2.26/1.47 WORST_CASE(?, O(n^1)) 2.52/1.48 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.52/1.48 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.52/1.48 2.52/1.48 2.52/1.48 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.52/1.48 2.52/1.48 (0) CpxIntTrs 2.52/1.48 (1) Koat Proof [FINISHED, 185 ms] 2.52/1.48 (2) BOUNDS(1, n^1) 2.52/1.48 2.52/1.48 2.52/1.48 ---------------------------------------- 2.52/1.48 2.52/1.48 (0) 2.52/1.48 Obligation: 2.52/1.48 Complexity Int TRS consisting of the following rules: 2.52/1.48 eval_speed_popl10_simple_multiple_start(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb0_in(v_m, v_n, v_x.0, v_y.0)) :|: TRUE 2.52/1.48 eval_speed_popl10_simple_multiple_bb0_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb1_in(v_m, v_n, 0, 0)) :|: TRUE 2.52/1.48 eval_speed_popl10_simple_multiple_bb1_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb2_in(v_m, v_n, v_x.0, v_y.0)) :|: v_x.0 < v_n 2.52/1.48 eval_speed_popl10_simple_multiple_bb1_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb3_in(v_m, v_n, v_x.0, v_y.0)) :|: v_x.0 >= v_n 2.52/1.48 eval_speed_popl10_simple_multiple_bb2_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb1_in(v_m, v_n, v_x.0, v_y.0 + 1)) :|: v_y.0 < v_m 2.52/1.48 eval_speed_popl10_simple_multiple_bb2_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb1_in(v_m, v_n, v_x.0 + 1, v_y.0 + 1)) :|: v_y.0 < v_m && v_y.0 >= v_m 2.52/1.48 eval_speed_popl10_simple_multiple_bb2_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb1_in(v_m, v_n, v_x.0, v_y.0)) :|: v_y.0 >= v_m && v_y.0 < v_m 2.52/1.48 eval_speed_popl10_simple_multiple_bb2_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_bb1_in(v_m, v_n, v_x.0 + 1, v_y.0)) :|: v_y.0 >= v_m 2.52/1.48 eval_speed_popl10_simple_multiple_bb3_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_multiple_stop(v_m, v_n, v_x.0, v_y.0)) :|: TRUE 2.52/1.48 2.52/1.48 The start-symbols are:[eval_speed_popl10_simple_multiple_start_4] 2.52/1.48 2.52/1.48 2.52/1.48 ---------------------------------------- 2.52/1.48 2.52/1.48 (1) Koat Proof (FINISHED) 2.52/1.48 YES(?, 2*ar_2 + 2*ar_3 + 7) 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 Initial complexity problem: 2.52/1.48 2.52/1.48 1: T: 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 /\ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 /\ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 Testing for reachability in the complexity graph removes the following transitions from problem 1: 2.52/1.48 2.52/1.48 evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 /\ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 /\ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 We thus obtain the following problem: 2.52/1.48 2.52/1.48 2: T: 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 Repeatedly propagating knowledge in problem 2 produces the following problem: 2.52/1.48 2.52/1.48 3: T: 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 A polynomial rank function with 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb3in) = 1 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplestop) = 0 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb2in) = 2 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb1in) = 2 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb0in) = 2 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplestart) = 2 2.52/1.48 2.52/1.48 Pol(koat_start) = 2 2.52/1.48 2.52/1.48 orients all transitions weakly and the transitions 2.52/1.48 2.52/1.48 evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 strictly and produces the following problem: 2.52/1.48 2.52/1.48 4: T: 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 A polynomial rank function with 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb3in) = -V_2 + V_4 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplestop) = -V_2 + V_4 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb2in) = -V_2 + V_4 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb1in) = -V_2 + V_4 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb0in) = V_4 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplestart) = V_4 2.52/1.48 2.52/1.48 Pol(koat_start) = V_4 2.52/1.48 2.52/1.48 orients all transitions weakly and the transition 2.52/1.48 2.52/1.48 evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 strictly and produces the following problem: 2.52/1.48 2.52/1.48 5: T: 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: ar_3, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 Applied AI with 'oct' on problem 5 to obtain the following invariants: 2.52/1.48 2.52/1.48 For symbol evalspeedpopl10simplemultiplebb1in: X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 2.52/1.48 2.52/1.48 For symbol evalspeedpopl10simplemultiplebb2in: X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 2.52/1.48 2.52/1.48 For symbol evalspeedpopl10simplemultiplebb3in: X_1 - X_3 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 This yielded the following problem: 2.52/1.48 2.52/1.48 6: T: 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ar_3, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 A polynomial rank function with 2.52/1.48 2.52/1.48 Pol(koat_start) = V_3 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplestart) = V_3 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb0in) = V_3 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb1in) = -V_1 + V_3 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb2in) = -V_1 + V_3 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplebb3in) = -V_1 + V_3 2.52/1.48 2.52/1.48 Pol(evalspeedpopl10simplemultiplestop) = -V_1 + V_3 2.52/1.48 2.52/1.48 orients all transitions weakly and the transition 2.52/1.48 2.52/1.48 evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 strictly and produces the following problem: 2.52/1.48 2.52/1.48 7: T: 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ?, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ar_3, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ar_2, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 Repeatedly propagating knowledge in problem 7 produces the following problem: 2.52/1.48 2.52/1.48 8: T: 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplestart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: 1, Cost: 1) evalspeedpopl10simplemultiplebb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(0, 0, ar_2, ar_3)) 2.52/1.48 2.52/1.48 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] 2.52/1.48 2.52/1.48 (Comp: ar_3, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_1 + 1 ] 2.52/1.48 2.52/1.48 (Comp: ar_2, Cost: 1) evalspeedpopl10simplemultiplebb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplebb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 2.52/1.48 2.52/1.48 (Comp: 2, Cost: 1) evalspeedpopl10simplemultiplebb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalspeedpopl10simplemultiplestop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 2.52/1.48 2.52/1.48 start location: koat_start 2.52/1.48 2.52/1.48 leaf cost: 0 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 Complexity upper bound 2*ar_2 + 2*ar_3 + 7 2.52/1.48 2.52/1.48 2.52/1.48 2.52/1.48 Time: 0.210 sec (SMT: 0.186 sec) 2.52/1.48 2.52/1.48 2.52/1.48 ---------------------------------------- 2.52/1.48 2.52/1.48 (2) 2.52/1.48 BOUNDS(1, n^1) 2.52/1.50 EOF