/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) CR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) QDP (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; minFM :: Ord b => FiniteMap b a -> Maybe b; minFM EmptyFM = Nothing; minFM (Branch key _ _ fm_l _) = case minFM fm_l of { Nothing-> Just key; Just key1-> Just key1; } ; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) CR (EQUIVALENT) Case Reductions: The following Case expression "case minFM fm_l of { Nothing -> Just key; Just key1 -> Just key1} " is transformed to "minFM0 key Nothing = Just key; minFM0 key (Just key1) = Just key1; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; minFM :: Ord b => FiniteMap b a -> Maybe b; minFM EmptyFM = Nothing; minFM (Branch key _ _ fm_l _) = minFM0 key (minFM fm_l); minFM0 key Nothing = Just key; minFM0 key (Just key1) = Just key1; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; minFM :: Ord b => FiniteMap b a -> Maybe b; minFM EmptyFM = Nothing; minFM (Branch key vy vz fm_l wu) = minFM0 key (minFM fm_l); minFM0 key Nothing = Just key; minFM0 key (Just key1) = Just key1; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; minFM :: Ord b => FiniteMap b a -> Maybe b; minFM EmptyFM = Nothing; minFM (Branch key vy vz fm_l wu) = minFM0 key (minFM fm_l); minFM0 key Nothing = Just key; minFM0 key (Just key1) = Just key1; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.minFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.minFM wv3",fontsize=16,color="burlywood",shape="triangle"];15[label="wv3/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3 -> 15[label="",style="solid", color="burlywood", weight=9]; 15 -> 4[label="",style="solid", color="burlywood", weight=3]; 16[label="wv3/FiniteMap.Branch wv30 wv31 wv32 wv33 wv34",fontsize=10,color="white",style="solid",shape="box"];3 -> 16[label="",style="solid", color="burlywood", weight=9]; 16 -> 5[label="",style="solid", color="burlywood", weight=3]; 4[label="FiniteMap.minFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];4 -> 6[label="",style="solid", color="black", weight=3]; 5[label="FiniteMap.minFM (FiniteMap.Branch wv30 wv31 wv32 wv33 wv34)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="Nothing",fontsize=16,color="green",shape="box"];7 -> 8[label="",style="dashed", color="red", weight=0]; 7[label="FiniteMap.minFM0 wv30 (FiniteMap.minFM wv33)",fontsize=16,color="magenta"];7 -> 9[label="",style="dashed", color="magenta", weight=3]; 9 -> 3[label="",style="dashed", color="red", weight=0]; 9[label="FiniteMap.minFM wv33",fontsize=16,color="magenta"];9 -> 10[label="",style="dashed", color="magenta", weight=3]; 8[label="FiniteMap.minFM0 wv30 wv4",fontsize=16,color="burlywood",shape="triangle"];17[label="wv4/Nothing",fontsize=10,color="white",style="solid",shape="box"];8 -> 17[label="",style="solid", color="burlywood", weight=9]; 17 -> 11[label="",style="solid", color="burlywood", weight=3]; 18[label="wv4/Just wv40",fontsize=10,color="white",style="solid",shape="box"];8 -> 18[label="",style="solid", color="burlywood", weight=9]; 18 -> 12[label="",style="solid", color="burlywood", weight=3]; 10[label="wv33",fontsize=16,color="green",shape="box"];11[label="FiniteMap.minFM0 wv30 Nothing",fontsize=16,color="black",shape="box"];11 -> 13[label="",style="solid", color="black", weight=3]; 12[label="FiniteMap.minFM0 wv30 (Just wv40)",fontsize=16,color="black",shape="box"];12 -> 14[label="",style="solid", color="black", weight=3]; 13[label="Just wv30",fontsize=16,color="green",shape="box"];14[label="Just wv40",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: new_minFM(Branch(wv30, wv31, wv32, wv33, wv34), h) -> new_minFM(wv33, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_minFM(Branch(wv30, wv31, wv32, wv33, wv34), h) -> new_minFM(wv33, h) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (10) YES