bdd), bde)) -> new_ltEs4(xuu4610, xuu4810, bdd, bde) new_lt8(xuu460, xuu480) -> new_esEs8(new_compare18(xuu460, xuu480), LT) new_lt21(xuu4611, xuu4811, ty_Float) -> new_lt13(xuu4611, xuu4811) new_lt21(xuu4611, xuu4811, ty_Ordering) -> new_lt15(xuu4611, xuu4811) new_primCmpNat1(Succ(xuu46000), Zero) -> GT new_esEs9(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt10(xuu460, xuu480) -> new_esEs8(new_compare13(xuu460, xuu480), LT) new_esEs25(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs18(False, True) -> True new_ltEs20(xuu4612, xuu4812, app(app(ty_Either, bcd), bce)) -> new_ltEs11(xuu4612, xuu4812, bcd, bce) new_compare29(xuu4600, xuu4800, ty_@0) -> new_compare6(xuu4600, xuu4800) new_esEs21(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_sr0(Integer(xuu46000), Integer(xuu48010)) -> Integer(new_primMulInt(xuu46000, xuu48010)) new_esEs24(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs5(xuu4611, xuu4811, ty_Double) -> new_ltEs10(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Integer) -> new_lt17(xuu460, xuu480) new_ltEs15(LT, GT) -> True new_esEs5(Left(xuu40000), Left(xuu3000), ty_Double, dbd) -> new_esEs14(xuu40000, xuu3000) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Char, fb) -> new_ltEs7(xuu4610, xuu4810) new_primCmpNat0(xuu4600, Zero) -> GT new_ltEs5(xuu4611, xuu4811, ty_Ordering) -> new_ltEs15(xuu4611, xuu4811) new_esEs20(xuu40000, xuu3000, app(ty_Ratio, bhf)) -> new_esEs13(xuu40000, xuu3000, bhf) new_esEs23(xuu40000, xuu3000, ty_Float) -> new_esEs15(xuu40000, xuu3000) new_esEs26(xuu4611, xuu4811, ty_Char) -> new_esEs11(xuu4611, xuu4811) new_esEs25(xuu4610, xuu4810, app(ty_Ratio, cfd)) -> new_esEs13(xuu4610, xuu4810, cfd) new_compare111(xuu107, xuu108, xuu109, xuu110, True, cfg, cfh) -> LT new_asAs(True, xuu63) -> xuu63 new_ltEs5(xuu4611, xuu4811, app(ty_Maybe, eg)) -> new_ltEs16(xuu4611, xuu4811, eg) new_compare12(xuu460, xuu480, True, be, bf, bg) -> LT new_ltEs16(Just(xuu4610), Just(xuu4810), app(ty_Ratio, cga)) -> new_ltEs9(xuu4610, xuu4810, cga) new_compare113(xuu460, xuu480, True) -> LT new_lt9(xuu460, xuu480, bfh) -> new_esEs8(new_compare8(xuu460, xuu480, bfh), LT) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, ty_Float) -> new_compare9(xuu4600, xuu4800) new_esEs19(xuu460, xuu480, app(ty_Ratio, bfh)) -> new_esEs13(xuu460, xuu480, bfh) new_esEs26(xuu4611, xuu4811, ty_Integer) -> new_esEs17(xuu4611, xuu4811) new_esEs9(xuu4610, xuu4810, app(ty_Maybe, de)) -> new_esEs7(xuu4610, xuu4810, de) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Float) -> new_ltEs13(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, ty_Char) -> new_lt8(xuu4611, xuu4811) new_esEs29(xuu40000, xuu3000, app(ty_[], daf)) -> new_esEs16(xuu40000, xuu3000, daf) new_esEs18(False, False) -> True new_esEs20(xuu40000, xuu3000, ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_compare24(xuu460, xuu480, True, bc, bd) -> EQ new_esEs21(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(app(ty_Either, gf), gg)) -> new_ltEs11(xuu4610, xuu4810, gf, gg) new_esEs29(xuu40000, xuu3000, app(app(ty_Either, dag), dah)) -> new_esEs5(xuu40000, xuu3000, dag, dah) new_compare110(xuu460, xuu480, False) -> GT new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Ratio, bgc), fb) -> new_ltEs9(xuu4610, xuu4810, bgc) new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_compare29(xuu4600, xuu4800, app(app(ty_Either, beg), beh)) -> new_compare30(xuu4600, xuu4800, beg, beh) new_primCompAux00(xuu138, EQ) -> xuu138 new_ltEs5(xuu4611, xuu4811, ty_Int) -> new_ltEs6(xuu4611, xuu4811) new_sr(xuu40001, xuu3000) -> new_primMulInt(xuu40001, xuu3000) new_lt19(xuu460, xuu480, ty_Ordering) -> new_lt15(xuu460, xuu480) new_primMulNat0(Zero, Zero) -> Zero new_primCmpInt(Neg(Succ(xuu4600)), Neg(xuu480)) -> new_primCmpNat2(xuu480, xuu4600) new_ltEs16(Just(xuu4610), Just(xuu4810), app(app(app(ty_@3, bdh), bea), beb)) -> new_ltEs12(xuu4610, xuu4810, bdh, bea, beb) new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_Maybe, gb), fb) -> new_ltEs16(xuu4610, xuu4810, gb) new_lt21(xuu4611, xuu4811, app(ty_Maybe, bca)) -> new_lt16(xuu4611, xuu4811, bca) new_esEs9(xuu4610, xuu4810, ty_Char) -> new_esEs11(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, app(app(ty_@2, dg), dh)) -> new_ltEs4(xuu4611, xuu4811, dg, dh) new_lt19(xuu460, xuu480, ty_Char) -> new_lt8(xuu460, xuu480) new_esEs21(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_esEs23(xuu40000, xuu3000, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_esEs24(xuu40001, xuu3001, app(ty_[], cfa)) -> new_esEs16(xuu40001, xuu3001, cfa) new_ltEs20(xuu4612, xuu4812, app(ty_[], bda)) -> new_ltEs14(xuu4612, xuu4812, bda) new_primCmpInt(Neg(Zero), Neg(Succ(xuu4800))) -> new_primCmpNat0(xuu4800, Zero) new_primCmpNat1(Zero, Zero) -> EQ new_ltEs19(xuu461, xuu481, ty_Bool) -> new_ltEs18(xuu461, xuu481) new_lt5(xuu4610, xuu4810, app(ty_[], dd)) -> new_lt14(xuu4610, xuu4810, dd) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Bool) -> new_ltEs18(xuu4610, xuu4810) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, app(ty_Maybe, hd)) -> new_ltEs16(xuu4610, xuu4810, hd) new_esEs20(xuu40000, xuu3000, app(app(ty_Either, bhh), caa)) -> new_esEs5(xuu40000, xuu3000, bhh, caa) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_compare210(xuu460, xuu480, False, be, bf, bg) -> new_compare12(xuu460, xuu480, new_ltEs12(xuu460, xuu480, be, bf, bg), be, bf, bg) new_esEs5(Right(xuu40000), Right(xuu3000), dce, app(app(ty_Either, ddf), ddg)) -> new_esEs5(xuu40000, xuu3000, ddf, ddg) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_lt19(xuu460, xuu480, app(app(ty_@2, h), ba)) -> new_lt6(xuu460, xuu480, h, ba) new_ltEs15(EQ, EQ) -> True new_esEs19(xuu460, xuu480, ty_Double) -> new_esEs14(xuu460, xuu480) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_@0, fb) -> new_ltEs8(xuu4610, xuu4810) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, ty_Char) -> new_esEs11(xuu40001, xuu3001) new_esEs24(xuu40001, xuu3001, app(ty_Ratio, ceh)) -> new_esEs13(xuu40001, xuu3001, ceh) new_compare29(xuu4600, xuu4800, ty_Ordering) -> new_compare10(xuu4600, xuu4800) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Integer) -> new_ltEs17(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Bool) -> new_esEs18(xuu4610, xuu4810) new_ltEs5(xuu4611, xuu4811, ty_Integer) -> new_ltEs17(xuu4611, xuu4811) new_lt15(xuu460, xuu480) -> new_esEs8(new_compare10(xuu460, xuu480), LT) new_compare25(xuu460, xuu480, False, ca) -> new_compare112(xuu460, xuu480, new_ltEs16(xuu460, xuu480, ca), ca) new_esEs20(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt19(xuu460, xuu480, ty_Int) -> new_lt7(xuu460, xuu480) new_lt20(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs22(xuu40002, xuu3002, ty_Integer) -> new_esEs17(xuu40002, xuu3002) new_compare15(xuu460, xuu480, ca) -> new_compare25(xuu460, xuu480, new_esEs7(xuu460, xuu480, ca), ca) new_ltEs20(xuu4612, xuu4812, ty_Char) -> new_ltEs7(xuu4612, xuu4812) new_ltEs19(xuu461, xuu481, app(app(ty_Either, gc), fb)) -> new_ltEs11(xuu461, xuu481, gc, fb) new_esEs29(xuu40000, xuu3000, app(ty_Ratio, dae)) -> new_esEs13(xuu40000, xuu3000, dae) new_primEqInt(Neg(Succ(xuu400000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xuu30000))) -> False new_compare([], [], bh) -> EQ new_ltEs15(LT, EQ) -> True new_esEs22(xuu40002, xuu3002, ty_Char) -> new_esEs11(xuu40002, xuu3002) new_primEqInt(Pos(Succ(xuu400000)), Pos(Succ(xuu30000))) -> new_primEqNat0(xuu400000, xuu30000) new_esEs21(xuu40001, xuu3001, app(ty_Maybe, cag)) -> new_esEs7(xuu40001, xuu3001, cag) new_esEs22(xuu40002, xuu3002, ty_Int) -> new_esEs10(xuu40002, xuu3002) new_ltEs13(xuu461, xuu481) -> new_fsEs(new_compare9(xuu461, xuu481)) new_esEs20(xuu40000, xuu3000, app(ty_[], bhg)) -> new_esEs16(xuu40000, xuu3000, bhg) new_esEs26(xuu4611, xuu4811, app(app(ty_@2, bba), bbb)) -> new_esEs4(xuu4611, xuu4811, bba, bbb) new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_@0) -> new_esEs12(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, ty_Float) -> new_ltEs13(xuu4611, xuu4811) new_compare29(xuu4600, xuu4800, ty_Double) -> new_compare13(xuu4600, xuu4800) new_esEs25(xuu4610, xuu4810, app(app(ty_Either, baa), bab)) -> new_esEs5(xuu4610, xuu4810, baa, bab) new_ltEs16(Nothing, Just(xuu4810), bgb) -> True new_lt20(xuu4610, xuu4810, ty_Int) -> new_lt7(xuu4610, xuu4810) new_esEs13(:%(xuu40000, xuu40001), :%(xuu3000, xuu3001), cgb) -> new_asAs(new_esEs27(xuu40000, xuu3000, cgb), new_esEs28(xuu40001, xuu3001, cgb)) new_esEs26(xuu4611, xuu4811, ty_Ordering) -> new_esEs8(xuu4611, xuu4811) new_primEqInt(Pos(Succ(xuu400000)), Neg(xuu3000)) -> False new_primEqInt(Neg(Succ(xuu400000)), Pos(xuu3000)) -> False new_lt20(xuu4610, xuu4810, app(app(ty_@2, he), hf)) -> new_lt6(xuu4610, xuu4810, he, hf) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Float) -> new_esEs15(xuu40000, xuu3000) new_ltEs16(Just(xuu4610), Just(xuu4810), ty_Int) -> new_ltEs6(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_esEs25(xuu4610, xuu4810, app(ty_[], baf)) -> new_esEs16(xuu4610, xuu4810, baf) new_lt4(xuu460, xuu480) -> new_esEs8(new_compare6(xuu460, xuu480), LT) new_esEs19(xuu460, xuu480, app(ty_[], bh)) -> new_esEs16(xuu460, xuu480, bh) new_esEs26(xuu4611, xuu4811, app(ty_Maybe, bca)) -> new_esEs7(xuu4611, xuu4811, bca) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_ltEs15(GT, GT) -> True new_lt20(xuu4610, xuu4810, ty_Ordering) -> new_lt15(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Char) -> new_lt8(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, app(app(ty_Either, bbc), bbd)) -> new_esEs5(xuu4611, xuu4811, bbc, bbd) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Float, dbd) -> new_esEs15(xuu40000, xuu3000) new_esEs26(xuu4611, xuu4811, ty_Bool) -> new_esEs18(xuu4611, xuu4811) new_lt5(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs5(Left(xuu40000), Left(xuu3000), app(app(app(ty_@3, dbe), dbf), dbg), dbd) -> new_esEs6(xuu40000, xuu3000, dbe, dbf, dbg) new_primCmpInt(Pos(Zero), Pos(Succ(xuu4800))) -> new_primCmpNat2(Zero, xuu4800) new_lt19(xuu460, xuu480, app(ty_Maybe, ca)) -> new_lt16(xuu460, xuu480, ca) new_esEs9(xuu4610, xuu4810, app(ty_[], dd)) -> new_esEs16(xuu4610, xuu4810, dd) new_esEs26(xuu4611, xuu4811, app(app(app(ty_@3, bbe), bbf), bbg)) -> new_esEs6(xuu4611, xuu4811, bbe, bbf, bbg) new_esEs23(xuu40000, xuu3000, ty_Double) -> new_esEs14(xuu40000, xuu3000) new_lt20(xuu4610, xuu4810, app(ty_Ratio, cfd)) -> new_lt9(xuu4610, xuu4810, cfd) new_compare30(xuu460, xuu480, bc, bd) -> new_compare24(xuu460, xuu480, new_esEs5(xuu460, xuu480, bc, bd), bc, bd) new_esEs24(xuu40001, xuu3001, ty_Float) -> new_esEs15(xuu40001, xuu3001) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Bool) -> new_esEs18(xuu40000, xuu3000) new_esEs5(Left(xuu40000), Left(xuu3000), app(ty_Maybe, dbh), dbd) -> new_esEs7(xuu40000, xuu3000, dbh) new_lt5(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_Ratio, chb)) -> new_esEs13(xuu40000, xuu3000, chb) new_not(False) -> True new_esEs21(xuu40001, xuu3001, ty_Double) -> new_esEs14(xuu40001, xuu3001) new_ltEs6(xuu461, xuu481) -> new_fsEs(new_compare17(xuu461, xuu481)) new_compare28(xuu460, xuu480, be, bf, bg) -> new_compare210(xuu460, xuu480, new_esEs6(xuu460, xuu480, be, bf, bg), be, bf, bg) new_lt20(xuu4610, xuu4810, ty_@0) -> new_lt4(xuu4610, xuu4810) new_esEs20(xuu40000, xuu3000, app(ty_Maybe, bhe)) -> new_esEs7(xuu40000, xuu3000, bhe) new_lt20(xuu4610, xuu4810, ty_Float) -> new_lt13(xuu4610, xuu4810) new_compare29(xuu4600, xuu4800, app(ty_[], bfd)) -> new_compare(xuu4600, xuu4800, bfd) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_esEs18(False, True) -> False new_esEs18(True, False) -> False new_esEs5(Left(xuu40000), Right(xuu3000), dce, dbd) -> False new_esEs5(Right(xuu40000), Left(xuu3000), dce, dbd) -> False new_lt21(xuu4611, xuu4811, ty_Bool) -> new_lt18(xuu4611, xuu4811) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_@0) -> new_ltEs8(xuu4610, xuu4810) new_esEs25(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_esEs7(Just(xuu40000), Just(xuu3000), app(ty_[], chc)) -> new_esEs16(xuu40000, xuu3000, chc) new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Float, fb) -> new_ltEs13(xuu4610, xuu4810) new_lt21(xuu4611, xuu4811, app(app(ty_@2, bba), bbb)) -> new_lt6(xuu4611, xuu4811, bba, bbb) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Int, dbd) -> new_esEs10(xuu40000, xuu3000) new_primPlusNat0(Succ(xuu980), xuu300000) -> Succ(Succ(new_primPlusNat1(xuu980, xuu300000))) new_esEs4(@2(xuu40000, xuu40001), @2(xuu3000, xuu3001), ccf, ccg) -> new_asAs(new_esEs23(xuu40000, xuu3000, ccf), new_esEs24(xuu40001, xuu3001, ccg)) new_esEs19(xuu460, xuu480, app(ty_Maybe, ca)) -> new_esEs7(xuu460, xuu480, ca) new_primCmpNat1(Zero, Succ(xuu48000)) -> LT new_esEs24(xuu40001, xuu3001, ty_Int) -> new_esEs10(xuu40001, xuu3001) new_esEs10(xuu4000, xuu300) -> new_primEqInt(xuu4000, xuu300) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt12(xuu460, xuu480, be, bf, bg) -> new_esEs8(new_compare28(xuu460, xuu480, be, bf, bg), LT) new_primPlusNat1(Zero, Zero) -> Zero new_compare9(Float(xuu4600, Pos(xuu46010)), Float(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_compare9(Float(xuu4600, Neg(xuu46010)), Float(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Double) -> new_ltEs10(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_Double) -> new_esEs14(xuu4610, xuu4810) new_esEs21(xuu40001, xuu3001, app(ty_[], cba)) -> new_esEs16(xuu40001, xuu3001, cba) new_compare6(@0, @0) -> EQ new_ltEs15(LT, LT) -> True new_esEs25(xuu4610, xuu4810, ty_Int) -> new_esEs10(xuu4610, xuu4810) new_lt5(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_lt5(xuu4610, xuu4810, app(ty_Maybe, de)) -> new_lt16(xuu4610, xuu4810, de) new_lt19(xuu460, xuu480, ty_@0) -> new_lt4(xuu460, xuu480) new_esEs22(xuu40002, xuu3002, ty_@0) -> new_esEs12(xuu40002, xuu3002) new_esEs25(xuu4610, xuu4810, ty_Integer) -> new_esEs17(xuu4610, xuu4810) new_primMulNat0(Succ(xuu4000100), Succ(xuu300000)) -> new_primPlusNat0(new_primMulNat0(xuu4000100, Succ(xuu300000)), xuu300000) new_esEs16(:(xuu40000, xuu40001), :(xuu3000, xuu3001), chf) -> new_asAs(new_esEs29(xuu40000, xuu3000, chf), new_esEs16(xuu40001, xuu3001, chf)) new_compare13(Double(xuu4600, Neg(xuu46010)), Double(xuu4800, Neg(xuu48010))) -> new_compare17(new_sr(xuu4600, Neg(xuu48010)), new_sr(Neg(xuu46010), xuu4800)) new_esEs12(@0, @0) -> True new_ltEs11(Left(xuu4610), Left(xuu4810), app(ty_[], ga), fb) -> new_ltEs14(xuu4610, xuu4810, ga) new_esEs20(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_lt19(xuu460, xuu480, ty_Float) -> new_lt13(xuu460, xuu480) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Double) -> new_esEs14(xuu40000, xuu3000) new_esEs7(Just(xuu40000), Just(xuu3000), ty_Integer) -> new_esEs17(xuu40000, xuu3000) new_ltEs19(xuu461, xuu481, app(ty_Ratio, bga)) -> new_ltEs9(xuu461, xuu481, bga) new_esEs24(xuu40001, xuu3001, ty_Integer) -> new_esEs17(xuu40001, xuu3001) new_esEs26(xuu4611, xuu4811, ty_Int) -> new_esEs10(xuu4611, xuu4811) new_esEs21(xuu40001, xuu3001, ty_@0) -> new_esEs12(xuu40001, xuu3001) new_lt20(xuu4610, xuu4810, app(ty_Maybe, bag)) -> new_lt16(xuu4610, xuu4810, bag) new_esEs29(xuu40000, xuu3000, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_esEs16(:(xuu40000, xuu40001), [], chf) -> False new_esEs16([], :(xuu3000, xuu3001), chf) -> False new_compare29(xuu4600, xuu4800, ty_Integer) -> new_compare7(xuu4600, xuu4800) new_esEs23(xuu40000, xuu3000, app(ty_[], cdg)) -> new_esEs16(xuu40000, xuu3000, cdg) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Integer, dbd) -> new_esEs17(xuu40000, xuu3000) new_primCmpNat2(Succ(xuu4800), xuu4600) -> new_primCmpNat1(xuu4800, xuu4600) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt21(xuu4611, xuu4811, ty_Integer) -> new_lt17(xuu4611, xuu4811) new_esEs29(xuu40000, xuu3000, app(app(ty_@2, chg), chh)) -> new_esEs4(xuu40000, xuu3000, chg, chh) new_ltEs18(True, True) -> True new_esEs24(xuu40001, xuu3001, ty_Bool) -> new_esEs18(xuu40001, xuu3001) new_esEs19(xuu460, xuu480, ty_Char) -> new_esEs11(xuu460, xuu480) new_primEqNat0(Zero, Zero) -> True new_ltEs11(Left(xuu4610), Left(xuu4810), ty_Int, fb) -> new_ltEs6(xuu4610, xuu4810) new_esEs29(xuu40000, xuu3000, ty_Ordering) -> new_esEs8(xuu40000, xuu3000) new_lt5(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_esEs9(xuu4610, xuu4810, ty_@0) -> new_esEs12(xuu4610, xuu4810) new_esEs26(xuu4611, xuu4811, ty_Float) -> new_esEs15(xuu4611, xuu4811) new_lt19(xuu460, xuu480, ty_Bool) -> new_lt18(xuu460, xuu480) new_ltEs11(Right(xuu4610), Right(xuu4810), gc, ty_Ordering) -> new_ltEs15(xuu4610, xuu4810) new_esEs5(Left(xuu40000), Left(xuu3000), ty_Bool, dbd) -> new_esEs18(xuu40000, xuu3000) new_ltEs5(xuu4611, xuu4811, app(ty_Ratio, bfg)) -> new_ltEs9(xuu4611, xuu4811, bfg) new_lt20(xuu4610, xuu4810, ty_Integer) -> new_lt17(xuu4610, xuu4810) new_esEs22(xuu40002, xuu3002, app(ty_[], ccc)) -> new_esEs16(xuu40002, xuu3002, ccc) new_asAs(False, xuu63) -> False new_esEs26(xuu4611, xuu4811, app(ty_Ratio, cfe)) -> new_esEs13(xuu4611, xuu4811, cfe) new_lt20(xuu4610, xuu4810, ty_Bool) -> new_lt18(xuu4610, xuu4810) new_compare13(Double(xuu4600, Pos(xuu46010)), Double(xuu4800, Pos(xuu48010))) -> new_compare17(new_sr(xuu4600, Pos(xuu48010)), new_sr(Pos(xuu46010), xuu4800)) new_esEs29(xuu40000, xuu3000, app(ty_Maybe, dad)) -> new_esEs7(xuu40000, xuu3000, dad) new_esEs5(Right(xuu40000), Right(xuu3000), dce, ty_Char) -> new_esEs11(xuu40000, xuu3000) new_compare18(Char(xuu4600), Char(xuu4800)) -> new_primCmpNat1(xuu4600, xuu4800) new_compare29(xuu4600, xuu4800, ty_Char) -> new_compare18(xuu4600, xuu4800) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_compare112(xuu460, xuu480, False, ca) -> GT new_compare27(xuu460, xuu480, True) -> EQ new_ltEs12(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, hh) -> new_pePe(new_lt20(xuu4610, xuu4810, bah), new_asAs(new_esEs25(xuu4610, xuu4810, bah), new_pePe(new_lt21(xuu4611, xuu4811, hg), new_asAs(new_esEs26(xuu4611, xuu4811, hg), new_ltEs20(xuu4612, xuu4812, hh))))) new_ltEs11(Left(xuu4610), Left(xuu4810), app(app(app(ty_@3, ff), fg), fh), fb) -> new_ltEs12(xuu4610, xuu4810, ff, fg, fh) The set Q consists of the following terms: new_esEs8(EQ, EQ) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs7(x0, x1) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_compare19(x0, x1, False, x2, x3) new_esEs20(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Ordering) new_esEs21(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Float) new_lt5(x0, x1, app(ty_Ratio, x2)) new_ltEs13(x0, x1) new_esEs7(Just(x0), Just(x1), ty_@0) new_primPlusNat1(Zero, Zero) new_compare24(x0, x1, True, x2, x3) new_compare18(Char(x0), Char(x1)) new_esEs7(Just(x0), Just(x1), ty_Bool) new_primCmpNat1(Zero, Zero) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs21(x0, x1, ty_Int) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_lt21(x0, x1, app(ty_Ratio, x2)) new_compare7(Integer(x0), Integer(x1)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs18(True, True) new_esEs7(Just(x0), Just(x1), ty_Integer) new_esEs15(Float(x0, x1), Float(x2, x3)) new_lt5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primEqInt(Pos(Zero), Pos(Zero)) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_lt19(x0, x1, ty_Double) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, ty_Char) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_esEs25(x0, x1, ty_Float) new_compare28(x0, x1, x2, x3, x4) new_esEs7(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_ltEs12(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare29(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Bool) new_ltEs11(Left(x0), Left(x1), ty_Double, x2) new_compare210(x0, x1, False, x2, x3, x4) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_compare12(x0, x1, False, x2, x3, x4) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primEqInt(Neg(Zero), Neg(Zero)) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare29(x0, x1, ty_Char) new_compare6(@0, @0) new_ltEs11(Right(x0), Right(x1), x2, ty_Ordering) new_lt5(x0, x1, ty_Ordering) new_compare15(x0, x1, x2) new_lt9(x0, x1, x2) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_esEs9(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_ltEs5(x0, x1, ty_Float) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs22(x0, x1, ty_Ordering) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_ltEs11(Left(x0), Left(x1), ty_Ordering, x2) new_primCompAux00(x0, LT) new_esEs23(x0, x1, ty_Integer) new_lt6(x0, x1, x2, x3) new_esEs21(x0, x1, ty_@0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt19(x0, x1, app(ty_Ratio, x2)) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_compare29(x0, x1, ty_@0) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_compare111(x0, x1, x2, x3, True, x4, x5) new_lt21(x0, x1, app(ty_[], x2)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_compare27(x0, x1, False) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Succ(x0)) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_compare110(x0, x1, True) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_compare([], :(x0, x1), x2) new_compare29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs9(x0, x1, ty_Float) new_lt19(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_esEs7(Just(x0), Just(x1), ty_Int) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1) new_esEs24(x0, x1, ty_Float) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_compare29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_esEs28(x0, x1, ty_Integer) new_esEs24(x0, x1, app(ty_[], x2)) new_primCompAux0(x0, x1, x2, x3) new_esEs7(Just(x0), Just(x1), ty_Char) new_primMulInt(Neg(x0), Neg(x1)) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Float) new_compare23(@2(x0, x1), @2(x2, x3), False, x4, x5) new_pePe(True, x0) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_esEs22(x0, x1, ty_Integer) new_ltEs15(EQ, EQ) new_fsEs(x0) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs21(x0, x1, ty_Integer) new_compare11(x0, x1, x2, x3) new_lt14(x0, x1, x2) new_ltEs16(Just(x0), Just(x1), ty_Float) new_esEs7(Just(x0), Just(x1), ty_Ordering) new_lt13(x0, x1) new_ltEs5(x0, x1, app(ty_Maybe, x2)) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt21(x0, x1, ty_Integer) new_esEs7(Just(x0), Nothing, x1) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_ltEs20(x0, x1, ty_Char) new_ltEs11(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt8(x0, x1) new_asAs(False, x0) new_compare12(x0, x1, True, x2, x3, x4) new_ltEs11(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs19(x0, x1, ty_Integer) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs9(x0, x1, app(ty_Maybe, x2)) new_compare([], [], x0) new_ltEs16(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_primCompAux00(x0, EQ) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt15(x0, x1) new_ltEs20(x0, x1, ty_Int) new_primPlusNat1(Succ(x0), Succ(x1)) new_esEs7(Nothing, Nothing, x0) new_ltEs11(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs9(x0, x1, ty_Bool) new_esEs18(False, True) new_esEs18(True, False) new_compare112(x0, x1, True, x2) new_ltEs16(Just(x0), Just(x1), ty_Int) new_lt19(x0, x1, ty_Bool) new_ltEs15(GT, LT) new_ltEs15(LT, GT) new_primCmpNat1(Succ(x0), Zero) new_ltEs11(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt19(x0, x1, ty_Char) new_ltEs11(Left(x0), Left(x1), ty_@0, x2) new_esEs19(x0, x1, ty_Bool) new_ltEs16(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Integer) new_esEs23(x0, x1, ty_Bool) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs9(x0, x1, ty_Char) new_ltEs16(Just(x0), Just(x1), ty_Char) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Bool) new_primEqNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Ordering) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_esEs8(GT, GT) new_lt21(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt7(x0, x1) new_esEs25(x0, x1, ty_@0) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_esEs22(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, ty_Int) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs5(x0, x1, app(ty_[], x2)) new_compare29(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs9(x0, x1, ty_Integer) new_compare25(x0, x1, False, x2) new_compare29(x0, x1, ty_Bool) new_ltEs9(x0, x1, x2) new_compare16(x0, x1, x2, x3, True, x4, x5, x6) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs22(x0, x1, ty_Int) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs5(x0, x1, app(ty_Ratio, x2)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_esEs25(x0, x1, ty_Double) new_compare29(x0, x1, ty_Ordering) new_ltEs11(Right(x0), Right(x1), x2, ty_@0) new_ltEs19(x0, x1, ty_Float) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, ty_@0) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_esEs23(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Bool) new_compare113(x0, x1, False) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, ty_Ordering) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primEqNat0(Succ(x0), Zero) new_esEs9(x0, x1, ty_Ordering) new_lt19(x0, x1, ty_Float) new_esEs19(x0, x1, ty_Float) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs19(x0, x1, ty_Char) new_lt5(x0, x1, ty_@0) new_compare29(x0, x1, ty_Integer) new_ltEs11(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs21(x0, x1, ty_Ordering) new_compare210(x0, x1, True, x2, x3, x4) new_esEs20(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Int) new_esEs22(x0, x1, ty_Float) new_lt5(x0, x1, ty_Double) new_esEs29(x0, x1, ty_Int) new_ltEs11(Right(x0), Right(x1), x2, ty_Double) new_esEs16([], [], x0) new_esEs29(x0, x1, ty_Char) new_ltEs5(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs6(x0, x1) new_ltEs20(x0, x1, ty_Integer) new_lt16(x0, x1, x2) new_ltEs8(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs16(Just(x0), Just(x1), ty_Bool) new_esEs19(x0, x1, ty_Int) new_ltEs16(Just(x0), Just(x1), app(ty_Ratio, x2)) new_ltEs5(x0, x1, ty_Char) new_esEs20(x0, x1, ty_Float) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Ordering) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare29(x0, x1, app(ty_Maybe, x2)) new_esEs24(x0, x1, ty_Int) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_primPlusNat0(Zero, x0) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs11(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_primPlusNat0(Succ(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_primPlusNat1(Succ(x0), Zero) new_primMulNat0(Zero, Zero) new_ltEs20(x0, x1, app(ty_[], x2)) new_ltEs16(Nothing, Just(x0), x1) new_ltEs16(Just(x0), Just(x1), ty_@0) new_esEs25(x0, x1, ty_Char) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_lt21(x0, x1, ty_Int) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs16(:(x0, x1), [], x2) new_lt20(x0, x1, ty_Int) new_esEs26(x0, x1, ty_Char) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Just(x0), Just(x1), app(ty_Ratio, x2)) new_ltEs5(x0, x1, ty_Int) new_sr(x0, x1) new_esEs23(x0, x1, ty_Double) new_ltEs11(Right(x0), Right(x1), x2, ty_Integer) new_esEs28(x0, x1, ty_Int) new_lt5(x0, x1, ty_Integer) new_esEs9(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, ty_Char) new_esEs25(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Char) new_esEs24(x0, x1, ty_Double) new_ltEs19(x0, x1, ty_@0) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_primCmpNat2(Zero, x0) new_esEs26(x0, x1, ty_Int) new_lt20(x0, x1, ty_Char) new_primCmpNat1(Zero, Succ(x0)) new_lt21(x0, x1, ty_Double) new_lt20(x0, x1, ty_Double) new_ltEs11(Right(x0), Right(x1), x2, ty_Float) new_esEs9(x0, x1, ty_Double) new_ltEs20(x0, x1, ty_Bool) new_esEs25(x0, x1, ty_Int) new_lt21(x0, x1, ty_Char) new_lt5(x0, x1, app(app(ty_@2, x2), x3)) new_esEs20(x0, x1, app(ty_[], x2)) new_ltEs16(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs26(x0, x1, ty_@0) new_ltEs19(x0, x1, ty_Int) new_ltEs18(True, True) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_compare25(x0, x1, True, x2) new_compare29(x0, x1, ty_Float) new_not(True) new_primMulNat0(Succ(x0), Zero) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(x0, x1, ty_@0) new_compare8(:%(x0, x1), :%(x2, x3), ty_Integer) new_ltEs5(x0, x1, ty_Double) new_esEs27(x0, x1, ty_Int) new_esEs9(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs11(Left(x0), Right(x1), x2, x3) new_ltEs11(Right(x0), Left(x1), x2, x3) new_ltEs5(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs5(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpNat2(Succ(x0), x1) new_ltEs20(x0, x1, ty_@0) new_esEs29(x0, x1, ty_Ordering) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_compare(:(x0, x1), [], x2) new_compare26(x0, x1, True) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_primCmpNat0(x0, Succ(x1)) new_compare8(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs7(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_compare113(x0, x1, True) new_ltEs19(x0, x1, ty_Bool) new_compare9(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare9(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs15(GT, EQ) new_ltEs15(EQ, GT) new_esEs10(x0, x1) new_lt21(x0, x1, ty_Ordering) new_esEs9(x0, x1, ty_Int) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs26(x0, x1, ty_Double) new_ltEs11(Left(x0), Left(x1), ty_Bool, x2) new_esEs18(False, False) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs11(Left(x0), Left(x1), ty_Integer, x2) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs24(x0, x1, ty_@0) new_primCmpNat1(Succ(x0), Succ(x1)) new_primEqNat0(Succ(x0), Succ(x1)) new_ltEs16(Just(x0), Just(x1), ty_Integer) new_esEs9(x0, x1, app(ty_[], x2)) new_ltEs18(True, False) new_ltEs18(False, True) new_ltEs11(Left(x0), Left(x1), app(ty_[], x2), x3) new_ltEs10(x0, x1) new_ltEs5(x0, x1, app(app(ty_@2, x2), x3)) new_esEs16(:(x0, x1), :(x2, x3), x4) new_ltEs16(Nothing, Nothing, x0) new_esEs26(x0, x1, ty_Bool) new_compare29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Just(x0), Just(x1), ty_Double) new_compare9(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_lt19(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Ordering) new_esEs11(Char(x0), Char(x1)) new_esEs7(Just(x0), Just(x1), app(ty_[], x2)) new_lt19(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Float) new_esEs21(x0, x1, ty_Float) new_ltEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, ty_Ordering) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_esEs25(x0, x1, ty_Integer) new_compare(:(x0, x1), :(x2, x3), x4) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_ltEs11(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_primMulInt(Pos(x0), Pos(x1)) new_ltEs16(Just(x0), Just(x1), ty_Double) new_lt5(x0, x1, app(ty_[], x2)) new_primPlusNat1(Zero, Succ(x0)) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs7(Just(x0), Just(x1), ty_Float) new_esEs7(Just(x0), Just(x1), app(ty_Maybe, x2)) new_lt20(x0, x1, ty_Bool) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_lt17(x0, x1) new_compare24(x0, x1, False, x2, x3) new_esEs9(x0, x1, ty_@0) new_compare30(x0, x1, x2, x3) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_compare17(x0, x1) new_esEs12(@0, @0) new_lt18(x0, x1) new_lt19(x0, x1, ty_@0) new_compare19(x0, x1, True, x2, x3) new_ltEs16(Just(x0), Just(x1), ty_Ordering) new_esEs8(LT, GT) new_esEs8(GT, LT) new_compare29(x0, x1, app(ty_Ratio, x2)) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_esEs21(x0, x1, app(ty_[], x2)) new_lt10(x0, x1) new_primCompAux00(x0, GT) new_ltEs19(x0, x1, ty_Double) new_ltEs16(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs15(EQ, LT) new_ltEs15(LT, EQ) new_esEs22(x0, x1, ty_Double) new_pePe(False, x0) new_lt21(x0, x1, ty_Bool) new_ltEs16(Just(x0), Just(x1), app(ty_[], x2)) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs26(x0, x1, ty_Float) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Double) new_ltEs5(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Ordering) new_ltEs15(GT, GT) new_ltEs11(Left(x0), Left(x1), ty_Int, x2) new_compare26(x0, x1, False) new_ltEs14(x0, x1, x2) new_ltEs11(Left(x0), Left(x1), ty_Char, x2) new_esEs14(Double(x0, x1), Double(x2, x3)) new_lt4(x0, x1) new_esEs24(x0, x1, ty_Bool) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_esEs13(:%(x0, x1), :%(x2, x3), x4) new_lt11(x0, x1, x2, x3) new_esEs20(x0, x1, ty_Bool) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_primEqNat0(Zero, Zero) new_compare29(x0, x1, ty_Double) new_compare16(x0, x1, x2, x3, False, x4, x5, x6) new_ltEs16(Just(x0), Nothing, x1) new_compare14(x0, x1) new_not(False) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs11(Right(x0), Right(x1), x2, ty_Bool) new_lt5(x0, x1, app(ty_Maybe, x2)) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_esEs7(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_ltEs5(x0, x1, ty_Ordering) new_ltEs11(Left(x0), Left(x1), ty_Float, x2) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_ltEs18(False, False) new_esEs20(x0, x1, ty_Char) new_esEs9(x0, x1, app(app(ty_@2, x2), x3)) new_esEs16([], :(x0, x1), x2) new_compare9(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_ltEs11(Right(x0), Right(x1), x2, ty_Int) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt5(x0, x1, ty_Bool) new_lt5(x0, x1, ty_Float) new_esEs7(Nothing, Just(x0), x1) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_compare23(x0, x1, True, x2, x3) new_ltEs15(LT, LT) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt20(x0, x1, ty_Integer) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(Integer(x0), Integer(x1)) new_ltEs11(Right(x0), Right(x1), x2, app(ty_[], x3)) new_sr0(Integer(x0), Integer(x1)) new_esEs19(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Int) new_compare110(x0, x1, False) new_esEs22(x0, x1, ty_@0) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs25(x0, x1, ty_Bool) new_esEs29(x0, x1, ty_@0) new_ltEs17(x0, x1) new_compare27(x0, x1, True) new_lt19(x0, x1, app(ty_Maybe, x2)) new_compare112(x0, x1, False, x2) new_compare111(x0, x1, x2, x3, False, x4, x5) new_ltEs11(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs24(x0, x1, ty_Ordering) new_lt21(x0, x1, ty_Float) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs27(x0, x1, ty_Integer) new_esEs24(x0, x1, ty_Integer) new_lt5(x0, x1, ty_Char) new_esEs19(x0, x1, ty_@0) new_ltEs11(Right(x0), Right(x1), x2, ty_Char) new_esEs29(x0, x1, ty_Double) new_asAs(True, x0) new_lt5(x0, x1, ty_Int) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_lt20(x0, x1, app(ty_[], x2)) new_primCmpNat0(x0, Zero) new_lt12(x0, x1, x2, x3, x4) new_esEs23(x0, x1, ty_@0) new_lt5(x0, x1, app(app(ty_Either, x2), x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_compare0(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_primCompAux(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, bh), bh) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 4 *new_compare0(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_compare0(xuu4601, xuu4801, bh) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(app(app(ty_@3, bcf), bcg), bch)) -> new_ltEs1(xuu4612, xuu4812, bcf, bcg, bch) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(app(ty_Either, bcd), bce)) -> new_ltEs0(xuu4612, xuu4812, bcd, bce) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_lt2(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_primCompAux(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, bh), bh) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 4 *new_compare2(@2(:(xuu4600, xuu4601), xuu461), @2(:(xuu4800, xuu4801), xuu481), False, app(ty_[], bh), bb) -> new_primCompAux(xuu4600, xuu4800, new_compare(xuu4601, xuu4801, bh), bh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4 *new_lt2(:(xuu4600, xuu4601), :(xuu4800, xuu4801), bh) -> new_compare0(xuu4601, xuu4801, bh) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_compare22(xuu460, xuu480, False, ca) -> new_ltEs3(xuu460, xuu480, ca) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3 *new_lt0(xuu460, xuu480, bc, bd) -> new_compare20(xuu460, xuu480, new_esEs5(xuu460, xuu480, bc, bd), bc, bd) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_lt1(xuu460, xuu480, be, bf, bg) -> new_compare21(xuu460, xuu480, new_esEs6(xuu460, xuu480, be, bf, bg), be, bf, bg) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5, 5 >= 6 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(ty_Maybe, bdb)) -> new_ltEs3(xuu4612, xuu4812, bdb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_ltEs2(xuu461, xuu481, bdc) -> new_compare0(xuu461, xuu481, bdc) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(app(app(ty_@3, ec), ed), ee)) -> new_ltEs1(xuu4611, xuu4811, ec, ed, ee) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(app(ty_Either, ea), eb)) -> new_ltEs0(xuu4611, xuu4811, ea, eb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(ty_Maybe, de), ce) -> new_lt3(xuu4610, xuu4810, de) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(ty_[], dd), ce) -> new_lt2(xuu4610, xuu4810, dd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(ty_Maybe, eg)) -> new_ltEs3(xuu4611, xuu4811, eg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs3(Just(xuu4610), Just(xuu4810), app(app(app(ty_@3, bdh), bea), beb)) -> new_ltEs1(xuu4610, xuu4810, bdh, bea, beb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_ltEs3(Just(xuu4610), Just(xuu4810), app(app(ty_Either, bdf), bdg)) -> new_ltEs0(xuu4610, xuu4810, bdf, bdg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs3(Just(xuu4610), Just(xuu4810), app(ty_Maybe, bed)) -> new_ltEs3(xuu4610, xuu4810, bed) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_compare21(xuu460, xuu480, False, be, bf, bg) -> new_ltEs1(xuu460, xuu480, be, bf, bg) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3, 5 >= 4, 6 >= 5 *new_compare20(xuu460, xuu480, False, bc, bd) -> new_ltEs0(xuu460, xuu480, bc, bd) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3, 5 >= 4 *new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(app(ty_@2, h), ba), bb) -> new_compare2(xuu460, xuu480, new_esEs4(xuu460, xuu480, h, ba), h, ba) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(app(ty_@2, cc), cd), ce) -> new_lt(xuu4610, xuu4810, cc, cd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_lt(xuu460, xuu480, h, ba) -> new_compare2(xuu460, xuu480, new_esEs4(xuu460, xuu480, h, ba), h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_compare1(xuu460, xuu480, h, ba) -> new_compare2(xuu460, xuu480, new_esEs4(xuu460, xuu480, h, ba), h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(app(ty_@2, bcb), bcc)) -> new_ltEs(xuu4612, xuu4812, bcb, bcc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(app(ty_@2, dg), dh)) -> new_ltEs(xuu4611, xuu4811, dg, dh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs3(Just(xuu4610), Just(xuu4810), app(app(ty_@2, bdd), bde)) -> new_ltEs(xuu4610, xuu4810, bdd, bde) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs3(Just(xuu4610), Just(xuu4810), app(ty_[], bec)) -> new_ltEs2(xuu4610, xuu4810, bec) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(app(app(ty_@3, da), db), dc), ce) -> new_lt1(xuu4610, xuu4810, da, db, dc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_lt3(xuu460, xuu480, ca) -> new_compare22(xuu460, xuu480, new_esEs7(xuu460, xuu480, ca), ca) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4 *new_primCompAux(xuu4600, xuu4800, xuu127, app(ty_[], bfd)) -> new_compare0(xuu4600, xuu4800, bfd) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3 *new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(app(ty_Either, bc), bd), bb) -> new_compare20(xuu460, xuu480, new_esEs5(xuu460, xuu480, bc, bd), bc, bd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5 *new_compare3(xuu460, xuu480, bc, bd) -> new_compare20(xuu460, xuu480, new_esEs5(xuu460, xuu480, bc, bd), bc, bd) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_compare5(xuu460, xuu480, ca) -> new_compare22(xuu460, xuu480, new_esEs7(xuu460, xuu480, ca), ca) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4 *new_compare4(xuu460, xuu480, be, bf, bg) -> new_compare21(xuu460, xuu480, new_esEs6(xuu460, xuu480, be, bf, bg), be, bf, bg) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5, 5 >= 6 *new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(app(app(ty_@3, be), bf), bg), bb) -> new_compare21(xuu460, xuu480, new_esEs6(xuu460, xuu480, be, bf, bg), be, bf, bg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5, 4 > 6 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, hg, app(ty_[], bda)) -> new_ltEs2(xuu4612, xuu4812, bda) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), df, app(ty_[], ef)) -> new_ltEs2(xuu4611, xuu4811, ef) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs(@2(xuu4610, xuu4611), @2(xuu4810, xuu4811), app(app(ty_Either, cf), cg), ce) -> new_lt0(xuu4610, xuu4810, cf, cg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_primCompAux(xuu4600, xuu4800, xuu127, app(app(ty_Either, beg), beh)) -> new_compare3(xuu4600, xuu4800, beg, beh) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4 *new_primCompAux(xuu4600, xuu4800, xuu127, app(app(app(ty_@3, bfa), bfb), bfc)) -> new_compare4(xuu4600, xuu4800, bfa, bfb, bfc) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4, 4 > 5 *new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, app(ty_Maybe, ca), bb) -> new_compare22(xuu460, xuu480, new_esEs7(xuu460, xuu480, ca), ca) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4 *new_primCompAux(xuu4600, xuu4800, xuu127, app(ty_Maybe, bfe)) -> new_compare5(xuu4600, xuu4800, bfe) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3 *new_primCompAux(xuu4600, xuu4800, xuu127, app(app(ty_@2, bee), bef)) -> new_compare1(xuu4600, xuu4800, bee, bef) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4 *new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(app(app(ty_@3, gh), ha), hb)) -> new_ltEs1(xuu4610, xuu4810, gh, ha, hb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs0(Left(xuu4610), Left(xuu4810), app(app(app(ty_@3, ff), fg), fh), fb) -> new_ltEs1(xuu4610, xuu4810, ff, fg, fh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(app(ty_Either, gf), gg)) -> new_ltEs0(xuu4610, xuu4810, gf, gg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs0(Left(xuu4610), Left(xuu4810), app(app(ty_Either, fc), fd), fb) -> new_ltEs0(xuu4610, xuu4810, fc, fd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs0(Left(xuu4610), Left(xuu4810), app(ty_Maybe, gb), fb) -> new_ltEs3(xuu4610, xuu4810, gb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(ty_Maybe, hd)) -> new_ltEs3(xuu4610, xuu4810, hd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs0(Left(xuu4610), Left(xuu4810), app(app(ty_@2, eh), fa), fb) -> new_ltEs(xuu4610, xuu4810, eh, fa) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(app(ty_@2, gd), ge)) -> new_ltEs(xuu4610, xuu4810, gd, ge) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs0(Left(xuu4610), Left(xuu4810), app(ty_[], ga), fb) -> new_ltEs2(xuu4610, xuu4810, ga) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs0(Right(xuu4610), Right(xuu4810), gc, app(ty_[], hc)) -> new_ltEs2(xuu4610, xuu4810, hc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(app(app(ty_@3, bcf), bcg), bch))) -> new_ltEs1(xuu4612, xuu4812, bcf, bcg, bch) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(app(app(ty_@3, bdh), bea), beb))) -> new_ltEs1(xuu4610, xuu4810, bdh, bea, beb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(app(app(ty_@3, ec), ed), ee))) -> new_ltEs1(xuu4611, xuu4811, ec, ed, ee) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(app(app(ty_@3, ff), fg), fh)), fb)) -> new_ltEs1(xuu4610, xuu4810, ff, fg, fh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(app(app(ty_@3, gh), ha), hb))) -> new_ltEs1(xuu4610, xuu4810, gh, ha, hb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(ty_Maybe, bag), hg, hh) -> new_lt3(xuu4610, xuu4810, bag) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(ty_Maybe, bca), hh) -> new_lt3(xuu4611, xuu4811, bca) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(ty_[], bbh), hh) -> new_lt2(xuu4611, xuu4811, bbh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(ty_[], baf), hg, hh) -> new_lt2(xuu4610, xuu4810, baf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(app(ty_@2, he), hf), hg, hh) -> new_lt(xuu4610, xuu4810, he, hf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(app(ty_@2, bba), bbb), hh) -> new_lt(xuu4611, xuu4811, bba, bbb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(app(app(ty_@3, bbe), bbf), bbg), hh) -> new_lt1(xuu4611, xuu4811, bbe, bbf, bbg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(app(app(ty_@3, bac), bad), bae), hg, hh) -> new_lt1(xuu4610, xuu4810, bac, bad, bae) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), app(app(ty_Either, baa), bab), hg, hh) -> new_lt0(xuu4610, xuu4810, baa, bab) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs1(@3(xuu4610, xuu4611, xuu4612), @3(xuu4810, xuu4811, xuu4812), bah, app(app(ty_Either, bbc), bbd), hh) -> new_lt0(xuu4611, xuu4811, bbc, bbd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(app(ty_Either, gf), gg))) -> new_ltEs0(xuu4610, xuu4810, gf, gg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(app(ty_Either, ea), eb))) -> new_ltEs0(xuu4611, xuu4811, ea, eb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(app(ty_Either, fc), fd)), fb)) -> new_ltEs0(xuu4610, xuu4810, fc, fd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(app(ty_Either, bcd), bce))) -> new_ltEs0(xuu4612, xuu4812, bcd, bce) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(app(ty_Either, bdf), bdg))) -> new_ltEs0(xuu4610, xuu4810, bdf, bdg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(ty_Maybe, bca)), hh)) -> new_lt3(xuu4611, xuu4811, bca) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(ty_Maybe, de)), ce)) -> new_lt3(xuu4610, xuu4810, de) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(ty_Maybe, bag)), hg), hh)) -> new_lt3(xuu4610, xuu4810, bag) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(ty_[], baf)), hg), hh)) -> new_lt2(xuu4610, xuu4810, baf) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(ty_[], dd)), ce)) -> new_lt2(xuu4610, xuu4810, dd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(ty_[], bbh)), hh)) -> new_lt2(xuu4611, xuu4811, bbh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(ty_Maybe, eg))) -> new_ltEs3(xuu4611, xuu4811, eg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(ty_Maybe, bdb))) -> new_ltEs3(xuu4612, xuu4812, bdb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(ty_Maybe, gb)), fb)) -> new_ltEs3(xuu4610, xuu4810, gb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(ty_Maybe, bed))) -> new_ltEs3(xuu4610, xuu4810, bed) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(ty_Maybe, hd))) -> new_ltEs3(xuu4610, xuu4810, hd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(app(ty_@2, cc), cd)), ce)) -> new_lt(xuu4610, xuu4810, cc, cd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(app(ty_@2, he), hf)), hg), hh)) -> new_lt(xuu4610, xuu4810, he, hf) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(app(ty_@2, bba), bbb)), hh)) -> new_lt(xuu4611, xuu4811, bba, bbb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(app(ty_@2, bcb), bcc))) -> new_ltEs(xuu4612, xuu4812, bcb, bcc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(app(ty_@2, bdd), bde))) -> new_ltEs(xuu4610, xuu4810, bdd, bde) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(app(ty_@2, dg), dh))) -> new_ltEs(xuu4611, xuu4811, dg, dh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(app(ty_@2, eh), fa)), fb)) -> new_ltEs(xuu4610, xuu4810, eh, fa) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(app(ty_@2, gd), ge))) -> new_ltEs(xuu4610, xuu4810, gd, ge) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(app(app(ty_@3, da), db), dc)), ce)) -> new_lt1(xuu4610, xuu4810, da, db, dc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(app(app(ty_@3, bbe), bbf), bbg)), hh)) -> new_lt1(xuu4611, xuu4811, bbe, bbf, bbg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(app(app(ty_@3, bac), bad), bae)), hg), hh)) -> new_lt1(xuu4610, xuu4810, bac, bad, bae) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare2(@2(:(xuu4600, xuu4601), xuu461), @2(:(xuu4800, xuu4801), xuu481), False, app(ty_[], bh), bb) -> new_compare0(xuu4601, xuu4801, bh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare2(@2(xuu460, xuu461), @2(xuu480, xuu481), False, cb, app(ty_[], bdc)) -> new_compare0(xuu461, xuu481, bdc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, df), app(ty_[], ef))) -> new_ltEs2(xuu4611, xuu4811, ef) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, Right(xuu4610)), @2(xuu480, Right(xuu4810)), False, cb, app(app(ty_Either, gc), app(ty_[], hc))) -> new_ltEs2(xuu4610, xuu4810, hc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, Left(xuu4610)), @2(xuu480, Left(xuu4810)), False, cb, app(app(ty_Either, app(ty_[], ga)), fb)) -> new_ltEs2(xuu4610, xuu4810, ga) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, Just(xuu4610)), @2(xuu480, Just(xuu4810)), False, cb, app(ty_Maybe, app(ty_[], bec))) -> new_ltEs2(xuu4610, xuu4810, bec) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), hg), app(ty_[], bda))) -> new_ltEs2(xuu4612, xuu4812, bda) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, app(app(ty_Either, baa), bab)), hg), hh)) -> new_lt0(xuu4610, xuu4810, baa, bab) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @3(xuu4610, xuu4611, xuu4612)), @2(xuu480, @3(xuu4810, xuu4811, xuu4812)), False, cb, app(app(app(ty_@3, bah), app(app(ty_Either, bbc), bbd)), hh)) -> new_lt0(xuu4611, xuu4811, bbc, bbd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare2(@2(xuu460, @2(xuu4610, xuu4611)), @2(xuu480, @2(xuu4810, xuu4811)), False, cb, app(app(ty_@2, app(app(ty_Either, cf), cg)), ce)) -> new_lt0(xuu4610, xuu4810, cf, cg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: new_primEqNat(Succ(xuu400000), Succ(xuu30000)) -> new_primEqNat(xuu400000, xuu30000) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primEqNat(Succ(xuu400000), Succ(xuu30000)) -> new_primEqNat(xuu400000, xuu30000) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: new_primMinusNat(Succ(xuu38200), Succ(xuu9400)) -> new_primMinusNat(xuu38200, xuu9400) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primMinusNat(Succ(xuu38200), Succ(xuu9400)) -> new_primMinusNat(xuu38200, xuu9400) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (42) YES ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: new_primPlusNat(Succ(xuu38200), Succ(xuu9400)) -> new_primPlusNat(xuu38200, xuu9400) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primPlusNat(Succ(xuu38200), Succ(xuu9400)) -> new_primPlusNat(xuu38200, xuu9400) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (45) YES